用户名: 密码: 验证码:
锦屏一级水电站左岸抗力体地质缺陷及加固处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坝肩抗力体是维持拱坝稳定的关键部位,其稳定性是拱坝建设中的关键工程地质问题之一,坝肩地质缺陷的存在可引起岩体的承载力不足、抗变形能力差,从而导致坝体的变形甚至失效,直接威胁水电站的正常运营。因此,在对坝肩抗力体地质缺陷研究的基础上,建立一套加固处理技术方法体系,对水电站工程建设具有较强的指导意义。本文以锦屏一级水电站左岸抗力体为工程背景,从工程地质条件着手,紧扣岩体结构特征,进行地质缺陷工程地质研究;根据地质缺陷对拱坝和坝肩稳定的影响分析,确定缺陷体的加固处理措施,针对主要的加固措施(缺陷体网格置换和缺陷体固结灌浆)进行专门的技术研究,所获得的研究成果应用于现场实际工程,并就存在的问题和不足进行优化和完善。以理论为基础,以工程应用为目的,构成了复杂地质条件下高拱坝坝肩(基)地质缺陷(体)及加固处理技术研究比较完整的理论与实践体系。主要研究成果体现在以下几个方面:
     (1)在把握研究区工程地质条件基础上,结合结构面成因、结构面工程地质分级、结构面的现场调查,将锦屏一级左岸抗力体主要发育的结构面概化为断层、层间挤压错动带和基体裂隙三类,对其进行工程地质分析,获得了各类结构面的空间分布规律及物质组成特征。对左岸抗力体岩体结构划分为厚层~块状结构、中厚层状~次块状结构、次块~镶嵌结构、块裂~碎裂结构、板裂~碎裂结构和碎裂~散体结构六种类型。
     (2)在拱坝基础地质缺陷理论分析基础上,根据左岸抗力体前期勘探及施工期5层基础处理洞室开挖揭示的工程地质条件,结合坝基岩体质量分级标准,先进行野外岩体质量初步分级,再结合钻孔声波、孔内变形模量、RMR分类统计等手段,综合岩性、地质构造、岩体结构、嵌合紧密程度及风化卸荷、深部裂缝的发育程度等地质特征,对左岸抗力体岩体质量进行综合评价,获得了各级岩体的工程地质特征及其空间展布规律。
     (3)在岩体质量综合评价基础上,对左岸抗力体地质缺陷划分为断层破碎带、层间挤压错动带、煌斑岩脉、深部裂缝、Ⅳ2级岩体、Ⅲ2级岩体等六种基本类型进行详细的工程地质特征分析,获得了各类地质缺陷的空间分布规律、物质组成、物理力学特征等。
     (4)分别对地震层析成像技术和智能钻孔全景图像技术在左岸抗力体地质缺陷评价中的应用进行了分析。分析结果表明,地震层析成像和智能钻孔全景图像结果与现场的岩体质量具有较好的对应关系,地质缺陷在地震层析成像和智能钻孔全景图像结果中得到了较好的体现。
     (5)在缺陷体网格置换技术研究中,从置换网格开挖、支护、衬砌、灌浆与混凝土回填等方面进行了较为系统的分析研究。鉴于置换网格特别复杂的地质条件及施工技术特点,确定了置换洞开挖“预灌浆、短进尺、弱爆破、强支护、勤监测”,斜井开挖“先超前灌浆、后导井开挖、再边扩边衬、全过程监测”开挖支护原则。安全监测结果表明所采取的工程措施行之有效。从而构成了以锦屏一级左岸抗力体f5(f8)断层、煌斑岩脉为工程背景的网格置换技术比较完整的技术体系。
     (6)按灌浆技术特点、灌浆材料、灌浆方法的差异对抗力体固结灌浆进行了分区。然后分主灌浆区、控制灌浆区灌浆,深部裂缝灌浆和f5断层、煌斑岩脉灌浆三部分对其进行了较为系统的研究,构成了针对左岸抗力体地质缺陷固结灌浆比较完整的技术研究体系,为不同类型地质缺陷的固结灌浆处理提供了可行的方案,并对其它复杂地质条件下坝肩(基)的灌浆加固处理具有借鉴意义。
     (7)对P.O.42.5、P.O.52.5普通硅酸盐水泥浆液性能进行了试验研究,采用复合外加剂同时对水泥浆液凝结时间和早期强度进行改性,分别对LLS+FDN和CaCl2+SGJ-1两种复合外加剂方案进行了试验分析。在此基础上进行了湿磨细水泥浆液和稳定浆液的试验研究。
     (8)针对主、控制灌浆区的工程地质特征,对“孔口封闭、孔内循环、分序加密、自上而下”高压固结灌浆在其中的应用进行了分析研究。对典型的Ⅳ2级岩体现场灌浆试验进行了分析。针对灌浆质量检查中存在的一些问题从灌浆材料、灌浆参数、灌浆方法及灌浆效果检查等方面进行了优化建议。
     (9)针对左岸抗力体深部裂缝灌浆技术特点开展了水泥-水玻璃控制性灌浆技术研究。从胶凝时间和强度变化规律对水泥-水玻璃浆液进行了试验分析,对初凝时间为5min的水泥-水玻璃浆液进行了配方设计;针对深部裂缝及水泥-水玻璃浆液的特点,提出对深部裂缝采取“双液孔口混合式”水泥-水玻璃灌浆方法,采用“自上而下、孔口封闭、纯压式”施工工艺。
     (10)针对f5断层、煌斑岩脉灌浆技术特点开展了水泥-化学复合灌浆技术研究。在水泥-化学复合灌浆机理分析基础上,确定了灌浆处理程序和总体方案,对水泥-化学灌浆材料、灌浆方法进行了分析。对f5断层和煌斑岩脉水泥-化学复合灌浆现场试验进行分析研究。根据灌浆质量检查结果,从灌浆材料、灌浆参数和灌浆效果检查等方面提出了优化建议。
Dam abutment resisting force body is key parts to maintain stability of arch dam and its stability is one of the important engineering geology factors in the process of arch dam construction. What’s more, the dam will failure triggered by deformation and constitutes a direct threat to normal operation of hydropower stations induced by the geological defects of abutment will result in the carrying capacity lacking and weak deformation resistance.Therefore, it has a quite strong practice indirection meaning to establish a reinforcement treatment system based on geological defects of dam abutment resisting force body.This paper conducts a research on the geological defects and reinforcement of the high arch dam abutment(base) with