用户名: 密码: 验证码:
南华北地区奥陶系层序地层与层序格架内古岩溶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南华北地区奥陶系以一套相对稳定的海相碳酸盐岩沉积为特征,多年来众多学者对其从各个方面进行了深入研究,在层序划分、沉积演化等方面取得了一系列成果。在油气勘探方面与相邻的鄂尔多斯盆地、北华北地区相比,虽然也有油气显示,但一直未获得重大的突破,这是由于一系列基础地质问题尚需深化、系统研究。为此,本论文在众多前人研究成果的基础上,以沉积学、层序地层学、岩溶学理论为指导,在对野外主干剖面实测、钻井岩心观察及测井资料综合分析的基础上,对南华北地区奥陶系进行系统深入的研究。在地层划分对比、沉积体系类型特征研究的基础上,开展层序地层学研究,首先识别出层序界面的物质表现形式有6种类型,分别为:不整合面、古喀斯特作用面、冲刷面、岩性岩相转换面、超覆面、最大海泛面。上述几种类型的层序界面可归结为3种成因类型:隆升侵蚀层序不整合界面、海侵上超层序不整合界面、陆上暴露层序不整合界面。在层序界面识别的基础上将奥陶系划分出3个超层序(SS1、SS2和SS3),进一步划分为9个三级层序(OSQ1-OSQ9),其中SS1超层序包括OSQ1和OSQ2两个三级层序,SS2超层序包括OSQ3、OSQ4、OSQ5、OSQ6和OSQ7五个三级层序,SS3超层序包括OSQ8和OSQ9两个三级层序。
     详细分析了层序地层单元的基本特征、叠置关系及空间分布规律,建立了研究区奥陶系的等时层序地层格架。对三级层序充填发育与构造层序的响应关系做了详细分析。OSQ1、OSQ2对应SS1超层序,反应了加里东运动Ⅰ幕,即怀远运动期盆地隆升速度较强,底界不整合起伏较大,盆地内部沉积速率小于沉降速率。OSQ3、OSQ4、OSQ5、OSQ6和OSQ7对应SS2超层序,为加里东运动Ⅱ幕的产物,该期受全球海平面上升影响,其隆升强度较Ⅰ幕要弱。OSQ8和OSQ9对应SS3超层序,对应于加里东运动Ⅲ幕强烈隆升的构造发展过程。
     以超层序体系域为单元,编制了研究区奥陶系超层序岩相古地理图,揭示了不同体系域期的层序岩相古地理特征及其演化。SS1海侵期主要沉积冶里组及亮甲山组下部地层,分布在温县-开封-商丘-永城-宿州一线以东北地区,为潮坪环境。SS1高位期沉积亮甲山组上部地层,沉积范围较冶里期进一步向北退缩,局限于商丘-永城-宿州以北的狭小地区,为局限台地的云坪环境。SS2海侵期沉积下马家沟组及上马家沟组下部一段地层,分布在渑池-汝州-霍邱一线以东北地区,主要为潮坪-局限台地环境。SS2高位期沉积上马家沟组二、三段地层,主要分布在登封-阜阳-灵璧一线以北地区,沉积环境更加局限,为潮坪-局限台地环境。
     强烈的构造隆升作用也为南华北地区奥陶系古岩溶发育提供了有利条件。通过野外露头剖面、钻井岩心观察及对测井资料的综合研究,奥陶系古岩溶表现为不整合面(风化壳)残积物、岩溶角砾、溶蚀孔洞缝等特征,主要发育于下奥陶统和奥陶系顶部。将奥陶系古岩溶划分为同生期、埋藏期和风化壳岩溶三种类型,不同类型岩溶受不同级别层序控制作用明显。其中同生期潮坪及台内滩型岩溶主要受高频旋回影响,粒内溶孔、铸模孔和粒间溶孔发育;同生期层间岩溶作用受三级层序影响明显,是膏溶角砾岩形成的主要因素;埋藏期岩溶主要受二级层序控制,有机溶蚀次生孔隙发育;风化壳岩溶发育程度和分布范围最广,主要受二级层序界面的形成控制。
     在上述基础上深入讨论了影响和控制层序格架内古岩溶发育的因素,其中构造、岩性、古气候和古地貌为主要因素。在综合分析古岩溶发育多种因素基础上,采用印模法首次对奥陶系两期风化壳岩溶古地貌进行了恢复。
The Ordovician is a set of relatively stable marine carbonate rocks deposition around Southern North China. Over the years many scholars have studied the area from all aspects in detail, and so a series of achievements were made in the oil and gas exploration in the Erdos Basin and adjacent areas. Although there are oil and gas shows in this area, but not yet obtains the significant breakthrough in the oil gas exploration. According to the theory of sedimentology, sequence stratigraphy and karst, this thesis carried on systematic study of Ordovician sequence stratigraphy in the Southern North China, on the basis of comprehensive analysis of the main section of the field measured, drilling core observation and logging data. The material manifestations of sequence bottom interface have 6 types:unconformity,palaeo-karst active surfaces,erosion surface,lithology and lithofacies conversion surface,overlap area,maximum flooding surface.The several types of sequence boundaries can be attributed to three kinds of genetic types. Uplift erosion unconformity interface sequence,transgression unconformity on the super sequence interface,land exposure unconformity interface sequence. On the basis of the identification of sequence interface,to divide Ordovician into nine third-order sequences(OSQ1-OSQ9) and three super sequence (SS1, SS2 and SS3).
