用户名: 密码: 验证码:
以TRPV5介导的钙转运通路为靶点的补肾中药防治骨质疏松症作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究从钙转运通路入手,通过观察地塞米松诱导的肾虚骨质疏松症大鼠肾组织及骨组织钙转运通路相关蛋白TRPV5、CaBP-D28k、NCX1及PMCA1b基因和蛋白的表达,从分子水平揭示糖皮质激素诱导的肾虚骨质疏松症的病理机制,以及补肾中药的疗效机理。
     材料与方法:
     本实验采用地塞米松(2.5mg/kg,周两次)肌肉注射的方法复制肾虚骨质疏松症大鼠模型,同时以补肾中药对模型大鼠进行防治。正常大鼠作为标准对照组,模型大鼠作为空白对照组,以骨疏康颗粒作为阳性对照药,同时与健脾中药及活血中药作疗效比较。造模及给药时间为9周。9周后处死动物并取血清、股骨、肾组织等进行下列指标检测:应用双能X线吸收法检测大鼠离体股骨上1/3骨密度(BMD);用生化方法检测血清钙、磷、碱性磷酸酶(ALP)的含量;酶联免疫吸附法(ELISA)检测血清抗酒石酸酸性磷酸酶(TRAP)的含量;用实时定量PCR法(Real-Time Quantitative PCR)及蛋白免疫印迹法(Western Blotting)法检测各组大鼠肾、骨组织TRPV5、CaBP-D28k、NCX1、PMCA1b mRNA和蛋白的表达。
     结果:
     1.大鼠离体股骨上1/3骨密度(BMD)结果显示:与正常组比较,模空组大鼠BMD明显下降(P<0.01);与模空组比较,各用药组大鼠股骨上1/3 BMD均升高,其中以补肾中药组升高程度最显著,有统计学意义(P<0.01)。
     2.大鼠骨代谢生化指标结果显示:与正常组比较,模空组大鼠血清抗酒石酸酸性磷酸酶(TRAP)含量明显升高(P<0.01);与模空组比较,各用药组大鼠血清TRAP含量均有不同程度的下降,以补肾组和骨疏康组降低作用最明显(P<0.01),接近正常组水平。与正常组比较,模空组大鼠血清ALP含量升高,但无统计学意义;与模空组比较,各用药组大鼠血清ALP含量均上升,以补肾中药组和活血中药组升高程度最为显著,但统计学差异不明显。与正常组比较,模空组大鼠血钙含量升高,但无统计学意义;与模空组比较,各治疗组大鼠血钙含量均升高,其中补肾中药组和骨疏康组血钙升高较其他组明显(P<0.01)。各组大鼠血磷变化不明显,仅骨疏康组血磷水平升高,与正常组比较(P<0.01)。
     3.大鼠肾组织TRPV5 mRNA和蛋白表达结果显示:与正常组比较,模空组TRPV5 mRNA和蛋白表达水平均明显下降(P<0.01);与模空组比较,除活血组外,各治疗组TRPV5 mRNA和蛋白表达水平均有不同程度的上调,其中补肾组上调趋势最显著(P<0.01)。
     4.大鼠肾组织CaBP-D28k蛋白表达结果显示:各组大鼠肾组织均可检测到CaBP-D28k蛋白的表达,与正常组比较,模空组CaBP-D28k蛋白表达量明显降低(P<0.01);与模空组比较,各治疗组CaBP-D28k蛋白表达显示出不同程度的升高,其中补肾组升高趋势最明显(P<0.01)。
     5.大鼠肾组织NCX1、PMCA1b mRNA和蛋白表达结果显示:与正常组比较,模空组NCX1 mRNA和蛋白表达水平明显下降(P<0.01);与模空组比较,各治疗组均可不同程度的上调NCX1 mRNA和蛋白表达水平,其中以补肾组上调作用最为显著(P<0.01)。各组大鼠肾组织均可检测到PMCA1b蛋白的表达,与正常组比较,模空组PMCA1b蛋白表达量明显降低(P<0.01);与模空组比较,各治疗组PMCA1b蛋白表达显示出不同程度的升高,其中补肾组升高趋势最为显著(P<0.01)。
     6.大鼠骨组织TRPV5 mRNA和蛋白表达结果显示:与正常组比较,模空组骨组织TRPV5 mRNA和蛋白表达水平均明显升高(P<0.01);与模空组比较,各治疗组均可不同程度的下调TRPV5 mRNA和蛋白表达水平,以补肾中药组下调作用最显著(P<0.01)。
     7.大鼠骨组织CaBP-D28k蛋白表达结果显示:各组大鼠骨组织均可检测到CaBP-D28k蛋白的表达,与正常组比较,模空组CaBP-D28k蛋白表达量明显升高(P<0.01);与模空组比较,各治疗组CaBP-D28k蛋白表达量均明显降低,其中补肾中药组的下调作用最显著(P<0.01)。
     8.大鼠骨组织NCX1 mRNA和蛋白表达结果显示:与正常组比较,模空组骨组织NCX1 mRNA和蛋白表达水平均明显升高(P<0.01);与模空组比较,各治疗组均可不同程度的下调NCX1 mRNA和蛋白表达水平,其中补肾组下调作用最为显著(P<0.01)。
     结论:
     1.采用地塞米松肌肉注射法(2.5mg/kg,周两次),连续9周,可以成功诱导肾虚骨质疏松症大鼠模型。
     2.正常大鼠肾组织可以在基因、蛋白水平表达TRPV5和NCX1,蛋白水平表达CaBP-D28k和PMCA1b,表明正常大鼠肾组织存在TRPV5介导的钙转运通路,在维持机体钙代谢稳定方面起重要作用。
     3.正常大鼠骨组织可以在基因、蛋白水平表达TRPV5和NCX1,蛋白水平表达CaBP-D28k,表明正常大鼠骨组织存在TRPV5介导的钙转运通路,在骨代谢及机体钙稳态的调节方面起重要作用。
     4.模型大鼠肾组织TRPV5、CaBP-D28k、NCX1和PMCA1b基因和蛋白表达的下降,提示TRPV5介导的肾钙转运通路相关蛋白的功能抑制,肾小管上皮对钙的重吸收障碍,可能是糖皮质激素诱导肾虚骨质疏松症的病理机制之一。
     5.模型大鼠骨组织TRPV5、CaBP-D28k、NCX1基因和蛋白表达的升高,提示TRPV5介导的骨钙转运通路相关蛋白的功能活跃,从而致骨吸收增强,骨密度降低,可能是糖皮质激素诱导肾虚骨质疏松症的病理机制之一。