complicated geological condition, on the basis of the resistances on the left bank of the Jinping ? Hydropower. under the guidance of the geological defect basic theory and the weak rock masses reinforcement theory. To start with, this paper carries out a research on the engineering geological conditions of the geological defects by combining with the structure characteristics of the rocks. Afterwards, the reinforcements of the defects have been confirmed according to the analysis of the geological defects on the stability of the arch dam and dam abutment. Finally, the specific technological research has been made according to the main reinforcement, namely, defects displace and consolidation grouting, the achievements of which will be applied to the field engineer and the limitations improved. On the basis of the theory, the paper has constructed a relatively complete system of theory and practice of the geological defects and reinforcements of the high arch dam abutment(base) with the complicated geological conditions with the aim of the engineer application. The main achievements are as follows.
     (1)After obtaining the engineer geological condition in the study area in combination with the cause, the geological classification and field investigation of the structure surface, the main developed structure surface of the resistance on the left bank of Jinping ? Hydropower can be summarized as three kinds, namely, faultage, disturbed belt as a result of layer squeezing and the matrix crevice. After analyzing the above three kinds of structure from engineer geological perspective, the rule of space distribution and characteristics of physical makeup have been acquired. There are six kinds of structures about the resistant rocks on the left bank, which are in the form of thickness to massive, medium to sub-massive, sub-massive to mosaic, taphrogeny to splintering, board split to splintering, splintering to dispersion.
     (2)On the basis of the analysis of the geological defects of the dam base, firstly, we tentatively make the classification of quality of the rock mass in the field in combination with the classification criterion according to the engineering geological condition disclosed during exploration in the earlier stage and the excavation of the five-storeyed grotto under the construction. The comprehensive assessment of the rock quality of the resistance on the left bank have been made when combining the geological characteristics including synthetical lithology, geological structure, structure of rock mass, inosculating-intensity, unloading, development of the deep crevice by means of the drill hole sound wave test, hole deformation modulus, and RMR classification statistic. Finally, the engineering geological characteristics of the rock mass in all levels and space distribution rule have been acquired.
