用户名: 密码: 验证码:
多用户MISO/MIMO无线通信系统下行链路传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多用户多输入单输出(MISO)/多输入多输出(MIMO)技术由于能够在相同的时间和频率上实现多数据流和多用户的空间复用并提供丰富的空间分集增益和多用户分集增益,有望成为未来无线通信系统的核心技术。国际上,围绕MISO/MIMO技术已有许多富有成效的开拓性研究工作,本文将在此基础上对多用户MISO/MIMO无线通信系统下行链路的传输技术做进一步深入地研究。主要研究内容包括:次优的脏纸编码(DPC)方案、基于和MSE(SMSE)最小化的线性传输方案、稳健性的线性传输方案以及有限反馈多用户MISO/MIMO下行链路中的波束成形。
     为了避免最优DPC方案中计算最优发射处理矩阵带来的较高复杂度,在多用户MIMO下行链路中提出了一种次优的DPC传输方案—分块逼零DPC(Block ZF-DPC)方案以及相应的多用户调度算法。该方案通过复杂度较低的矩阵零空间运算来获得次优的发射处理矩阵,当总用户数等于系统的最大活动用户数上限时该方案能渐进地获得最优DPC方案的和速率。为了获得多用户分集增益,为Block ZF-DPC方案设计了两种次优的多用户调度算法,它们能以与用户数成线性关系的复杂度获得接近于最优调度算法的和速率性能以及最优的空间复用增益和多用户分集增益。
     在基站(BS)具有精确信道状态信息(CSI)的假设下,论文深入研究了多用户MISO/MIMO下行链路中的线性传输方案并针对多用户MIMO下行链路提出了一种新型的基于SMSE最小化的线性传输方案。该方案将总发射功率约束条件整合到目标函数中,并通过对下行链路中发射/接收处理矩阵的交替优化来解决SMSE最小化问题。分析和仿真结果显示该方案采用的SMSE最小化算法具有全局最优性,而且具有比现有方案更好的误符号率(SER)性能、更低的复杂度以及更快的收敛速度。
     为了减小信道估计误差给多用户MIMO下行链路带来的性能损失,提出了一种基于条件SMSE最小化的稳健性线性传输方案。作者首先推导了信道估计值已知情况下真实信道的条件分布,然后通过在各用户发射功率单独受限的约束下最小化条件SMSE来优化各用户的发射/接收处理矩阵。与非稳健性传输方案相比,该方案对信道估计误差具有明显的稳健性以及良好的收敛特性,需要的额外计算量也较低。
     针对有限反馈多用户MISO下行链路中现有逼零波束成形(ZFBF)方案的反馈总量随用户数线性增加的缺点,本文在其基础上提出了一种带反馈门限的ZFBF方案,通过在每个用户终端设置适当的反馈条件和反馈门限将系统的平均反馈总量限制在一个较小的固定上限值以下。根据导出的反馈概率上限和反馈门限设计准则给出了门限的计算公式和溢出概率的近似计算方法,在理论上分析了该方案的渐进性能。仿真结果验证了门限设计方法和理论分析的正确性,同时也显示该方案能以较低的反馈总量获得接近于现有无门限ZFBF方案的性能。
     有限反馈多用户MIMO-正交频分多址(OFDMA)下行链路中现有的随机波束成形(RBF)方案同样存在反馈总量随用户数线性增加的缺点,本文在其基础上提出了一种带反馈门限的RBF方案,通过在每个子载波上设置适当的反馈条件和反馈门限使得系统的平均反馈总量随用户数的增加速率不超过用户数的自然对数函数。根据导出的反馈概率上限和反馈门限设计准则给出了门限的求解方程,在理论上分析了该方案的渐进性能并给出了溢出概率的理论上限。仿真结果验证了门限设计方法和理论分析的正确性,同时也显示该方案在用户数趋于无穷大时能够渐进地获得现有无门限RBF方案的频谱效率和最优的多用户分集增益。
Multi-user Multiple Input Single Output (MISO)/Multiple Input Multiple Output (MIMO) technology is a promising key technique for future wireless communication systems due to its potentials to achieve spatial multiplexing of multiple data streams and users at the same time and frequency channel as well as rich spatial diversity gain and multi-user diversity gain. Based on the existing worldwide innovative researches, this dissertation further investigates the downlink transmission techniques of multi-user MISO/MIMO wireless communication systems. Key contents of this dissertation include sub-optimal Dirty Paper Coding (DPC) scheme, linear transmission schemes based on Sum Mean Square Error (SMSE) minimization, robust linear transmission schemes and beamforming schemes in the limited-feedback multi-user MISO/MIMO downlink.