     6.补肾中药通过提高肾钙转运通路相关蛋白的表达水平,降低骨钙转运通路相关蛋白的表达水平,发挥促进肾钙吸收和抑制骨钙释放的作用,从而减少骨质的丢失,达到防治骨质疏松的目的。
Purpose:
     In this study, the pathway of Ca2+ transport was mainly investigated. To observe the gene and protein expression of Ca2+ transport associated protein TRPV5, CaBP-D28k、NCX1 and PMCA1b in nephridial tissue and bone tissue of rats which had kidney-deficiency osteoporosis induced by dexamethasone, then to reveal the molecular mechanism of dexamethasone-induced kidney-deficiency osteoporosis, and to explain the curative mechanism of tonifying-kidney herbs.
     Materials and methods:
     In this study, we used dexamethasone 2.5mg/kg intramuscular injection twice in a week in rats to induce kidney-deficiency osteoporosis, at the same time used tonifying-kidney herbs to prevent and treat. The normal rats were as standard control, model rats were as blank control and positive control were GUSHUKANG granules, and to compare the therapeutic effect of invigorate-spleen herbs and promoting-blood flow herbs. Above process were 9 weeks. After 9 weeks, killed the rats to collect serum,femoral bone and nephridial tissue to detect. Using dual-energy X-ray absorptiometry (DEXA) to detect BMD of femoral bone upper 1/3. Detected serum Ca, P and ALP levels by biochemistry method. Enzyme linked immunosorbent assay (ELISA) were used to detect the serum TRAP level. Real-Time Quantitative PCR and Western Blotting were used to detect the gene and protein expressions of TRPV5、CaBP-D28k、NCX1、PMCA1b in nephridial tissue and bone tissue of rats.
     Results:
     1. Results of femoral bone upper 1/3 BMD of rats: Compared with normal group, BMD of blank group were obviously decreased(P<0.01). Compared with bland group, in each medication groups, femoral bone upper 1/3 BMD were all increased, and tonifying-kidney group were most obviously, statistical significance were predominant(P<0.01).
     2. Results of bone metabolism markers: Compared with normal group, TRAP of blank group were obviously increased(P<0.01). Compared with bland group, TRAP were all decreased in each medication groups(P<0.01), and tonifying-kidney group and GUSHUKANG granules were most obviously, to approach to the level of normal group. Compared with normal group, blood calcium level had no obviously variation. Compared with blank group, blood calcium level of each medication groups were increased(P<0.05). Blood phosphonium level had no obviously variation. Compared with blank group, only GUSHUKANG granules group increased(P<0.01).