     (3)On the basis of the comprehensive assessment of the rock quality, we have classified the resistant on the left bank into six basic types, namely, faultage splintering belt, disturbed belt as a result of layer squeezing, lamprophyric dyke rocks, deep crack,Ⅳ2 rock mass,Ⅲ2 rock mass, and carried on the detailed analysis of the engineering geological characteristics. In the end, we’ve obtained the rule of space distribution, physical makeup, and physic mechanics of all kinds of geological defects.
     (4)After combining the engineering geological characteristics of the defects on the resistant of the left bank, we’ve made the analysis on the seismic tomography image formation technology and the application of intelligent drilling panoramic picture in the geological defects. The analysis shows that seismic tomography image formation and intelligent drilling panoramic picture correspond well to the rock quality in the field and the geological defects can be best manifested in those pictures.
     (5)We’ve made a relatively systemic analysis and research on the excavation, supporting, lining, grouting, cement concrete backfilling .Due to the replacement grid of the complicated geological conditions and the special features of construction technology, excavation supporting principle are : Replacement hole excavation of Pre-grouting, short footage, weak blasting, strong support and frequent monitoring. Slope wells excavation of First Pre-grouting, advance guide wells excavation, again lead Wells edge extension lining and all-process monitoring. It’s so effective from the safety monitoring results to show the engineering measures that a relative complete technical system is constituted, which is from the grid replacement technology of fault f5 (f8 ) and lamprophyre dike on left bank resisting rock of Jinping I Hydropower. The research results can be Referenced to similar projects.
     ( 6 ) A classification is made accoding to the difference of Technical characteristics ,materials ,and methods of grouting. And make a systematic research in the aspects of main-grouting area、grouting-control area grouting , the deep crack grouting area,f5 fault、Lamprophyric dike grouting area. a comparative complete technical architecture object to the consolidation grouting of the geological defects resistence of the left bank. Thus, it provides available plans for the consolidation grouting trentment in various kinds of geological defect and have a great consultant significance for the treatment of fracturing grouting for foundation soil dam abutment (base) in other complicated geological conditions.
     (7)A test was made for the property of the Portland cement grout 425#、525# to get it’s performance index and an analysis of it’s setting time and the variations rule were also made. Compound admixtures was adopted to change the setting time and initial strength at the same time ,and make experiment and analysis on the LLS+FDN and CaCl2+SGJ-1 plans separately. Portland cement grout 525# was adopted as the main materal for the experiment and research of wet cement grout and stable grout.
     (8)According to the engineering geological characteristics of main grouting area and control grouting area where the principle is orifice closed ,cycle hole, encryption and top-down sequence, high pressure consolidation grouting in one of the application is analyzed. ChooseⅣ2 rock mass ,which controlled by the typical fault and deep crack, to do a grouting test. Some problems exists in the process of grouting quality inspection. The optimize recommendations is given from grouting materials, grouting parameter, grouting method and grouting effect.
     (9)For the feature grouting in deep cracks of left bank resistance rock, technology research about the cement - silicate controlling grouting is conducted. Cement-silicate slurry experimental analysis is consistsed of setting time and strength variation. Got the formula design for early in the coagulation time for 5min cement-silicate slurry. In features of deep cracks and cement-silicate slurry, came up with dual fluid orifice hybrid cement-silicate slurry in deep cracks. Construction process is Top-down, orifice and pure pressure.
     (10)According to the faults f5 and lamprophyre dike grouting technique characteristics, technology research about the cement- chemical compound grouting is conducted. On the basis of the mechanism for cement-chemical compound grouting, determined the grouting process and the overall scheme. Cement grout is for top-down, orifice closed, circulating, section grouting. Chemical grouting is for orifice closed and pure pressure.On this basis of it, the cement - chemical compound grouting field test about faults f5 and lamprophyre veins was hold to check the quality so as putting forward optimize Suggestions on grouting materials, grouting parameter and grouting effect check.
引文
[1]汝乃华,姜忠胜.大坝事故与安全·拱坝[M].北京:中国水利水电出版社,1995.
    [2]中国水力发电工程学会.高拱坝学术讨论会论文选集[C].北京:电力工业出版社,1982.
    [3]祈庆和.水工建筑物[M].北京:中国水利水电出版社,1997.
    [4]王毓泰,周维垣等.拱坝坝肩岩体稳定分析[M].贵阳:贵州人民出版社,1983.