     In order to avoid the relatively high complexity introduced by calculating the optimal transmit processing matrices in the optimal DPC scheme, a sub-optimal Block Zero-Forcing DPC (Block ZF-DPC), associated with two multi-user scheduling algorithms, are proposed for the multi-user MIMO downlink. The Block ZF-DPC adopts sub-optimal transmit processing matrices calculated by simple matrix null space operations. The Block ZF-DPC scheme can asymptotically achieve the sum rate of the optimal DPC scheme if the number of users equals to the upper bound on the active users. Meanwhile, two sub-optimal multi-user scheduling algorithms which have linear complexity with respect to the number of users are designed for the Block ZF-DPC. Both sub-optimal scheduling algorithms can approach the sum rate of the optimal scheduling algorithm and can achieve the optimal spatial multiplexing gain as well as the optimal multi-user diversity gain
     Assuming that the perfect Channel State Information (CSI) is available at Base Station (BS), this dissertation investigates in detail the linear transmission schemes in the multi-user MISO/MIMO downlink and a novel linear transmission scheme based on SMSE minimization is proposed for the multi-user MIMO downlink. This novel scheme incorporates the total transmit power constraint into the objective function and solves the SMSE minimization problem by alternative optimizing the transmit/receive processing matrices in the downlink. Simulation results demonstrate that the SMSE minimization algorithm of this scheme is globally optimal and this novel scheme has better Symbol Error Rate(SER) performance,less complexity and faster convergence speed than the existing scheme.
     With the objective to mitigate the performance degradation induced by channel estimation error in the multi-user MIMO downlink, a robust linear transmission scheme based on conditional SMSE minimization is proposed. The distribution of the real channel conditional on imperfect channel estimates is firstly derived, then the transmit/receive processing matrices are optimized by minimizing the conditional SMSE under individual power constraints. Compared to the non-robust transmission scheme, this scheme exhibits obvious robustness to the channel estimation error, excellent convergence property and low extra computation load.
     The existing Zero Forcing Beamforming (ZFBF) scheme in the limited-feedback multi-user MISO downlink has a drawback that the total feedback amount increases linearly with the number of users. Based on the existing ZFBF scheme, a ZFBF scheme with feedback threshold is proposed. By introducing an appropriate feedback condition and a feedback threshold at each terminal, this scheme constrains the average total feedback amount by a relatively small and fixed upper bound. Based on the derived upper bound on the feedback probability and feedback threshold design criterion, the formula of the feedback threshold and an approximate method to compute the overflowing probability are presented and the asymptotical performance of this scheme is theoretically analyzed. Simulation results validate the threshold design and theoretical analysis and also demonstrate that the proposed ZFBF scheme with feedback threshold can approach the performance of the existing ZFBF scheme without feedback threshold with reduced total feedback amount.
     In the limited-feedback multi-user MIMO-Orthogonal Frequency Division Multiple Access (OFDMA) downlink, the existing Random Beamforming (RBF) scheme also has the drawback that the total feedback amount increases linearly with the number of users. Based on the existing RBF scheme, a RBF scheme with feedback threshold is proposed. This scheme introduces an appropriate feedback condition and a feedback threshold at each subcarrier so that the growing speed of the total average feedback amount with the number of users is slower than the natural logarithm function. According to the derived upper bound on the feedback probability and feedback threshold design criterion, the equation of the feedback threshold is derived. Meanwhile, the asymptotical performance of this scheme is theoretically analyzed and an upper bound on the overflowing bound is presented. Simulation results validate the threshold design and theoretical analysis and also demonstrate that the proposed scheme can asymptotically achieve the spectrum efficiency of the existing RBF scheme without feedback threshold and the optimal multi-user diversity gain as the number of users approaches infinity.