     3.TRPV5 mRNA and protein expression of nephridial tissue: Compared with normal group, TRPV5 mRNA and protein expression of blank group were obviously decreased(P<0.01). Compared with blank group, TRPV5 mRNA and protein expression of each medication groups were all up-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     4. CaBP-D28k protein expression of nephridial tissue: CaBP-D28k protein was expressed in nephridial tissue of all groups. Compared with normal group, CaBP-D28k protein expression of blank group were obviously decreased(P<0.01). Compared with blank group, CaBP-D28k protein expression of each medication groups were all up-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     5. NCX1、PMCA1b mRNA and protein expression of nephridial tissue: Compared with normal group, NCX1 mRNA and protein expression of blank group were obviously decreased(P<0.01). Compared with blank group, NCX1 mRNA and protein expression of each medication groups were all up-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01). PMCA1b protein was expressed in nephridial tissue of all groups. Compared with normal group, PMCA1b protein expression of blank group were obviously decreased(P<0.01). Compared with blank group, PMCA1b protein expression of each medication groups were all up-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     6. TRPV5 mRNA and protein expression of bone tissue: Compared with normal group, TRPV5 mRNA and protein expression of blank group were obviously increased(P<0.01). Compared with blank group, TRPV5 mRNA and protein expression of each medication groups were all down-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     7.CaBP-D28k protein expression of bone tissue: CaBP-D28k protein was expressed in bone tissue of all groups’rats. Compared with normal group, CaBP-D28k protein expression of blank group were obviously increased(P<0.01). Compared with blank group, CaBP-D28k protein expression of each medication groups were all down-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     8. NCX1 mRNA and protein expression of bone tissue: Compared with normal group, NCX1 mRNA and protein expression of blank group were obviously increased(P<0.01). Compared with blank group, NCX1 mRNA and protein expression of each medication groups were all down-regulated in different degree, and tonifying-kidney group were most obviously(P<0.01).
     Conclusions:
     1. Used dexamethasone 2.5mg/kg intramuscular injection twice in a week for continuous 9 weeks, kidney-deficiency osteoporosis rat model can be induced.
     2. TRPV5 and NCX1 are expressed in nephridial tissue of normal rats in gene and protein level, CaBP-D28k and PMCA1b are expressed in protein level, indicate that renal tubule of normal rats exist calcium transport pathway mediated by TRPV5, which can contribute to maintain the stability of calcium metabolism in the body.
     3. TRPV5 and NCX1 are expressed in bone tissue of normal rats in gene and protein level, CaBP-D28k are expressed in protein level, indicate that osteoclast of normal rats exist calcium transport pathway mediated by TRPV5, which can contribute to bone metabolism and maintain the stability of calcium metabolism in the body.
     4.The down-regulation of mRNA and protein expression of TRPV5、CaBP-D28k、NCX1 and PMCA1b in nephridial tissue of blank group indicate the function inhibition of calcium transport pathway associated proteins in kidney, and malabsorption of calcium in renal tubule epithelium, which maybe the one of pathomechanism of kidney-deficiency osteoporosis induced by glucocorticoid.
     5. The up-regulation of mRNA and protein expression of TRPV5、CaBP-D28k、NCX1 in bone tissue of blank group indicate the active function of calcium transport pathway associated proteins in bone, so result in enhancement of bone resorption and decreased BMD, which maybe the one of pathomechanism of kidney-deficiency osteoporosis induced by glucocorticoid.
     6. Tonifying-kidney herbs can boost the expression of calcium transport pathway associated proteins in kidney, inhibit expression of calcium transport pathway associated proteins in bone resorption process, from which to reinforce calcium absorption in kidney and inhibit bone resorption to reduce the loss of bone content,thereby to prevention and cure osteoporosis.
引文
[1] Clapham DE. TRP channels as cellular sensors[J]. Nature, 2003, 426: 517–524.
    [2] Montell C, Birnbaumer L, and Flockerzi V. The TRP channels, a remarkably functional family[J]. Cell, 2002, 108:595–598.
    [3] Nilius B, Owsianik G, Voets T, et al. Transient receptor potential cation channels in disease[J]. Physiol Rev, 2007, 87:165–217.
    [4] Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia[J]. Physiol Rev, 2005, 85:373–422.
    [5] Venkatachalam K, Montell C. TRP channels[J]. AnnuRev Biochem, 2007, 76: 387-417.
    [6] Hoenderop JG, Voets T, Hoefs S, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6[J]. EMBO J, 2003, 22: 776–785.
    [7] Hoenderop JG, Nilius B, and Bindels RJ. Molecular mechanism of active Ca2+ reabsorption in the distal nephron[J]. Annu Rev Physiol,2002,64: 529–549.
    [8] Hoenderop JG, van Leeuwen JP, van der Eerden BC, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5[J]. J Clin Invest, 2003,112: 1906–1914.
    [9] Peng J B, Brown E M, and Hediger M A. Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond[J]. J Physiol, 2003,551: 729–740.
    [10] Hoenderop JG, van der Kemp AW, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia[J]. J Biol Chem,1999,274: 8375–8378.
    [11] Peng JB, Chen XZ, Berger UV, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption[J]. J Biol Chem,1999,274: 22739–22746.
    [12] Hoenderop JG, Vennekens R, Muller D, et al. Function and expression of the epithelial Ca2+ channel family: comparison of mammalian ECaC1 and 2[J]. J Physiol,2001,537: 747–761.
    [13] Josst G.J, Hoenderop and Rene J.M. Bindels. Epithelial Ca2+ and Mg2+ Channels in Health and Disease[J]. J Am Soc Nephrol,2005,16: 15–26.