    [5]国家电力公司成都勘测设计研究院.雅砻江锦屏一级水电站可行性研究报告(工程地质4)[R].2003.
    [6]成都理工大学.锦屏一级水电站大坝坝基岩体质量评价研究[R].2008.
    [7]黄润秋,许强,等.地质过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [8]孙广忠.岩体结构力学[M].北京;科学出版社,1988.
    [9]黄润秋,许模,陈剑平,等.复杂岩体结构精细描述及其工程应用[M].北京;科学出版社,2004.
    [10]黄润秋,王士天,胡卸文,等.澜沧江小湾水电站高拱坝坝基重大工程地质问题研究[M].西南交通大学出版社,1996:146-218.
    [11]任自民,沈泰,等.三峡工程坝基岩体工程研究[M].中国地质大学出版社,1998:213-252.
    [12]巨能攀.大跨度高边墙地下洞室群围岩稳定性评价及支护方案的系统工程地质研究[D].成都理工大学,2005.
    [13]王仁坤.特高拱坝建基面嵌深优化设计分析与评价[D].清华大学,2007.
    [14]成都理工大学,左岸基础处理洞室变形特征及机制初步分析[R],2008.
    [15] Baustadter K.,Widamnn R.(1985) The behavior of the Kolnbrein arch dam.I-COLD, Lausane,Q.57-R.37.
    [16] Design criteria for concrete arch and gravity dams,United States dePartment of the interior bureau of reclamation,1977.
    [17]国家电力公司成都勘测设计研究院,高混凝土拱坝设计计算方法与设计准则研究[M],1990.
    [18]吴党中.传力洞在处理拱坝软弱破碎带基础中的应用[D].浙江大学,2007.
    [19]潘家铮.拱坝[M].北京:水利电力出版社,1982.
    [20]张景秀.坝基防渗与灌浆技术[M].北京:中国水利水电出版社,2002.
    [21]吕汉江,裂隙岩体注浆浆液运移动力学机理与影响因素研究[D].煤炭科学研究总院,2008.
    [22]郑玉辉.裂隙岩体注浆浆液与注浆控制方法的研究[D].吉林大学,2005.
    [23]陈在铁.高拱坝安全评价方法比较[J].水利水电科技进展,2007,27(3):9-13.
    [24]刘林广.小湾拱坝坝肩稳定及加固处理措施研究[D].四川大学,2005.
    [25]水利电力部成都勘测设计院.高混凝土坝坝基岩体工程综述[M].1988.
    [26]张建海等.小湾高拱坝坝肩(基)稳定工程措施研究.四川大学.2002.
    [27]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1988.
    [28]中国岩石力学与工程学会岩石锚固与注浆技术专业委员会.锚固与注浆技术手册[M].中国电力出版社,1999.
    [29]李朝过,张林.拱坝坝肩稳定的三维地质力学模型试验研究[J].成都科技大学学报.1994(3):73-83.
    [30]陈兴华等.脆性材料结构模型试验[M].北京.水利电力出版社,1984.
    [31]张建海,范景伟.刚体弹簧元理论与应用[M].成都.成都科技大学出版社,1997.
    [32] K.J.巴斯.工程分析中的有限元法[M].北京.机械工业出版社,1982.
    [33]钱向东,任青文,赵引.拱坝坝基面抗滑稳定性研究[R].1999.
    [34]黄润秋,许模,范留明,等.某高坝工程坝肩侧裂结构面基本特征及量化模型研究[J].工程地质学报.2003,11(2):113-119.
    [35]杜应吉.地质力学模型试验的研究现状与发展趋势[J].西北水资源与水工程.1996,7(2).
    [36]韩爱果.坝基岩体质量量化分级及图形展示[D].成都理工大学,2002.
    [37]周维垣,杨若琼.拱坝坝肩岩体断裂破坏及可靠度分析[J].岩石力学与工程学报.1987.6(4):321-336.
    [38]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].科学出版社,1984.
    [39]武清玺,王德信等.拱坝坝肩三维稳定可靠度分析[J].岩石力学.1998(1):45-49.
    [40]王在泉,华安增.确定边坡潜在滑面的块体理论方法及稳定性分析[J].工程地质学报.1999(1):40-45.
    [41]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1993.
    [42]张敏.复杂地质条件下大断面隧道“零”进洞工法技术体系及应用研究[D].成都理工大学,2009.