     This paper analyse in detail the sequence stratigraphic units of the basic features, overlay and spatial distribution of the study area, and established Ordovician isochronous sequence stratigraphic framework。We also analyse the three sequence filling sequence development and structural response relationship. It reflects I-stage that SS1 is corresponding to OSQ1 and OSQ2,when the basin was uplifting violently and the unconformity of bottom surface was obvious. It was the process of compensated basin that the internal of basin was depositing more slowly than that it was settling. It reflectedⅢ-stage that SS3 is corresponding to OSQ8 and OSQ9,when the basin was uplifting more violently.
     Using supersequence system as a unit, we have compiled 4 maps of lithofacies palaeogeography of supersequence of Ordovician system, and revealed the characteristics and evolutions of lithofacies palaeogeography of strata succession of different system tracts. SS1 transgression of the rule in groups and the main deposition Yeli lower part of the formation, which is located in the north-east region of Wen County-Kaifeng-Shangqiu–Yongchen -Suzhou, are in neritic tidal environment. SS1 high deposition Liangjiashan group of the upper strata, which range of deposition is further back to the north than Yeli and limited to the north of the small area of Shangqiu-Yongchen–Suzhou, is in a restricted cloud platform flat environment. SS2 transgression of sedimentary Lower Majiagou Formation and the lower part of a ground launched Majiagou, located in the northeast region of Mianchi-Ru Chou - Huoqiu, mainly from tidal flat-restricted platform environments. SS2 high deposition launched Majiagou of the second and third formation, mainly in north of Dengfeng - Fuyang - Lingbi, where sedimentary environment is more limited, is in the tidal flat - restricted platform environments.
     Strong tectonic uplift provide favorable conditions for the development of Ordovician paleokarst in the Southern North China. Through observing field outcrop section, drilling core and the study of logging data, Ordovician paleokarst is shown as unconformity (weathering crust) eluvium, karst breccia, dissolution hole joint and other characteristic. They are mainly developed in the lower Ordovician and Ordovician top. Ordovician paleokarst is divided into three types as syngenetic period, supergene period and burial period karst. Different types of karst are obvious controled by different levels of sequence.Which the types of syngenetic period tidal flat, lagoon and uchinada are affected mainly by high-frequency cycles, and develop intragranular dissolved pore, mould pore and intergranular dissolved pore. Supergene period interlayer karstification obviously affected by the third-order sequence,it is the main factor in the formation of gypsum breccia. Burial period karst controlled by the second-order sequence,and develop organic corrosion secondary pore. Weathering crust karst’s degree of development and distribution is the most widely,and it mainly controlled by the second-order sequence.
     This paper also discussed the impact and control factors of Ordovician karst, which tectonic, lithology, paleoclimate and paleogeomorphic are the main factors. In a comprehensive analysis based on multiple factors of the development of paleo karst, we adopted impression method to recover the paleogeomorphic Ordovician two weathering crust karst period.
引文
[1] Allen J R,Mathews R K. 1982. Isotope signatures associated with early meteoric diagensis[J]. Sedimentology,29(6):797-817.
    [2] Alsharhan A S,Nairn A E M. 1997. Sedimentary basins and petroleum Geology of the Middle East[M]. Amsterdam: Elsevier science,19-142.
    [3] Bachu S, Underschultz J R. 1993. Hydrogeology of formation waters, Northeastern Alberta Basin[J]. AAPG Bulletin, 77(10):1745-1768.
    [4] Badescu D. 1997. Tectono- thermal regimes and lithosphere behaviour in the External Dacides in the Upper Triassic and Jurassic Tethyan opening (Romanian Carpathians)[J]. Tectonophysics, 282: 167-188.