    [14] Chang Q, Gyftogianni E, van de Graaf SF,et al. Molecular determinants in TRPV5 channel assembly[J]. J Biol Chem, 2004,279: 54304–54311.
    [15] Erler I, Hirnet D, Wissenbach U, et al. Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat[J]. J Biol Chem,2004,279: 34456–34463.
    [16] Joost G. J. Hoenderop and RenéJ. M. Bindels. Calciotropic and Magnesiotropic TRP Channels[J]. Physiology, 2008,23:32-40.
    [17] Nourry C, Grant SG, and Borg JP. PDZ domain proteins: plug and play[J]! Sci STKE,2003,RE7.
    [18] Jenkins SM and Bennett V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments[J]. J Cell Biol,2001,155: 739–746.
    [19] KordeliE, Lambert S, and Bennett V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier[J]. J Biol Chem,1995,270: 2352–2359.
    [20] Hoenderop JG, Hartog A, Stuiver M, et al. Localization of the epithelial Ca2+ channel in rabbit kidney and intestine[J]. J Am Soc Nephrol,2000,11: 1171–1178.
    [21] Bram C. J. van der Eerden, Joost G. J. Hoenderop,et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption[J]. Proc Natl Acad Sci, 2005,102:17507–17512.
    [22] Muller D, Hoenderop JG, Meij IC, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel(ECAC1) [J].Genomics,2000,67:48–53.
    [23] Moreau R, Hamel A, Daoud G, et al. Expression of calcium channels along the differentiation of cultured trophoblast cells from human term placenta[J]. Biol Reprod,2002,67:1473–1479.
    [24] Fixemer T, Wissenbach U, Flockerzi V, et al. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: A novel prognostic marker for tumor progression[J]. Oncogene, 2003,22: 7858–7861.
    [25] Monique V A, Joost G.J, Hoenderop, et al. 1,25-Dihydroxyvitamin D3-Independent Stimulatory Effect of Estrogen on the Expression of ECaC1 in the Kidney[J]. J Am Soc Nephrol,2002,13: 2102–2109.
    [26] Renkema KY, Nijenhuis T, Van der Eerden BC, et al. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice[J]. J Am Soc Nephrol,2005,16: 3188–3195.
    [27] Monique van Abel, Sylvie Huybers,Joost G. J. Hoenderop, et al. Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6[J]. Am J Physiol Renal Physiol,2006,291: F1177-F1183.
    [28] Van Abel M, Hoenderop JG, Van der Kemp AW, et al. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone[J]. Kidney Int,2005,68: 1708–1721.
    [29] Bianco S, Peng JB, Takanaga H, et al. Mice lacking the epithelial calcium channel CaT1 (TRPV6) show a deficiency in intestinal calcium absorption depite high plasma levels of 1, 25-dihydroxyvitamin D[J]. FASEB J, 2004,18: A706.
    [30] Bianco SD, Peng JB, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the TRPV6 calcium channel gene[J]. J Bone Miner Res, 2007,22: 274–285.
    [31] Sylvie Huybers, Ton H. J. Naber, et al. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6[J]. Am J Physiol Gastrointest Liver Physiol,2007,292: G92–G97.
    [32] Nijenhuis T, Hoenderop JG, van der Kemp AW, et al. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney[J]. J Am Soc Nephrol, 2003,14: 2731–2740.
    [33] Stan F. J. van de Graaf, Joost G. J. Hoenderop, et al. Regulation of TRPV5 and TRPV6 by associated proteins[J]. Am J Physiol Renal Physiol,2006,290:F1295–F1302.
    [34] Hsu YJ, Hoenderop JG, Bindels RJ. TRP channels in kidney disease[J]. Biochim Biophys Acta,2007,1772: 928–936.
    [35] Suzuki Y, Landowski CP, Hediger MA. Mechanisms and regulation of epithelial Ca2+ absorption in health and disease[J]. Annu Rev Physiol,2008,32:821-829.
    [36] Muller D, Hoenderop JG, Vennekens R, et al. Epithelial Ca2+ channel (ECAC1) in autosomal dominant idiopathic hypercalciuria[J]. Nephrol Dial Transplant, 2002, 17: 1614–1620.
    [37] Kirsten Y. Renkema1, Kyupil Lee1, et al. TRPV5 gene polymorphisms in renal hypercalciuria[J]. Nephrology Dialysis Transplantation, 2009,24(6): 1919-1924.
    [38] Yoshiro Suzuki1, Andreas Pasch, Olivier Bonny,et al. Gain-of-function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation[J]. Human Molecular Genetics,2008,17(11):1613-1618.
    [39] Dominique Priéand Gérard Friedlander. Genetic Causes of Renal Lithiasis[J]. IBMS BoneKEy, 2009,6:357-367.