引文
[1] Foschini G J. Layered space-time architecture for wireless communication in fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996:41-59.
    [2] Winters J. On the capacity of radio communication systems with diversity in Rayleigh fading environment[J]. IEEE J. Select Areas Commun., 1987, 5(5):871-878.
    [3] Foschini G J, Gans M J. On limites of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998, 6(3):311-335.
    [4] Zheng L Z, Tse D N C. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels[J]. IEEE Trans. Inform. Theory, 2003, 49(5): 1073-1098.
    [5] 3GPP TR 25.814. Physical layer aspects for evolved universal terrestrial radio access (UTRA)[S].2006.
    [6] IEEE Std 802.16e-2005-Amendment to IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed Broadband Wireless Access Systems-Physical and Medium Access Control Layers for combined Fixed and Mobile Operation in Licensed Bands[S].
    [7] Rui R, Lau V K N. Cross layer design of downlink multi-antenna OFDMA systems with imperfect CSIT for slow fading channels[J]. IEEE Trans. Wireless Commun., 2007, 6(7):2417-2421.
    [8] Telatar E. Capacity of multi-antenna Gaussian channels[J]. European Trans. Telecomm., 1999, 10(6): 585-596.
    [9] Verdu S. Multiple-access channels with memory and without frame synchronism[J]. IEEE Trans. Inform. Theory, 1989, 35: 605-619.
    [10] Yu W, Rhee W and Boyd S. etc. Iterative water-filling for vector multiple access channels[C]. IEEE Int. Symp. Inform. Theory, June.24-29, 2001: 322.
    [11] Costa M H M. Writing on dirty paper[J]. IEEE Trans. on Inform. Theory, 1983, 29(3):439-441.
    [12] Caire G, Shamai S. On the achievable throughput of a multi-antenna Gaussian broadcast channel[J]. IEEE Trans. Inform. Theory, 2003, 49(7):1691-1706.
    [13] Weingarten H, Steinber Y and Shamai S. The capacity region of the Gaussian MIMO broadcast channel[C]. Int’l Symp. Inform. Theory, 2004:174.
    [14] Viswanath P, Jindal N and Goldsmith A. Duality, achievable rates and sum capacity of Gaussian MIMO broadcast channels[J]. IEEE Trans. Inform. Theory, 2003, 49(10):2658-2668.
    [15] Fischer R F H, Windpassinger C and Lampe A. et al. MIMO precoding for decentralized receivers[C]. Int. Symp. Information Theory, 2002: 496.
    [16] Windpassinger C, Fischer R F H, and Vencel T. et al. Precoding in multiantenna and multiuser communications[J]. IEEE Trans. Wireless Communications, 2004, 3(4): 1305-1316.
    [17] Erez U, Shamai S and Zamir R. Capacity and lattice strategies for cancelling known interference[C]. Int’l. Symp. Inform. Theory and its Applications, 2000: 681-684.
    [18] Jafar S A, Goldsmith A. Isotropic fading vector broadcast channels: the scalar upper bound and loss in degrees of freedom[J]. IEEE Trans. Inform. Theory, 2005, 51(3):848-857.
    [19] Viswanathan H,Huang H C. Downlink capacity evaluation of cellular networks with known interference cancellation[J]. IEEE J. Sel. Areas Commun., 2003, 21(6):802-811.
    [20] Yu W. A dual decomposition approach to the sum power Gaussian vector multiple-access channel sum capacity problem[C]. Conf. Information Sciences and Systems(CISS), 2003.
    [21] Jindal N, Rhee W, and Vishwanath S et al. Sum power iterative water-filling for multi-antenna Gaussian broadcast channels[J]. IEEE Trans. Inform. Theory, 2005, 51(4):1570-1580.
    [22] Caire G and Shamai S. On the achievable throughput of a multiantenna Gaussian broadcast channel[J]. IEEE Trans. Inform. Theory, 2003, 49(7):1691-1706.
    [23] Tu Z, Blum R S. Multiuser diversity for a dirty paper approach[J]. IEEE Commun. Lett., 2003, 7(8): 370-372.
    [24] Jiang J, Buehrer R M and Tranter W H. High-speed downlink packet transmission with spatial multiplexing and scheduling[C]. IEEE Wireless Communications and Networking Conference, 2004, 4(4): 2148-2152.