    [5] Berner R A,Kothavala Z. 2001. GeocarbⅢ:A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science,301:182-204.
    [6] Blair T C, Bilodeau W L.1988. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to eposodic tectonism. Geology, 16(6): 517- 520.
    [7] Bor-ming J., Wu Fuyuan,Lo Ching-hua, et al.1999. Crust–mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China.Chemical Geol,157: 119-146
    [8] Brett C E et al.1990. Sequence, cycle,and basin dynamics in the Silurian of the Appalachian foreland basin. Sedimentary Geology, 69(3-4):191-244.
    [9] Badescu D. 1997. Tectono- thermal regimes and lithosphere behaviour in the External Dacides in the Upper Triassic and Jurassic Tethyan opening(Romanian Carpathians)[J]. Tectonophysics,282:167-188.
    [10] Blair T C, Bilodeau W L.1988. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to eposodic tectonism. Geology, 16(6): 517-520
    [11] Bor-ming J., Wu Fuyuan,Lo Ching-hua, et al.1999. Crust–mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China.Chemical Geol,157: 119-146
    [12] Choquette, P. W. 1988. Introduction. In:Paleokarst. NewYork, Springer-Verlag, 1-22.
    [13] Castle JW. 2001. Foreland-basin sequence response to collisional tectonism[J]. GSA Bulletin,113: 801~812.
    [14] Catuneanu O., sweet A. R. and Miall A. D., 2000. Reciprocal stratigraphy of the Campanian- Paleocene Western Interior of North America. Sedimentary Geology. 134 (3-4):235-255.
    [15] Cederbom C. 2001. Phanerozoic, pre-Cretaceous thermotectonic events in southern Swedem revealed by fission track thermochronolopgy. Earth and Planetary Science Leters,.188 (1-2): 199-209
    [16] Cloetingh S, Ben Avraham Z,Sassi W, et al.. 1996. Dynamics of extensional basins and inversion tectonics[J]. Tectonophysics, 266: 1-523.
    [17] Cloetingh S, Sassi W, Horvath F,et al. 1993. Basin analysis and dynamics of sedimentary basin evolution[J]. Sediment Geol,86: 1~201.
    [18] Cloetingh S, Fernandez M, Munoz J A,et al., 1997. Structural controlson sedimentary basin evolution: introduction[J]. Tectonophysics,282: 10-18.
    [19] Cederbom C. 2001. Phanerozoic, pre-Cretaceous thermotectonic events in southern Swedem revealed by fission track thermochronolopgy. Earth and Planetary Science Leters,.188 (1-2): 199-209
    [20] Cloetingh S, Ben Avraham Z,Sassi W, et al.. 1996. Dynamics of extensional basins and inversion tectonics[J]. Tectonophysics, 266: 1-523
    [21] Cloetingh S, Sassi W, Horvath F,et al. 1993. Basin analysis and dynamics of sedimentary basin evolution[J]. Sediment Geol, 86: 1-201.
    [22] Cloetingh S, Fernandez M, Munoz J A,et al.. 1997. Structural controlson sedimentary basin evolution: introduction[J]. Tectonophysics, 282: 10-18.
    [23] Duggan J P,Mountjoy E W,Stasiuk L D et al. 2001. Fault-controlled dolomitization at Swan Hills Simonette oil field(Devonian), deep basin west-central Alberta. Sedimentology, 48:301-323.
    [24] Esteban, M. and Klappa. 1983. Subarial exposure environment[C].//Carbonate Depositional Environment. Mem Am Ass Petrol Geol, 1-55.
    [25] Fritz R D,Wilson J L, Yurewicz D A. 1993. Paleokarst related hydrocarbon reservoirs[M]. New Orleans: SEPM Core workshop,18.
    [26] Grimmer J.C. et al., 2002. Cretaceous–Cenozoic history of thouthern Tan-Lu fault zone apatite fission- track and structural constraints from the Dabie ShaN (eastern China). Tectonophysics. 359: 225-253.
    [27] Grimmer J.C. et al., 2002. Cretaceous–Cenozoic history of thouthern Tan-Lu fault zone apatite fission- track and structural constraints from the Dabie ShaN (eastern China). Tectonophysics. 359: 225-253.
    [28] Horn M K. 2005. Giant oil and gas field: Global inventories, tectonic settings, stratigraphic framework, and predictive parameters﹝M﹞. Texas: AAPG.