    [40] Shaogang WANG (王少刚), Dongliang HU (胡东亮), Qilin XI(席启林),et al. The Expression and Implication of TRPV5, Calbindin-D28k and NCX1 in Idiopathic Hypercalciuria[J]. J Huazhong Univ Sci Technol,2008,28(5):77-78.
    [41]樊松,梁朝朝,郝宗耀等.新型钙通道TRPV5在慢性前列腺炎患者前列腺上皮细胞中的表达及其意义[J].中国男科学杂志. 2007,21(10):12-15.
    [42]樊松,梁朝朝,郝宗耀等.SD大鼠前列腺上皮新型钙通道TRPV5的实验研究[J].中国男科学杂志,2008, 22(11):22-25.
    [43] Katrin A. Bolanz, Matthias A. Hediger, et al. The role of TRPV6 in breast carcinogenesis[J]. Mol Cancer Ther,2008,7(2):271-279.
    [44]李福春,谷贵山,金成浩等. TRPV5、TRPV6在骨肉瘤、骨巨细胞瘤的表达[J].山东医药, 2007,47(31):73-74.
    [45] Hoenderop JG, Muller D, Van Der Kemp AW, et al. Calcitriol controls the epithelial calcium channel in kidney[J]. J Am Soc Nephrol,2001,12: 1342–1349.
    [46] Van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecularaspects[J]. Proc Natl Acad Sci USA,2001,98:13324–13329.
    [47] van de Graaf SF, Boullart I, Hoenderop JG, et al. Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1 alpha, 25-dihydroxyVitamin D3 and dietary Ca2+[J]. J Steroid Biochem Mol Biol, 2004, 89-90(1-5):303-308.
    [48] Van Abel M, Hoenderop JG, van Leeuwen HJ, et al. Down-regulation of calcium transporters in kidney and duodenum by the calcimimetic compound NPS R-467[J]. J Am Soc Nephrol, 2003,14: 459A.
    [49] Picotto G, Massheimer V, and Boland R. Parathyroid hormone stimulates calcium influx and the cAMP messenger system in rat enterocytes[J]. Am J Physiol Cell Physiol, 1997,273: C1349–C1353.
    [50] Van Abel M, Hoenderop JG, Dardenne O, et al. 1,25-Dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney[J]. J Am Soc Nephrol, 2002,13: 2102–2109.
    [51] Van Abel M, Hoenderop JG, van der Kemp AW, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection[J]. Am J Physiol Gastrointest Liver Physiol, 2003,285: G78–G85.
    [52] Van Cromphaut SJ, Rummens K, Stockmans I, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms[J]. J Bone Miner Res, 2003,18: 1725–1736.
    [53] Peng JB, Zhuang L, Berger UV,et al. CaT1 expression correlates with tumor grade in prostate cancer[J]. Biochem Biophys Res Commun, 2001, 282(3): 729-734.
    [54] Nilius B, Prenen J, Vennekens R, et al. Modulation of the epithelial calcium channel, ECaC, by intracellular Ca2+[J]. Cell Calcium, 2001,29: 417–428.
    [55] Vennekens R, Hoenderop JG, Prenen J, et al. Permeation and gating properties of the novel epithelial Ca2+ channel[J]. J Biol Chem, 2000,275:3963–3969.
    [56] Nilius B, Prenen J, Hoenderop JG, et al. Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellularloop located between transmembrane segments 2 and 3[J]. J Biol Chem, 2002,277: 30852–30858.
    [57] Nilius B, Weidema F, Prenen J, et al. The carboxyl terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+-dependent inactivation[J]. Pflügers Arch, 2003,445: 584–588.
    [58] Nijenhuis T, Renkema KY, Hoenderop JG, et al. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins[J]. J Am Soc Nephrol, 2006,17: 617–626.
    [59] Vennekens R,Prenen J,Hoenderop JG,et al. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH[J]. Pflugers Arch, 2001, 442(2):237-242.
    [60] Peng JB, Chen XZ, Berger UV,et al.A rat kidney-specific calcium transporter in the distal nephron[J]. J Biol Chem, 2000, 275(36):28186-28194.
    [61] Yeh BI, Sun TJ, Lee JZ, et al. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type(TRPV5)channel by extracellular pH[J]. J Biol Chem,2003,278(51):51044-51052.
    [62] Hoenderop JG, Dardenne O, Van Abel M, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1 -hydroxylase knockout mice[J]. FASEB J, 2002,16: 1398–1406.
    [63] Embark HM, Setiawan I, Poppendieck S, et al. Regulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3 expressed in Xenopus oocytes[J]. Cell Physiol Biochem, 2004,14: 203–212.
    [64] Gkika D, Mahieu F, Nilius B, et al. 80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5) [J]. J Biol Chem, 2004,279: 26351–26357.
    [65] Lambers TT, Weidema AF, Nilius B, et al. Regulation of the mouse epithelial Ca2+ channel TRPV6, by the Ca2+-sensor calmodulin[J]. J Biol Chem, 2004,279: 28855–28861.