    [25] Peel C B, Hochwald B M and Swindlehurst A L. A vector-perturbation technique for near-capacity multiantenna multiuser communication-Part I: Channel inversion and regularization[J]. IEEE Trans. Commun., 2005, 53(1): 195-202.
    [26] Windpassinger C, Fischer R F H and Huber J B. Lattice-reduction-aided broadcast precoding[J]. IEEE Trans. Comm., 2004, 52(12): 2057-2060.
    [27] Haustein T, Helmolt C and Jorwieck E. et al. Performance of MIMO systems with channel inversion[C]. IEEE Vehicular Techonlogy Conference, 2002, 1(1): 35-39.
    [28] Yang W, Xu G. Optimal downlink power assignment for smart antenna systems[C]. IEEE Int. Conf. Acoust., Speech, and Signal Proc.(ICASSP),1998,6:3337-3340.
    [29] Schubert M, Boche H. Solution of the multiuser downlink beamforming problem with individual SINR constraints[J]. IEEE Trans. Veh. Tech., 2004, 53(1):18-28.
    [30] Bengtsson M, Ottersten B. Handbook of Antennas in Wireless Communications[M]. FL:Boca Rato, CRC Press, 2001.
    [31] Bengtsson M, Ottersen M. Optimal downlink beamforming using semidefinite optimization[C]. Annual Allerton Conf. on Commun., Control and Computing, 1999:987-996.
    [32] Farrokhi P R, Liu K J, Tassiulas L. Transmit beamforming and power control for cellular wireless systems[J]. IEEE J. Select. Areas Commun., 1998,16:1437-14449.
    [33] Visotsky E, Madhow U. Optimum beamforming using transmit antenna arrays[C]. IEEE Vehicular Techn. Conf., 1999, 1:851-856.
    [34] Chang J H, Tassiulas L, Farrokhi F R. Joint transmitter receiver diversity for efficient space division multi-access[J]. IEEE Trans. On Wireless Communications, 2002, 1(1):16-27.
    [35] Wong K K, Murch R D, Letaief K B. A joint channel diagonalization for multiuser MIMO antenna systems[J]. IEEE Trans. On Wireless Comm., 2003, 2(4):773-786.
    [36] Pan Z G, Wong K K, Ng T S. Generalized multiuser orthogonal space division multiplexing[J]. IEEE Trans. on Wireless Commun., 2004, 3(6):1969-1973.
    [37] Tenenbaum A J, Adve R S. Joint multiuser transmit-receive optimization using linear processing[C]. IEEE Int’l Conf. on Commun., 2004, 1:588-592.
    [38] Shi S, Schubert M. MMSE transmit optimization for multi-user multi-antenna systems[C]. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing(ICASSP), 2005, 3(3):18-23.
    [39] Shi S, Schubert M, Boche H. Downlink MMSE transceiver optimization for multi-user MIMO systems: duality and Sum-MSE[J]. IEEE Trans. on Acoustics, Speech and Signal Processing, 2007, 55(11): 5436-5446.
    [40] Khachan A M, Tenenbaum A J, Adve R S. Linear processing for the downlink in multiuser MIMO systems with multiple data streams[C]. IEEE Int’l Conf. on Commun., 2006, 9: 4113-4118.
    [41] Schubert M, Shi S, Jorswieck E A et al. Downlink sum-MSE transceiver optimization for linear multi-user MIMO systems[C]. Asilomar CSSC, 2005:1424-1428.
    [42] Narula A, Lopez M J, Trott M D etc. Efficient use of side information in multiple antenna data transmission over fading channels[J]. IEEE J. Select. Areas Commun., 1998, 16(8):1423-1436.
    [43] Love D, Health R, Strohmer T. Grassmannian beamforming for multiple-input multiple-output wireless systems[J]. IEEE Trans. Inform. Theory, 2003, 49(10):2735-2747.
    [44] Mukkavilli K, Sabharwal A, Erkip E et al. On beamforming with finite rate feedback in multiple-antenna systems[J]. IEEE Trans. Inform. Theory, 2003, 49(10):2562-2579.