    [29] Harding T P. 1985. Seismic characteristics and identification of negative flower Structures, positive flower structures, and positive structural inversion. Bulletin of the American Association of Petroleum Geology’s, 69:582-600
    [30] HeLLer P L, et al., 1988. Two-phase stratigraphic model of foreland-basin sequence[J]. Geology, 16: 501-504.
    [31] Hirajimat, Ishiwataria, Cong B, Zhang R, et al., 1990. Coesite from Meng Zh ong eclogite at Donghai county north eastern Jiangsu province, China. Mineralogical Magazine,54:579-583.
    [32] Hsu J K,Wang Qingchen, Li Jiliang et al. 1987. Tectonic evolution of Qinling Mountains, China. Eclogae Geologicae Helvetiae, 80 (3): 735-752.
    [33] Ingersoll R V,Busby C J. 1995. Tectonic of sedimentary basins[A]. In: C J Busby and R V Ingersoll, eds. Tectonics of Sedimentary Basins[C]. Cambridge: Blackwell Science, 1-51.
    [34] James, N. P. and Choquette, P. W. 1984. Limestone-the Meteoric diagenetic environment, Geoscience Canada,Ⅱ:161-194.
    [35] Longman, M. W.. 1980. Carbonate diagenetic textures from nearsurface diagenetic environments[J]. AAPG Bulletin,64(4):461-487.
    [36] Morrow D W. 1982. DiagensisⅠ:Dolomite-PartⅠ,the chemistry of dolomitization and dolomite precipitation[J]. Geosicence. Can,9:5-13.
    [37] Mckenzie D P. 1978. Some remarks on the Development of sedimentary basins: Earth and Planetary Sci. Letters, 40,25-32.
    [38] Maruyama S, Liou J G and Zhang R. 1994. Tectonic evolution of the ultrahigh-pressure and high-pressure metamorphic belts from central China. The Island Arc, (3): 112-121.
    [39] Mascle A, Puigdefabregas C, Luterbacher H P,et al.. 1999. Cenozoic Foreland Basins of Western Europe[C]. GeologicaL Society, lon-don, Special Publication London: Geological Society Publishing House.
    [40] Person M, Garven C. 1992. Hydrologic constraints on Petroleum generation within continental rift basins: Theory and application to the Rhine Graben[J]. AAPG Bulletin,76(4): 468-488.
    [41] Roehel P O,Choquette P W. 1985. Introduction[A].Roehl P O, choquette P W. Carbonate Petroleum Reservoirs[M]. Berlin, Heidelberg, New York: Springer Verlag:1-15.
    [42] Surdam R C, Boese S W and Crossey L J. 1984. The chemistry of secondary porosity[C]// D. A. Mecdonald and R. C. Surdam(Eds). Clastic Diagensis AAPG em. 37:127-149.
    [43] Sloss L L. 1988. Forty years of sequence stratigraphy[J]. Geological Society of American Bulletin. 100(25):1661-1667.
    [44] Sinclair H D et al.1991. Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the central Alps, Switzerland. Tectonics, 10:599-620
    [45] Steel R J.1988. Coarsening-upward and skewed fan bodies: sympotems of strike-slip and transfer fault movement in sedimentary basins. in: Fan deltas: sedimentology and tectonic settings, 75-83
    [46] Toth J. 1987. Petroleum hydrogeology: a new basic in exploration[J]. World Oil, 49: 8-50.
    [47] Van der, Beek P A,Cloetingh S, Andriessen P A M. 1994. Mechanisms of extensional basin formation and vertical motions at rift flanks: constraints from tectonic modeLing and fission track thermochronology[J]. Earth Planet Sci Lett,121: 417-433
    [48] Vauchez,Nicolas A. 1991. A mountain building: strike-paralle motion and mantle anisotropy [J]. Techtonophys, Vauchez, 185: 183-201.
    [49] Vail P R, Audemard F, Bowman S A et al. 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology an overview, In: Einsele G, Richen W. Seilacher A eds. Cycles and Events in Stratigraphy. Berlin Heidberg: Springer-verlag, 617-659.
    [50] Vail P R,Mitchum R M and Thompson S. 1977.Ⅲ.Global cycles of relative changes of sea level. AAPG Memoir 26:83-97.
    [51] Vail P R. Mitchum R M Jr. Thompson S. 1997. Seismic stratigrphy and global changes of sea level, Part 4: relative changes of sea level from coastal onlap. In: Payton C E, ed. Seismic Stratigraphy Application to Hydrocarbon Exploraiton. AAPG Mem,26:83-98.
    [52] Verweij J M. 1993. Hydrocarbon migration systems analysis[M]. Elsevier Science Publishers, 23-78.