    [66] Niemeyer BA, Bergs C, Wissenbach U, et al. Competitive regulation ofCaT-like-mediated Ca2+ entry by protein kinase C and calmodulin[J]. Proc Natl Acad Sci USA, 2001,98: 3600–3605.
    [67] Palmada M, Poppendieck S, Embark HM, et al. Requirement of PDZ domains for the stimulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1[J]. Cell Physiol Biochem, 2005,15: 175–182.
    [68] Van de Graaf SF, Chang Q, Mensenkamp AR, et al. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 towards the plasma membrane[J]. Mol Cell Biol, 2006,26: 303–312.
    [69] Van de Graaf SF, Hoenderop JG, Gkika D, et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex[J]. EMBO J, 2003,22: 1478–1487.
    [70]刘忠厚.骨矿与临床[M].北京:中国科学技术出版社,2006:2-2.
    [71]袁浩,娄多峰,董清平,等.《中医骨病学》[M].上海:上海科学技术出版社,2004:66-71.
    [72] ZY/T001.1~001.9-94,中华人民共和国中医药行业标准[S].
    [73]赵旭,代平,金钊,等.经方左归丸抗糖皮质激素性骨质疏松症的效应及机制研究[J].时珍国医国药,2009,20(9):67-68.
    [74]曹洪欣.中医基础理论[M].北京:中国中医药出版社,2004:187.
    [75]朱飞鹏,李冬华.肾主骨理论的现代理解与补肾法研究[J].上海中医药杂志,2003,37(6):9-11.
    [76] Dorothea F, Marlene T, Steffi B,et al. 25-Hydroxyvitamin D3 1α-Hydroxylase Splice Variants in Benign and Malignant Ovarian Cell Lines and Tissue[J]. Anticancer Research September 1, 2009, 29(9):3627-3633.
    [77] Markus S, Wolfgang Tilgen Jorg R. Expression of 25-Hydroxyvitamin D-1α-Hydroxylase Splice Variants in HaCaT Keratinocytes and Other Skin Cells: Modulation by Culture Conditions and UV-B Treatment In Vitro[J]. Anticancer Research September 1, 2009, 29(9):3659-3667.
    [78] Hewison M,Zehnder D,Bland R, et al. l alpha-Hydroxylase and the action ofvitamin D[J]. Jmol Endocrinol, 2000 Oct,25(2):141.
    [79] Wei Zheng, Yi xia Xie, Gang Li,et al . Critical Role of Calbindin-D28k in Calcium Homeostasis Revealed by Mice Lacking Both Vitamin D Receptor and Calbindin-D28k[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2004 December, 279(50): 52406–52413.
    [80] Lambers TT, Mahieu F, Oancea E, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport[J]. EMBO J 2006, 25(13):2978-2988.
    [81]张新民,沈自尹,王文健,等.补肾对神经内分泌老化调节作用研究(Ⅰ)-对下丘脑神经递质—性腺轴、甲状腺轴作用的观察[J].中医杂志,1991,11:43-46.
    [82]姜春华,沈自尹.肾的研究[M].上海:上海科学技术出版社,1981:213-223.
    [83]沈自尹.肾的研究(续集)[M].上海:上海科学技术出版社,1990:232-239.
    [84]沈自尹.肾阳虚证的定位研究[J].中国中西医结合杂志,1997,17(1):50-52.
    [85] B. Lawrence Riggs, Sundeep Khosla L, Joseph Melton. Sex Steroids and the Construction and Conservation of the Adult Skeleton[J]. Endocrine Reviews, 2002, 23(3):279-302.
    [86]李恩,陶静华,刘和娣,等.补肾方药治疗骨质疏松的实验研究与临床观察[J].中国骨质疏松杂志,1996,2(4):65-68.
    [87]张文柱.补肾活血法治疗绝经后骨质疏松症[J].吉林中医药,2004,24(10):3-4.
    [88] Song XW , Shen P Z, Chen B X. Postmenopausal osteoporosis treated by Bushen Huoxue Recipe [J]. China J Orthop Traumatol (中国骨伤),2001,8 (14): 476.
    [89] Wang M, Tian. Clinical observation on treatment for osteopenia at the earlier period of osteoporosis with Strong Bone Capsule [J]. China J Orthop Traumatol (中国骨伤),2003,11(16): 692-694.
    [90]邓伟民.补肾中药治疗绝经后骨质疏松症疗效分析[J].中国骨质疏松杂志, 1997,3(1):64.
    [91]丁桂芝.补肾健骨胶囊治疗绝经后骨质疏松症疗效分析[J].中国中西医结合杂志,1995,15(7):392.
    [92]林燕平,等.健骨颗粒骨质疏松模型大鼠垂体—肾上腺轴的影响[J].中国骨伤,2004;17(1)20.