    [45] Conway J H, Hardin R H, Sloane N J A. Packing lines, planes:packing in Grassmanian spaces[J]. Experimental Mathematics, 1996, 5(2):139-159.
    [46] Santipach W, Honig M L. Asymptotic performance of MIMO wireless channels with limited feedback[C]. IEEE Mil. Comm. Conf., 2003, 1:141-146.
    [47] Santipach W, Honig M L. Asymptotic capacity of beamforming with limited feedback[C]. IEEE Int. Symp. Inform. Thoery, 2004:290.
    [48] Jindal N. MIMO broadcast channels with finite rate feedback[C]. IEEE Globecomm, 2005, 3:1520-1524.
    [49] Sharif M, Hassibi B. On the capacity of MIMO broadcast channels with partial side information[J]. IEEE Trans. on Inform. Theory, 2005, 51(2):506-522.
    [50] Yoo T, Jindal N, Goldsmith A. Multi-antenna broadcast channels with limited feedback and user selection[J]. IEEE Journal Sel. Areas in Commun., 2007, 25(7):3822-3827.
    [51] Yoo T, Goldsmith A. Sum-rate optimal multi-antenna downlink beamforming strategy based on clique search[C]. IEEE Globecomm, 2005, 3:1510-1514.
    [52] Choi W, Forenza A, Andrews J G et al. Opportunistic space-division multiple access with beam selection[J]. IEEE Trans. Commun., 2007, 55(12):2371-2380.
    [53] Huang K B, Heath R W, Andrews J G. Joint beamforming and scheduling for SDMA systems with limited feedback[EB/OL]. Http://arxiv.org/abs/cs.IT/0606121v1.
    [54]刘毅,张海林.有限反馈多用户MIMO-OFDMA下行链路预编码[J].西安电子科技大学学报(自然科学版),2007, 34(1):71-75。
    [55] Han C Z, Dou F X, Armour S et al. Random beamforming OFDMA for future generation cellular communications systems[C]. IEEE VTC-Fall, 2007:516-520.
    [56] Toufik I, Kim H J. MIMO-OFDMA opportunistic beamforming with partial channel state information[C]. IEEE Int’l Conf. Commun., 2006, 12:5389-5394.
    [57] Gershman A B, Sidiropoulos N D. Space-time processing for MIMO communications[M]. John Wiley & Sons, Ltd, 2005:13-16.
    [58] Abdi A, Kaveh M. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE J. Sel. Areas Commun., 2002, 20:550-560.
    [59] Chong C C, Tan C M, Laurenson D I et al. A new statistical wideband spatial-temporal channel model for 5-GHz band WLAN systems[J]. IEEE J. Sel. Areas Commun., 2003, 21:139-150.
    [60] Athanasiadou G E, Nix A R, McGeeham J P. A microcellular ray-tracing propagation model and evaluation of its narrow-band and wide-band predictions[J]. IEEE J. Sel. Areas. Commun., 2000, 18(3):322-335.
    [61] Pederson K I, Andersen J P, Kermoal J P et al. A stochastic multiple-input-multiple-output radio channel model for evaluation of space-time coding algorithms[C]. IEEE Veh. Technol. Conf., 2000:893-897.
    [62] W.C.Jake. Microwave mobile communications[M]. IEEE Press, 1993.
    [63] Chizhik D, Ling J, Wolniansky P W et al. Multiple-input-multiple-output measurements and modeling in Manhattan[J]. IEEE J. Sel. Areas. Commun., 2003, 21(3):321-331.
    [64] Stege M, Jelitto J, Bronzel M et al. A multiple input-multiple output channel model for simulation of Tx- and Rx-diversity wireless systems[C]. IEEE Vehicular Technology Conference, 2000, 2:833-839.
    [65] Group R C S. Guidelines for evulation of radio transmission technologies for IMT-2000/FPLMTS[R]. Technical Report 8/29-E, ITU, 1996.
    [66] Lbnkahla M. Signal processing for mobile communications[M]. New York: CRC Press, 2005: Chapter 12.
    [67] Asztely D. On antenna arrays in mobile communication systems: Fast fading and GSM base station receiver algorithms[R]. Royal Institute of Technology, Stockholm, Sweden, Tech. Rep. IR-3S-SB-9611, 1996.