    [53] Vilotte J P, Melosh J, Sassi W et al.. 1993. Lithosphere geology and sedimentary basins[J]. Tectonophysics, 226: 89-95.
    [54] Zenger D H, Dunham J B, Ethington R L .1980. Concepts and Models of Dolomitization [M]. [ Sl ] : Society Economic Paleontologist s Mineralogists ,Special Publication.
    [55]安太痒,张放,向维达等. 1983.华北及邻区牙形石[M].北京:科学出版社,16-60.
    [56]安徽省地质矿产局. 1987.安徽省区域地质志[M].北京:地质出版社,157-184.
    [57]鲍志东齐跃春金之钧等. 2007.海平面波动中的岩溶响应-以塔里木盆地牙哈-英买力地区下古生界为例[J].地质学报, 81(2):205-211.
    [58]程裕淇. 1994.中国区域地质概论.北京:地质出版社, 109-125.
    [59]曹建康. 1998.华北地台南缘下古生界天然气勘探有利区域探讨[J].矿物岩石, 18(3): 34-38.
    [60]陈霞,徐辉. 1994.华北地台奥陶系碳酸盐岩储集岩成因类型与展布[J].沉积学报, 12(3):47-56.
    [61]陈旭,周志毅. 2005.奥陶系全球界线层型剖面和点位(GSSP)的研究[J].地层学杂志, 29(3):165-170.
    [62]陈文礼,何明喜,全书进等. 2000.河南老区外围盆地评价与优选(河南油田研究报告).46-75.
    [63]曹高社,张善文,柳忠泉等. 2006.华北陆块东南缘凤台组时代的讨论[J].地质科学,41(4):720-728.
    [64]曹高社,宋明水,刘德良等. 2002.合肥盆地寒武系底部烃源岩沉积环境和地球化学特征[J].石油实验地质, 24(3):273-278.
    [65]陈洪德,侯明才,刘文均等. 2004.海西-印支期中国南方的盆地演化与层序格架[J].成都理工大学学报(自然科学版), 31(6):629~635.
    [66]陈洪德,侯明才,许效松等. 2006.加里东期华南的盆地演化与层序格架[J].成都理工大学学报(自然科学版),33(1):1~8.
    [67]陈世悦. 2000.华北地块南部晚古生代至三叠纪沉积构造演化[J].中国矿业大学学报, 29(5): 536-540.
    [68]陈建强,王训练,于炳松等.层序地层与地层界线优化[J].地层学杂志,2001,25(4):241-246.
    [69]陈学时. 1992.皖南寒武-奥陶系白云岩类型及成因探讨[J].石油勘探与开发, 19(1):13-22.
    [70]陈学时,易万霞,卢文忠. 2004.中国油气田古岩溶与油气储层[J].沉积学报. 22(2):541-532.
    [71]董宇,兰昌益,曾庆平. 1994.两淮晚石炭世至晚二叠世初期岩相古地理[J].煤田地质与勘探, 22(6):9-12.
    [72]杜旭东,李洪革,陆克政等. 1999.华北地台东部及邻区中生代(J-K)原型盆地分布及成盆模式探讨[J].石油勘探与开发,22(4):5-9.
    [73]戴金星,刘德良,曹高社. 2002.华北石油天然气烃源岩的确认及其地质矿产意义[J].地质通报, 21(6):345-347.
    [74]段吉业,刘鹏举,夏德馨. 2002.浅析华北板块中元古代-古生代构造格局及其演化[J].现代地质,16(4):331-338.
    [75]冯增昭. 1979.华北早奥陶世岩相古地理新探[J].地质科学,4:302-313.
    [76]冯增昭,陈继新,吴胜和. 1990.华北地台早古生代岩相古地理[M].北京:地质出版社, 187-199.
    [77]范嘉松. 2005.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘, 12(3):23-29.
    [78]郭绪杰,焦贵浩. 2002.华北古生界石油地质[M].北京:地质出版社, 23-29.
    [79]顾家裕. 1994.沉积相与油气[M].北京:石油工业出版社, 298-309.
    [80]河南地质矿产局. 1982.河南省区域地质志[M].北京:地质出版社, 125-162.
    [81]韩征,何镜宇,王英华等. 1997.华北地区下古生界沉积相和层序地层分析[J].地球科学-中国地质大学学报,22(3):293-299.
    [82]黄思静,杨俊杰等. 1996.石膏对白云岩溶解影响的实验模拟研究[J].沉积学报,14(1):103-109.