    [93]费震宇,张新民,王文健,等.补肾中药骨密片防治继发性骨质疏松症实验研究[J].中国骨质疏松杂志, 2000, 6(3):26.
    [94]苏友新,乔永平,刘献祥,等.强骨宝2号对激素性大鼠骨质疏松症的影响[J].福建中医学院学报, 2001, 11(2):91.
    [95]沈培芝,陈东煜,张戈,等.补肾方防治地塞米松致雄性大鼠骨质疏松及其机制探讨[J].中国中西医结合杂志,1998,18 (5) :290-292.
    [96]王玉东,李大金,朱影.补肾宁心方对小鼠成骨细胞的增殖和抗凋亡作用[J].中国中西医结合杂志,2004;24(3):230-233.
    [97]唐海涛,等.骨疏康对成骨细胞刺激作用的研究[J].中国骨质疏松杂志,2000;6(2):60.
    [98]邵敏,等.补肾中药对骨质疏松大鼠性激素影响的实验研究[J].中国骨质疏松杂志,1999;5(4):23.
    [99]安胜军,李恩,赵京山.补肾方药对地塞米松所致实验性骨质疏松大鼠卵巢功能的影响[J] .中国中西医结合杂志,2000;20(1):46-49.
    [100]周乐,崔燎,吴铁.淫羊藿对肾阳虚雄性大鼠肾脏和股骨BMP-7表达的影响[J].中国骨质疏松杂志, 2008, 14(2):90-94.
    [101]鞠大宏,等.温补肾阳方对去卵巢所致骨质疏松大鼠IL-1和IL-6活性的影响[J].中国中医基础医学杂志,2000;6(10):5-9.
    [102] Canalis, E., Mazziotti, G., Giustina, A, et al. Glucocorticoid-induced osteoporosis: Pathophysiology and therapy[J]. Osteoporos Int, 2007, 18: 1319-1328.
    [103] Gherardo Mazziotti, Andrea Giustina, Ernesto Canalis, et al. Treatment of glucocorticoid-induced Osteoporosis[J]. Ther Adv Musculoskel Dis, 2009, 1(1):27-34.
    [104]肖建德,阎德文.实用骨质疏松学[M].北京:科学出版社,2004:132-133.
    [105]褚为靖,孙本华等.甲状腺功能异常的女性血中骨钙蛋白、甲状旁腺素和降钙素水平的变化[J] .中华内分泌代谢杂志,1996,12(4):250-251.
    [106]张月峰.骨质疏松动物模型研究进展[J].动物医学进展,2005,26(3):8-11.
    [107] Belkacemi L, Simoneau L, and Lafond J. Calcium-binding proteins: distribution and implication in mammalian placenta. Endocrine,2002,19:57–64.
    [108] Shennan DB and Peaker M. Transport of milk constituents by the mammary gland[J]. Physiol Rev, 2000, 80: 925–951.
    [109] Eberhard Schlatter,Universitatsklinikum Munster, Medizinische Klinik,et al.Who Wins the Competition: TRPV5 or Calbindin-D28K? [J]. J Am Soc Nephrol, 2006, 17:2954–2956.
    [110] Raber G, Willems PH, Lang F, Nitschke R, van Os CH, and Bindels RJ. Co-ordinated control of apical calcium influx and basolateral calcium efflux in rabbit cortical collecting system[J]. Cell Calcium, 1997, 22: 157–166.
    [111] Bindels RJ. Calcium handling by the mammalian kidney[J]. J Exp Biol, 1993, 184: 89–104.
    [112] Feher JJ, Fullmer CS, and Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption[J]. Am J Physiol Cell Physiol, 1992, 262: C517–C526.
    [113] Berggard T, Miron S, Onnerfjord P, Thulin E, Akerfeldt KS, Enghild JJ, Akke M, and Linse S. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor[J]. J Biol Chem, 2002, 277: 16662–16672.
    [114] Sooy K, Kohut J, and Christakos S. The role of calbindin and 1,25dihydroxy vitamin D3 in the kidney[J]. Curr Opin Nephrol Hypertens, 2000, 9: 341–347.
    [115] Walters JR, Howard A, Charpin MV, Gniecko KC, Brodin P, Thulin E, and Forsen S. Stimulation of intestinal basolateral membrane calcium-pump activity by recombinant synthetic calbindin-D9k and specific mutants[J]. Biochem Biophys Res Commun, 1990, 170: 603–608.
    [116] Li Z, Matsuoka S, Hryshko LV, et al. Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+exchanger[J]. J Biol Chem, 1994, 269: 17434–17439.
    [117] Nicoll DA, Quednau BD, Qui Z, et al. Cloning of a third mammalian Na+-Ca2+exchanger,NCX3[J]. J Biol Chem, 1996, 271: 24914–24921.
    [118] Bindels RJ, Ramakers PL, Dempster JA, et al. Role of Na+-Ca2+exchanger in transcellular Ca2+ transport across primary cultures of rabbit kidney collectingsystem[J]. Pflu gersArch, 1992, 420: 566–572.