    [43]赖道平.地质缺陷对混凝土坝结构性态演变和转异的影响研究[D].河海大学,2005.
    [44]张光斗.法国马尔帕塞拱坝失事的启示[J].水力发电学报.1998,63(4):96-97.
    [45]卢军.锦屏一级水电站拱坝坝肩岩体整体稳定安全度研究[D].河海大学,2007.
    [46]王大伟.基于非线性有限元法的锦屏一级高拱坝整体稳定分析[D].河海大学,2007.
    [47]中国水电顾问集团成都勘测设计研究院.锦屏一级水电站左岸抗力体岩体质量评价报告[R].2009.
    [48]李小波,吴莉,祝华平.锦屏一级水电站左岸深部裂缝岩体灌浆试验研究[J].水电站设计.2009,3.
    [49]胡著秀,张建海等.坝基加固后锦屏一级高拱坝应力变形计算分析[J].红水河.2009(4):65-70.
    [50]薛利军,黄志澎.锦屏一级拱坝基础处理效果的有限元分析[J].水电站设计.2005(4):11-14.
    [51]牟高翔,陈岗,刘荣丽.锦屏一级拱坝左岸基础处理加固措施研究[J].水电站设计.2009(2):7-12.
    [52]李宁.锦屏高拱坝整体稳定性研究[D].长江科学院研究生部.2008.
    [53]陈秀铜.锦屏一级水电站坝肩稳定分析及加固处理措施研究[C].水电站国际研讨会.2006.
    [54]陈欣,周维垣,黄岩松.锦屏拱坝破坏仿真的三维有限元分析[J].岩石力学与工程学报.2002(21)增2:2403~2407.
    [55]林正伟.锦屏一级高拱坝三维渗流场及坝肩稳定性研究[D].四川大学.2003.
    [56]中国水电顾问集团成都勘测设计研究院.雅砻江锦屏一级水电站拱坝左岸基础处理招标设计报告[R].2006.
    [57]中国水电顾问集团成都勘测设计研究院.大坝左岸边坡及地下洞室稳定分析研究总报告[R].
    [58]中国水电顾问集团成都勘测设计研究院.雅砻江锦屏一级水电站复杂地质条件下坝体抗裂措施研究[R].2009.
    [59]蔡元奇,朱以文,李金光,等.地质缺陷对拱坝及坝基力学行为的影响[J].岩石力学与工程学报.2002,21(12):1805-1809.
    [60]王毓泰,周维垣.拱坝坝肩岩体稳定分析[M].贵州人民出版社,1982.
    [61]高政.锦屏一级水电站左岸Ⅴ#山梁“岩墙”边坡稳定性评价[D].成都理工大学.2009.
    [62]中国水电顾问集团成都勘测设计研究院.四川省雅砻江锦屏一级水电站左岸抗力体质量评价及固结灌浆[R].2008.
    [63]陈安平.不良地质隧洞快速施工研究[D].广西大学.2005.
    [64]何泽山,刘墅辉,刘知季.锦屏一级水电站坝基软弱破碎带平硐开挖支护施工[J].云南水力发电.2009,25(2):22-25.
    [65]刘墅辉,何泽山.左岸抗力体不良地质带置换平硐开挖支护施工[J].人民长江.2009,40(18):42-44.
    [66]何泽山.锦屏一级电站拱坝基础煌斑岩脉置换斜井施工[J].云南水力发电.2009,25(2):18-21.
    [67]袁进科.水泥改性与新型固结灌浆材料研究[D].成都理工大学.2008.
    [68]陈旭荣.灌浆水泥的研究[M].北京:长江科学院,1991(8).
    [69]邢林.高水速凝固化材料充填技术的应用与效果[J].金属矿山,2001(7):11-14.
    [70]朱宗培,陈礼仪,费立.水泥改性技术研究与应用[M].成都:成都科技大学出版社,1998.
    [71]王火利.现代灌浆理论综述[J].江西水利,2002,6(2):77-82.
    [72] Etsuo Sakai, Yasuyuki Nikaidob, Takumi Itoha and Masaki Daimona. Ettringite formation and microstructure of rapid hardening cement[R]. Cement and Concrete Research.2004,9(34):1669-1673.
    [73] S.M. Clarka,B. Colasa, M. Kunza, S. Spezialeb and P.J.M. Monteiroc. Effect of pressure on the crystal structure of ettringite[R]. Cement and Concrete Research.2008, 1(38):19-26.