    [83]黄宝春,朱日祥,Y.Otofuji,杨振宇. 2000.华北等中国主要地块早古生代早期古地理位置探讨[J].科学通报, 45(4):337-345.
    [84]侯明才,陈洪德,田景春. 2003.层序充填动力学-层序地层研究的新方向[J].地层学杂志,27(4):358-364
    [85]郝运轻. 2006.济阳凹陷冶里-亮甲山组次生白云岩储集空间成因分析[J].油气地质与采收率, 13(1):14-18
    [86]何明喜,杜建波,王荣新等. 2009.华北南缘新元古界-下古生界海相天然气前景初探[J].石油实验地质, 31(2):154-159.
    [87]何明喜. 1995.东秦岭(河南部分)新生代拉伸造山作用与盆岭伸展构造[M].西安:西北大学出版社,101-123.
    [88]金振奎,冯增昭. 1993.华北地台东部下古生界白云岩的类型及储集性[J].沉积学报. 11(2):11-18.
    [89]解东宁. 2007.南华北盆地晚古生代以来构造沉积演化与天然气形成条件研究.西北大学博士论文.
    [90]贾振远,蔡忠贤. 2004.碳酸盐岩古风化壳储集层(体)研究[J].地质科技情报,23(4):94-104
    [91]贾红义,刘国宏,张云银等. 2001.合肥盆地形成机制与油气勘探前景[J].安徽地质,11(1):9-10.
    [92]蓝光志,江同文,陈晓慧等. 1995.古岩溶与油气储层[M].北京:石油工业出版社, 6-54.
    [93]李武,程志纯. 1997.合肥盆地油气勘探前景分析.安徽地质[J],7(3):56-61.
    [94]李增学,魏久传,王明镇等. 1996.华北南部晚古生代陆表海盆地层序地层[J].岩相古地理, 16(5):1-11.
    [95]李亚林,张国伟,王根宝,高凤泉. 1999.北秦岭小寨变质沉积岩系的地质特征及其构造意义[J].沉积学报,17(4):596-614.
    [96]李定龙,杨为民,汪才会,高智联等. 1998.皖北奥陶系古岩溶宏微观特征及岩溶相模式[J].淮南矿业学院学报, 18(4):1-6.
    [97]李定龙,周治安,汪才会. 1997.马家沟灰岩(古)岩溶研究中的若干问题探讨[J].地质科技情报, 17(1).
    [98]李定龙,杨为民. 2000.皖北奥陶系岩溶岩稀土元素地球化学特征及其古岩溶意义[J].地学前缘, 5(1-2).
    [99]李定龙,杨为民,汪才会,高智联等. 1998.皖北奥陶系古岩溶宏微观特征及岩溶相模式[J].淮南矿业学院学报, 18(4):1-6.
    [100]李余生,张长俊,田景春,谢继容. 1996.华北板块南缘下古生界油气生储盖特征[M].四川科学技术出版社,4-48.
    [101]李朋武,高锐,管烨,李秋生. 2007.华北与西伯利亚地块碰撞时代的古地磁分析-兼论苏鲁-大别超高压变质作用的构造起因[J].地球学报, 28(3):234-252.
    [102]刘鸿允. 1955.中国古地理图[M].北京:科学出版社.
    [103]刘长安,单际彩. 1979.试谈蒙古-鄂霍茨古海带古板块构造的基本特征[J].吉林大学学报(地球科学版), (2):1-13.
    [104]刘池阳. 1986.后期改造强烈-中国沉积盆地的重要特点之一[J].石油与天然气地质,17(4):255-261
    [105]刘印环. 1990.河南的寒武系和奥陶系[M].北京:地质出版社.
    [106]刘光祥,黄泽光,高长林等. 2007.中国东部中央造山带两侧盆地与油气[M].北京:石油工业出版社,115-141.
    [107]刘小平,刘太成,蒋礼宏等. 2000.南华北盆地黄口凹陷构造形成演化及油气勘探前景[J].石油勘探与开发,27(5):8-11.
    [108]刘小平,孙冬胜,吴欣松. 2007.古岩溶地貌及其对岩溶储层的控制[J].石油试验地质, 29(3):265-268.
    [109]刘波,王英华,钱祥麟. 1997.华北奥陶系两个不整合面的成因与相关区域性储层预测[J].沉积学报,15(1):25-36.
    [110]梅冥相. 1995.华北地台北缘奥陶系亮甲山组的碳酸盐复合海平面变化旋回层序[J].岩相古地理, 15(5):33-42.