    [119] Van Baal J, Yu A, Hartog A, et al. Localization and regulation by vitamin D of calcium transport proteins in rabbit cortical collecting system[J]. Am J Physiol Renal Fluid Electrolyte Physiol, 1996, 271: F985–F993.
    [120] Hildmann B, Schmidt A, and Murer H. Ca2+-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells[J]. J Membr Biol, 1982, 65: 55–62.
    [121] Kikuchi K, Kikuchi T, and Ghishan FK. Characterization of calcium transport by basolateral membrane vesicles of human small intestine[J]. Am J Physiol Gastrointest Liver Physiol, 1988, 255: G482–G489.
    [122] Van Abel M, Hoenderop JG, van der Kemp AW, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285: G78–G85.
    [123] Flik G, Schoenmakers TJ, Groot JA, et al. Calcium absorption by fish intestine: the involvement of ATP- and sodium-dependent calcium extrusion mechanisms[J]. J Membr Biol, 1990, 113: 13–22.
    [124] Schoenmakers TJ and Flik G. Sodium-extruding and calcium extruding sodium/calcium exchangers display similar calcium affinities[J]. J Exp Biol, 1992, 168: 151–159.
    [125] Koushik SV, Wang J, Rogers R, et al. Targeted inactivation of the sodium-calcium exchanger (NCX1) results in the lack of a heartbeat and abnormal myofibrillar organization[J]. FASEB J, 2001, 15: 1209–1211.
    [126] Reuter H, Henderson SA, Han T, et al. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides[J]. Circ Res, 2002, 90: 305–308.
    [127] Blaustein MP, Juhaszova M, Golovina VA, et al. Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications[J]. Ann NY Acad Sci, 2002, 976:356–366.
    [128] Doucet A and Katz AI. High-affinity Ca-Mg-ATPase along the rabbit nephron[J]. Am J Physiol Renal Fluid Electrolyte Physiol, 1982, 242: F346–F352.
    [129] Magosci M, Yamaki M, Penniston JT, et al. Localization of mRNAs coding for isozymes of plasma membrane Ca2+-ATPase pump in rat kidney[J]. Am J Physiol Renal Fluid Electrolyte Physiol, 1992, 263: F7–F14.
    [130] Strehler EE and Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps[J]. Physiol Rev, 2001, 81: 21–50.
    [131] Magyar CE, White KE, Rojas R, et al. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells[J]. Am J Physiol Renal Physiol, 2002, 283: F29–F40.
    [132] Stauffer TP, Hilfiker H, Carafoli E, et al. Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes[J]. J Biol Chem, 1993, 268: 25993–26003.
    [133] Sertac N. Kip and Emanuel E. Strehler .Characterization of PMCA isoforms and their contribution to transcellular Ca2+ flux in MDCK cells[J] . Am J Physiol Renal Physiol, 2003, 284: F122-F132.
    [134]国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科学技术出版社,1999,8860-8860.
    [135] Suttie J M, Gluckman P D, Butler J H , et al. Insulin-like growth factor 1(IGF-1)antler-stimulatinghormone[J]. Endocrinology, 1985, 116(2): 846.
    [136]江润祥.鹿茸表皮生长因子[J].动物学报,1987,33(4):301.
    [137] Zhang ZQ,Zhang Y,Wang BX,et al.Purification and partial characterization of anti -inflammatary peptide from pilose antler of cervus nippon temminck[J]. Acta Pharmaceutica Sinica,1992,27(5):321
    [138]李春旺,蒋志刚,曾岩,等.麋鹿茸与梅花鹿茸、鹿茸雌二醇含量比较[J].动物学报, 2003, 49(1):124-127.
    [139]张喜德,邢玉瑞,田丙坤.骨质疏松症常用中药及其选配规律探析[J].陕西中医学院学报,1999,2(3):43.
    [140]李青南,廖进民,吴铁,等.淫羊藿防治羟基脲致雄大鼠骨质疏松的定量研究[J].中国中医骨伤科杂志,1996 ,4 (3):121.
    [141]鲍加荣,杨继文,李树峰,等.淫羊藿苷对去卵巢大鼠骨质疏松症的影响[J].卫生研究,2005,34(2):191-193.
    [142]李青南,黄连芳,谢华,等.淫羊藿提取液对去睾丸大鼠骨代谢的影响[J].中草药,1997,15(6):528-528.
    [143]李南青,廖进民,吴铁,等.淫羊藿提取液防治激素所致大鼠骨质疏松的实验研究[J].中国药学杂志,1996,31(8):647-647.
    [144]胡彬,李南青,李朝阳,等.仙珍骨宝胶囊对泼尼松致大鼠骨质疏松的预防作用[J].中国中医杂志,1999,24(9):559-559.
    [145]赵中杰,李昂.中药牡蛎中碳酸钙,微量元素和氨基酸的测定[J].中国海洋药物,1991,10(1):11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700