    [74]李世忠.钻探工艺学(中)[M].北京:地质出版社,1992.
    [75]地基处理手册编写委员会.地基处理手册.北京:中国建筑工业出版社,1994.
    [76]中国水利水电基础工程局.雅砻江锦屏一级水电站拱坝基础软弱岩体固结灌浆试验研究总报告[R].2003.
    [77]中国水利水电基础工程局.四川省雅砻江锦屏一级水电站左岸基础处理工程施工组织设计[R].2009.
    [78]陈伟.裂隙岩体灌浆压力及其稳定性控制方法研究[D].中南大学.2006.
    [79]胡尚清,高红,吴萍.灌浆压力对灌浆效果的影响因素分析[J].黑龙江水专学报,2006,27(2):41-42.
    [80]卢什尼科娃,吴理云译.灌浆工程中最佳灌浆压力状态的选择[J].国外金属矿采矿,1986(5).
    [81]孙钊,李茂芳.大坝基础灌浆[M].北京:中国水利水电出版社,2004.
    [82]张景秀.坝基防渗与灌浆技术[M].北京:中国水利水电出版社,2002.
    [83]吴景浓,李健康等.室内水压致裂法的初步试验研究[J].水利学报,1982(7):52-57.
    [84]谢兴华,速宝玉.裂隙岩体水力劈裂岩体渗流技术模型综述[J].水科学进展.1995(4):276-282.
    [85]肖恩尚,苏迎春.大空隙地层控制性灌浆技术综述[J].水力水电施工.2009(5):50-52.
    [86]胡国兵.水泥-水玻璃浆液在锦屏工程涌水封堵中的应用[J].人民长江.2009,40(21):32-34.
    [87]符平,张金接,赵卫全,杨晓东.速凝膏浆技术研究与应用[J].水利水电技术.2005(1):63-65.
    [88]姚富民.浅析灌浆技术在水利工程地基处理中的应用[J].民营科技.2009(12):183.
    [89]郑秀华.水泥-水玻璃浆材在灌浆工程中的应用[J].水文地质工程地质.2000(2):59-61.
    [90]陆兆阳.水泥-水玻璃双液浆配比试验及其特性研究[C].煤田物探与煤田钻探.2007.
    [91]刘玉祥,柳慧鹏.水泥-水玻璃双液注浆中的最优参数选择[J].矿冶.2005(12):1-4.
    [92]夏可风,崔文光,张金海.膏状浆液灌浆-围堰防渗的新方法[J].水利工程建设.2005.
    [93]赵卫全,符全,张金接,杨晓东.新型水泥膏浆研究及应用[J].中国水利水电科学研究院学报.2008(1):19-21.
    [94]向文飞,张孝军等.软弱泥化破碎带复合灌浆机理研究与应用[C].大坝基岩灌浆.2007:73-75.
    [95]蒋硕忠,薛希亮.水电工程中环氧树脂的开发应用[J].人民长江,1991.28(4):40-42.
    [96]程鉴基.化学灌浆在岩石工程中的综合应用[J].岩石力学与工程学报. 1996(6):186-192.
    [97]孙钊.大坝基岩灌浆[M].中国水利水电出版社,2004,3.
    [98]余本海.化学灌浆常用浆材组成及其施工工艺[J].小水电,2007,137(5):55-57.
    [99]王中美,丁坚平,刘世喜,等.化学灌浆在贵州岩溶山区滑坡治理中的应用[J].中国地质灾害与防治学报,2008,19(1):40-43.
    [100]李丙寅.黄河李家峡电站左岸F26断层化学灌浆试验分析[J].西北水电,2006,3:75-77.
    [101]魏继红.岩质地基中的化学灌浆及其效果检测.河海大学硕士学位论文.2001,4.
    [102]杜时贵.岩体结构面的工程性质[M].地震出版社,1999.
    [103]李张明,练继建,戚蓝.地震波层析成像技术探测复杂岩体结构应用研究[J].岩石力学与工程学报,2004,23(1):107-111.
    [104]王辉,黄鼎成.地震层析成像方法及其在岩体结构研究中的应用[J].2000,8(1):109-117.
    [105] Gladw in M.T. and Stacy F.D. Anelastic degradation of acoustic pulses in rock[J].Phys Earth Planet Inter .8,1974,332-336.