    [111]毛德民. 1997.合肥坳陷构造形成机制分析[J].石油勘探与开发,24(2):33-36.
    [112]马学平,韩作振,王英华. 1998.华北地区冶里-亮甲山期层序地层及其岩相古地理[J].地质科学,33(2):166-178.
    [113]孟祥化,葛铭,柳永清,马永生等. 2004.中朝板块层序.事件.演化[M].北京:科学出版社,157-186.
    [114]彭军. 1999.黔桂地区石炭纪层序地层特征及发育机制(博士论文).成都理工大学.
    [115]彭阳,章雨旭. 2000.北京西山及邻区下古生界白云石化与层序地层[J].地球学报, 21(1):78-85.
    [116]邱连贵,辛忠斌,徐春华等. 2002.安参1井中生界沉积相及储层特征研究[J].石油实验地质. 24(3):228-231
    [117]曲新国. 1995.太康隆起奥陶系研究新进展[J].河南石油, 9(1):1-6.
    [118]宋来明,彭仕宓等. 2005.油气勘探中的碳酸盐岩古岩溶研究方法综述[J].煤田地质与勘探,33(3):15-19.
    [119]沈修志,薛爱民,刘德良等. 1995.华北南部盆地构造与天然气关系[M].合肥:中国科学技术大学出版社,60-65.
    [120]孙家振,韦必则,熊保贤等. 1995.周口坳陷形成机制及其与大别造山带的耦合关系[J].地学前缘. 2(3-4):248
    [121]孙自明. 1996.太康隆起构造演化史与勘探远景[J].石油勘探与开发, 23(5):6-10.
    [122]史晓颖,陈建强,梅仕龙. 1999.中朝地台奥陶系层序地层序列及其对比[J].地球科学-中国地质大学学报, 24(6):573-580.
    [123]桑树勋,徐磊,张华. 2002.徐州地区寒武纪灰质障壁砂坝沉积模式研究[J].中国矿业大学学报, 31(6):565-570.
    [124]桑树勋,郑永飞,张华等. 2004.徐州地区下古生界碳酸盐岩的碳、氧同位素研究[J].岩石学报, 20(3):707-716.
    [125]时国,田景春,吴永良等. 2010.南华北地区下古生界碳酸盐岩成岩作用及其对储层的影响[J].地质科技情报, 29(2):10-15.
    [126]田景春,陈高武,张翔等. 2006.沉积地球化学在层序地层分析中的应用[J].成都理工大学学报(自然科学版),33(1):30-35.
    [127]田景春,陈洪德,覃建雄. 2004.层序-岩相古地理图及其编制[J].地球科学与环境学报,26(1):6-12.
    [128]田景春,康建威,林小兵等. 2007.台盆沉积体系及层序地层特征研究[J].西南石油大学学报, 29(6):39-42.
    [129]田景春,张翔,聂永生等. 2005.层序的测井、地震响应特征研究[J].物探化探计算技术,27(4):321-326.
    [130]田景春,时国,陈辉等. 2009.南华北地区奥陶系古喀斯特特征及其储层前景[J].成都理工大学学报(自然科学版),36(6):598-604.
    [131]汪啸风. 1993.全球奥陶系年代地层学的研究-进展与问题[J].地球科学进展,8(1):28-34.
    [132]汪啸风,陈孝红,王传尚等. 2004.中国奥陶系和下志留统下部年代地层单位的划分[J].地层学杂志, 28(1): 1-17.
    [133]王同和,王喜双,韩宇春等. 1999.华北克拉通盆地构造演化与油气聚集[M].石油工业出版社, 1-62.
    [134]王英华. 1992.碳酸盐岩成岩作用与孔隙演化[J].沉积学报, 10(3):85-95.
    [135]王宝清,张金亮. 1996.古岩溶的形成条件及其特征[J].西安石油学院学报, 11(4):8-10.
    [136]王宝清,章贵松. 2006.鄂尔多斯盆地苏里格地区奥陶系古岩溶储层成岩作用[J].石油实验地质, 28(6):518-528.
    [137]王利,周祖翼,丁汝鑫. 2007.大别造山带毗邻新生代盆地物质平衡分析[J].地质论评,53(3):301-305.
    [138]吴跃东,钟华明. 2002.皖南地区奥陶系层序地层学分析[J].现代地质, 16(1):45-52.
    [139]夏日元,唐健生,关碧珠,罗伟全,马步芳等. 1999.鄂尔多斯盆地奥陶系古岩溶地貌及天然气富集特征[J].石油与天然气地质, 20(2): 133-136.