    [68] Viswanath P, Tse D. Sum capacity of the vector Gaussian broadcast channel and uplin-downlink duality [J]. IEEE Trans. Inform. Theory, 2003, 49(8): 1912-1921.
    [69] Hassibi B, Sharif M. Fundamental limits in MIMO broadcast channels[J]. IEEE Sel. Areas Commun., 2007, 25(7): 1333-1344.
    [70] Gel’fand S I, Pinsker M S. Coding for channel with random parameters[J]. Problems of Control and Information Theory, 1980, 9(1): 19-31.
    [71] Cohen A, Lapidoth A. The Gaussian watermarking game[J]. IEEE Trans. Inform. Theory, 2002, 48(6): 1639-1667.
    [72] Erez U, Shamai S, Zamir R. Capacity and lattice strategies for cancelling known interference[J].IEEE Trans. Inform. Theory, 2005, 51(1):3820-3833.
    [73] Santalo L A. Integral Geometry and Geometric Probability[M]. MA: Addison-Wesley, 1976.
    [74] Sato H. An outer bound on the capacity region of broadcast channel[J]. IEEE Trans. Inform. Theory, 1978, IT-24:274-377.
    [75] Boyd S, Vandenberge L. Introduction to Convex Optimization with Engineering Applications[M]. Stanford, CA: Course Reader, Standford University, 2001.
    [76] Zhang N, Vojcic B. The performance of multiuser diversity scheduling for MIMO channels with spatially correlated fading [J]. IEEE Trans. Commun., 2006, 54(9): 1533-1535.
    [77] Viswanathan H, Venkatesan S, Huang H. Downlink capacity evaluation of cellular networks with known-interference cancellation[J]. IEEE J. Sel. Areas Commun.,2003, 21(6): 802-811.
    [78] Haustein T, Helmolt C, Jorwieck E et al. Performance of MIMO systems with channel inverstion[C]. IEEE Veh. Tech. Conf., 2002, 1(1): 35-39.
    [79] Maaref A, Aissa S. Closed-form expression for the outage and ergodic Shannon capacity of MIMO MRC systems[J]. IEEE Trans. Commun., 2005, 53(7):1092-1095.
    [80] Tse, D N C. Optimal power allocation over parallel Gaussian broadcast channels[C]. Int. Symp. Information Theory (ISIT), 1997:29.
    [81] Harashima H, Miyakawa H. Matched-transmission technique for channels with intersymbol interference[J]. IEEE Trans. Commun., 1972: 774-780.
    [82] Tomlison M. New automatic equalizer employing modulo arithmetic[J]. Electron. Lett., 1971:138-139.
    [83] Fischer R F H, Windpassinger C, Lampe A et al. Space-time transmission using Tomlinson-Harashima precoding[C]. 4th ITG Conf. Source and Channel Coding, 2002:139-147.
    [84] Wesel R D, Cioffi J M. Achievable rates for Tomlinson-Harashima precoding[J]. IEEE Trans. Inform. Theory, 1998, 2(2): 824-831.
    [85] Payaro M, Perez-Neira A, Lagunas M A. Achievable rates for generalized spatial Tomlinson-Harashima precoding in MIMO systems[C]. IEEE Vehicular Technology Conference, 2004, 4(4): 2462-2466.
    [86] Telatar I E. Capacity of multi-antenna Gaussian channels[J]. European Trans. on Telecomm., 1999, 10(6):585-595.
    [87] Golub G H, Loan C F V. Matrix Computation[M]. Baltimore: John-Hopkins University Press, 1996.
    [88]程云鹏.矩阵论[M].西安:西北工业大学出版社. 2000.
    [89] Shen Z, Chen R, Andrews J G et al. Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization[J]. IEEE Trans. Signal Processing, 2006, 54(9):3658-3663.
    [90] Spencer Q H, Swindlehurst A L, Harrdt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J]. IEEE Trans. Signal Proc., 2004, 52(2): 461-471.
    [91] Doostnejad R, Lim T J, Sousa E S. Space-time multiplexing for MIMO multiuser downlink channels[J]. IEEE Trans. Wireless Commun., 2006, 5(7):1726-1734.