    [106] Kjartansson E.Constant Q-wave proPaggation and attenuation[J].J.Geaphys Res, 1979, 82:4737-4748.
    [107] Blair D.P.,etal Attenuation of explosion-generated pulse in rock masses[J].J.Geophys Res.1982,87:3885-3892.
    [108]和锐,杨建思,张翼.地震层析成像方法综述[J].CT理论与应用研究,2007,16(1):35-48.
    [109] Aki K. Overview in seismic tomography:theory and practice,editde by Iyer HM,Hirahara K,PP.1-8,1993.Chapman &Hall,London,1 edition.
    [110] Aki K,Lee W H K.Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes[J].Geophys Res, 1976, 81(23), 4381-4399.
    [111]王思敬.坝基岩体工程地质力学分析[M].科学出版社,1990.
    [112] Aki K,Christoffersson A,Husebye E S.Determination of the three-dimensional seismic structure of the lithosphere G eophys[J].Journal of Geophysical Research,1977,82:277-96.
    [113] Dziewonski A M.Gilbrt F.The effect of small asphericial perturbations on travel times and a reexamination of the correction of ellipticiyt Geophys[J].J R Astron Soc,1976,44:7-17.
    [114]杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础[J].地球物理学进展,2001,16(4):96~109.
    [115] Zhao Dapen.New advance of seismic tomography and its application to subduction zones and earthquake fault zones[J]:A review,The Islad Arc.2001,10:68-84.
    [116] Thurber C,Aki K. .Three-dimensional seismic imaging[J].Annual Review of Earth and Planetary Sciences,1987,15:115-139.
    [117] Tarantola A, Valette B.Inverse problems=quest for information[J].Geophys, 1982, 50: 159-170.
    [118] Tarantola A,Nercessian A .1984.Three-dimensional inversion without blocks[J].Geophys J R.astr.Soc.1982,76:299-306.
    [119] Tarantola A.Inverse problem theory:Methods for data fitting and model Parameter estimation.Elseview Press,Amsterdam.1987.
    [120] Nercessian A,Hirm A,.Tarantola A.Three-dimensional seismic transmission prospecting of the Mont Dore volcano[J].France,Geophys,J R astr Soc,1984,76:307-315.
    [121]覃仁辉.隧道工程[M].新疆大学出版社,2005.
    [122]成谷,马在田,张金宝,等.地震层析成像中存在的主要问题及应对策略[J].地球物理学进展,2003,18(3):512-51.
    [123]安美建,冯梅,赵琳.地震层析成像中的不确定性[J].CT理论与应用研究,2009,18(2):24-32.
    [124]中国水电顾问集团成都勘测设计研究院.锦屏一级水电站左岸基础处理工程岩体质量检测阶段成果报告[R].2008.
    [125]中国水电顾问集团成都勘测设计研究院.四川省雅砻江锦屏一级水电站大坝建基岩体质量评价及地质缺陷处理设计报告[R].2009.
    [126]李攀峰.基于钻孔电视的岩体结构信息解译[J].四川水利,2008.
    [127]王川婴,钟声,孙卫春.基于数字钻孔图像的结构面连通性研究[J].岩石力学与工程学报,2009,28(12):2405-2409.
    [128] PUSCH R. Practical visualization of rock strcture[J].Engineering Geology, 1998, 49(2): 231-236.
    [129] LOVELLM, WILLIAMSONG, HARVEY PK.Borehole imaging:applications and histories [M]. London:Gelolgical Society, 1999:1-43.
    [130] WU F Q,LIU J Y,LIU T,et al.A method for assessment of excavation damaged zone(EDZ) fo a rock mass and its application to a dam foundation case[J]. Engineering Geology, 2009, 104(2):254-262.
    [131]邓希贵.钻孔彩色电视在水电工程中的应用[J].东北水利水电,2004(1):45-50.
    [132]中国水利水电基础工程局.地基与基础工程[M].2004.
    [133]刘志刚,赵勇.隧道隧洞施工地质技术[M].中国铁道出版社,2001.
    [134]关宝树.隧道工程施工要点集[M].人民交通出版社,2003.
    [135]王胜,祝华平,黄润秋,等.锦屏一级水电站煌斑岩脉化学复合灌浆试验研究[J].探矿工程(岩土钻掘工程),2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700