    [140]夏日元,唐建生,邹胜章,梁彬等. 2006.碳酸盐岩油气田古岩溶研究及其在油气勘探开发中的应用[J].地球学报, 27(5):503-509.
    [141]徐树桐,陈冠宝,周海渊等. 1987.徐-淮推覆体[J].科学通报,321(4):1091-1095.
    [142]徐辉. 1992.华北地区下古生界白云岩类型与储集性[J].石油实验地质. 14(1):68-77.
    [143]徐汉林,赵宗举,杨以宁等. 2003.南华北盆地构造格局及构造样式[J].地球学报. 24(1): 27-33.
    [144]徐汉林,吕福亮,赵宗举等. 2003.南华北盆地黄口凹陷构造演化与油气勘探方向[J].中国矿业大学学报, 32(5):590-595.
    [145]徐国强,刘树根,武恒志等. 2005.海平面周期性升降变化与岩溶洞穴层序次关系探讨[J].沉积学报, 23(2):316-322.
    [146]许效松,杜佰伟. 2005.碳酸盐岩地区古风化壳岩溶储层[J].沉积与特提斯地质,25(3):2-7.
    [147]袁道先,蔡桂鸿. 1988.岩溶环境学[M].重庆:重庆出版社, 138-165.
    [148]袁政文,何明喜,宋建华等. 2003.残留盆地油气勘探前景分析[J].石油实验地质, 25(6): 679-684.
    [149]杨森楠,吴鉴,杨学忠等. 1987.中生代时期大别山的造山运动和造山带构造[J].地球科学,12(5):495-501.
    [150]杨恩秀,杨建民,孙天柱等. 2001.枣庄地区寒武纪-早奥陶世层序地层特征[J].山东地质,17(3):30-37.
    [151]杨振宇,马醒华,孙知明等. 1997.豫北地区早古生代古地磁研究的初步结果及其意义[J].科学通报,42(4):402-405.
    [152]于炳松,樊太亮,黄文辉等. 2007.层序地层格架中岩溶储层发育的预测模型[J]..石油学报, 28(4):41-45.
    [153]周书欣. 1981.对成岩作用及其阶段划分的意见[J].石油勘探与开发, 3, 10-12.
    [154]周鼎武,张成立. 1994.论北秦岭加里东期造山作用[J].西北大学学报(自然科学版),24(3):245-250.
    [155]周鼎武,张成立,韩松等. 1995.东秦岭早古生代两条不同构造-岩浆杂岩带的形成构造环境[J].岩石学报,11(2):115-125.
    [156]郑荣才,陈洪德等. 1996.川西北大安寨段储层深部热水溶蚀作用[J].石油与天然气地质,17(4):293-301.
    [157]郑荣才,彭军,吴朝容. 2001.陆相盆地基准面旋回的级次划分[J].沉积学报, 19(2):249-255.
    [158]张国伟. 1988.华北地块南部早前寒武纪地壳的组成及其演化和秦岭造山带的形成及其演化[J].西北大学学报,18(1):21-23.
    [159]张宗清,伍家善,叶笑江. 1991.阜平群下部太古变质岩石的REE、Rb-Sr和Sm-Nd年龄及其意义[J].地球化学, 2:118-127.
    [160]张廷山,俞剑华,边立曾等. 1998.四川盆地南北缘志留系的锶和碳、氧同位素演化及其地质意义[J].岩相古地理,18(3):41-49.
    [161]张忠民,龙胜祥,许化政. 2005.华北古生代克拉通盆地南部原生油气藏勘探前景[J].石油与天然气地质,26(5):261-267.
    [162]祝厚勤,朱煜,尹玲. 2003.周口盆地东部(阜阳地区)石炭-二叠系煤成烃勘探潜力研究[J].天然气地球科学. 14(5):408-411.
    [163]张宝民,刘静江. 2009.中国岩溶储集层分类与特征及相关的理论问题[J].石油勘探与开发, 36(1):12-29.
    [164]张学丰,胡文瑄,张军涛. 2006.白云岩成岩相关问题及主要形成模式[J].地质科技情报,25(5):32-40.
    [165]章雨旭,高林志,彭阳等. 1998.凤台砾岩与四顶山组过渡接触关系的发现及其地质意义[J].地球科学(中国地质大学学报),23(1):9-12.
    [166]赵永刚. 2006.奥陶系碳酸盐岩古岩溶及其储层研究.西南石油大学博士学位论文.
    [167]赵宗举. 2008.海相碳酸盐岩储集层类型、成藏模式及勘探思路[J].石油勘探与开发, 35(6): 692-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700