    [92] Yoo T, Goldsmith A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming[J]. IEEE Sel. Areas Commun., 2006, 24(3):528-541.
    [93] Sampath H, Stoica P, Paulraj A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[J]. IEEE Trans. on Commun., 2001, 49(12):2198-2206.
    [94] Jorswieck E, Boche H. Transmission strategies for the MIMO MAC with MMSE receiver: average MSE optimization and achievable individual MSE region [J]. IEEE Trans. Signal Process., 2003, 52(1):2872-2881.
    [95] Luo Z, Davidson T N, Giannakis G B et al. Transceiver optimization for block-based multipleaccess through ISI channels[J]. IEEE Trans. Signal Process., 2004, 42(4):1037-1052.
    [96] Mezghani A, Joham M, Hunger R et al. Transceiver design for multi-user MIMO systems[C]. Int’l ITG Workshop on Smart Antennas, 2006.
    [97] Choi J. Performance analysis for transmit antenna diversity with/without channel information[J]. IEEE Trans. Veh. Tech., 2002, 51(4): 101-103.
    [98] Zhou S, Giannakis G B. How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over Rayleigh MIMO chanles?[J]. IEEE Trans. Wireless Commun., 2004, 3(4):1285-1294.
    [99] Jafar S A, Goldsmith A. On the optimality of beamforming for multiple antenna systems with imperfect feedback[C]. IEEE Int’l Symp. On Inform. Theory, 2001:321.
    [100] Narula A, Lopez M J, Trott M D et al. Efficient use of side information in multiple-antenna data transmission over fading channel[J]. IEEE J. Select. Areas Commun., 1998, 16:1423-1346.
    [101] Wittneben A. Optimal predictive TX combining diversity in correlated fading for microcellular mobile radio applications[C]. IEEE Global Telecommun. Conf., 1995:13-17.
    [102] Rey F, Lamarca M, Vazquez G. Transmit filter optimization based on partial CSI knowledge for wireless applications[C]. IEEE Int’l Conf. Commun., 2003, 4:2567-2571.
    [103] Xia P, Zhou S, Giannakis G B. Adaptive MIMO-OFDM based on partial channel state information[J]. IEEE Trans. Signal Process., 2004, 52(1):203-213.
    [104] Ding P, Love D J, Zoltowski M D. Multiple antenna broadcast channels with partial and limited feedback[J]. IEEE Trans. Signal Process., 2007, 55(7):3417-3428.
    [105] Marzetta T L. BLAST training: Estimating channel characteristics for high capacity space-time wireless[C]. 37th Annu. Allerton Conf. Commun., Control and Computing, 1999: 958-966.
    [106] Kay S M. Fundamentals of statistical signal processing: Estimation theory[M]. Prentice-Hall, 1993.
    [107]张贤达.信号处理中的线性代数[M].科学出版社,1997.
    [108] Magnus J R, Neudecker H. Matrix differential calculus with applications in statistics and economics[M].John Wiley, 1999:28-30.
    [109] Palomar D P. A unified framework for communications through MIMO channels[D]. Ph.D. dissertation, Barcelona Technical University Catalonia (UPC), , Spain, May 2003.
    [110] Chan P W C, Cheng R S. Capacity maximization for zero-forcing MIMO-OFDMA downlink systems with multiuser diversity[J]. IEEE Trans. Wireless Commun., 2007, 6(5):1880-1889.
    [111] Chan P W C, Lo E S, Lau V K N.et al. Performance comparison of downlink multiuser MIMO-OFDMA and MIMO-MC-CDMA with transmit side information-Multicell analysis[J]. IEEE Trans. Wireless Communication, 2007, 6(6):2193-2203.
    [112] Janson S, Luczak T, Rucinski A. Random Graphs[M]. John Wiley, 2000.
    [113] Proakis J G. Digital Communication[M].4th Ed. McGraw-Hill Science, 2000.
    [114] Hu Z P, Zhu G X, Yuan X. Multiuser subcarrier and bit allocation for MIMO-OFDM systems with perfect and partial channel information[C]. IEEE WCNC, 2004, 2:1188-1193.
    [115] Simon M K, Alouini M S. Digital communications over fading channels[M]. New York: John Wiley & Sons, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700