用户名: 密码: 验证码:
强地震动场估计中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大跨桥梁、长距离管线、大坝等长大空间建、构筑物的地震反应分析中,各输入点地震动之间的变化会产生重要影响,采用非一致的地震动输入,得到的结构内力比一致输入的有明显差别。需要考虑地震动的空间变化,采用多点激励,表达地震波到达各墩底的时间不同、各点所受到的激励之间并不完全相干、不同地点地震动振幅和频率成分的差别。统计结果表明,在几百米间距的尺度上,地表地震动的相关性与距离的大小和地震动的频率范围密切相关。在低于某一频率的范围内,相邻点地震动是完全相关的,可用确定性的波动理论来解释;在高于此频率的范围,相邻点的地震动是不完全相关的,显示出较高的随机性。从本质上讲,这个空间尺度上地震动相互间的相关性是由各点的地震动来源于同一个震源和十分相近的传播途径决定的。近场的地震动受震源的影响尤为显著,震源的埋深、尺寸、方位、运动类型和破裂过程,都强烈地影响近场地震动的特点和空间的分布。
     本文在我国近场地震动场估计最新进展的基础上继续推进,在四个环节上进一步改进,为发展一套大跨工程结构抗震分析的多点地震动输入方法,提供技术支撑。
     首先,指出了尽可能与地震活断层探查成果、区域地震学和地球物理学成果密切结合,确定震源模型中全局、局部参数的重要性。强调发震断层位置、产状和埋藏深度务必要由探查的结果确定;破裂长度、宽度和面积的确定,要充分重视区域观测数据的作用,即便不能直接观测到破裂面的参数,也应参考其他数据间接推测;凹凸体位置和尺寸的判断可以参考断裂分段资料。通过一工程实例,具体阐述了用截断正态分布将两类震源参数估计方法结合起来,同时表达不确定性的思路和技术方法。提出了利用试算点地震动反应谱与相应平均反应谱的残差,选择表达“平均”特征的震源模型的方法,以避免对地震动场空间特征表达的干扰。
     接着,对点源引起的高频地震动的随机合成方法进行了研究,并从震源幅值谱和相位谱两方面进行了改进:
     对震源幅值谱模型的改进体现在两方面,其一是建立了Masuda震源谱模型中频率项指数与破裂面积的关系,同时保持两个频率项指数之积为2.0,比较好地表达了拐角频率随破裂面扩展而逐步降低的趋势,克服了合成地震动对子源尺寸的依赖性;其二,为体现凹凸体是高频地震波的主要散射源,用子源地震矩与平均地震矩之比,进一步调整基于整个地震矩推算的拐角频率,同时将标度因子与错动量的不均匀分布联系起来。既保证了合成地震动幅值及远场辐射能量不受子源尺寸的影响,又对地震动估计的精度有所改善。最后借助北岭地震的实测数据,对两种改进效果进行了验证。
     对相位谱的改进体现在,强调一个点源引起地震动的相位谱应该与地壳速度结构、介质参数,尤其是场地与源点的几何关系密切相关,努力在随机合成中减少随机性。提出了将无限均匀介质中剪切位错源引起的位移所对应的加速度傅式谱的相位谱,与所估计的幅值谱结合,形成复谱,再通过傅立叶逆变换生成加速度时程的方法。算例检验的结果表明,得到的加速度时程的反应谱,能够表征基于大量随机相位谱合成的地震动的平均水平,亦借助北岭地震的实测数据,验证了改进方案的可靠性和有效性。本文改进,消除了随机相位谱对合成地震动场空间特征的干扰。
     随后,本文列出了地震学普遍坐标系下无限均匀介质中剪切位错源引起的位移解的详细计算过程,推导了普遍坐标系下点源方位、滑动矢量、法向量等计算公式。通过对比分析,研究了数值积分的简化及子源上升时间的计算问题,指出:当子源尺寸小于1km时,可考虑用子源面积直接乘上点位错源引起的位移解,简化数值积分;子源上升时间可根据震级—上升时间统计关系式确定,避免根据子源错动量估计。
     最后,本文研究了高、低频地震动在时域叠加中滤波和数值积分、微分的步骤,提出了一些参考原则:高频地震动位移和速度,可通过对高频加速度时程积分得到,不必通过修改地震动类型因子重复随机合成计算;依低频位移时程推算低频速度和加速度,低通滤波须在数值微分后进行,以防止出现振荡;最终的位移和速度时程可以通过直接叠加滤波后的高、低频位移和速度时程得到,也可以由叠加后的加速度时程积分得到。
     近场地震动相当复杂,强地震动场的估计需要持续不断地深入,本文的改进可以视为一步推进,在若干环节上有改善,但并不是彻底解决。结尾处,本文亦列出了若干有待进一步研究的问题。
The variation of ground motion at support point is very important for the seismic analysis of structures with large dimension such as long-span bridge, long-distance pipeline, large dam, and so on. The internal force of the structure with non-uniform seismic input may be much different from that with uniform seismic input. The time for each support point when seismic wave arrives is different. The excitation at each support point is incompletely coherent. The amplitude and frequency content of ground motion at each support point is also different. Multi-support excitation considering the spatial variation of ground motion is needed to describe these above differences. According to the statistical results, the correlation of ground motion within a distance of several hundreds is closely related to the distance and the frequency content of ground motion. In the frequency range below a certain frequency, ground motions at adjacent points are completely coherent and can be represented by deterministic wave theory; for higher frequencies, ground motions at adjacent points are incompletely coherent and highly random. The essential reason of the correlation in this spatial scale is because ground motions at each point are from the same source and very close propagation path. Ground motion in the near field is significantly affected by the source. The depth, size, orientation, mechanism and rupture process of the source affect the characteristics and spatial distribution of near-fault ground motion field.
     Based on the latest progress of the estimation of near-field strong ground motion, this dissertation addresses four links of the method in order to provide better technical support of the multi-support excitation to the seismic analysis of long-span structures.
     The importance to determine the global and local parameters of the source model considering the results from active fault exploration, local seismological and geophysical research was pointed out. Three issues were emphasized: the location, attitude and depth of the causative fault must be determined according to the results from active fault exploration; the determination of rupture length, width, and area should consider the local observation data sufficiently, either the rupture plane parameters or some other parameters; the fault segmentation could provide a reference for the location and size of asperity. The procedure that combines two kinds of estimation by truncated normal distribution and represents uncertainties was demonstrated. In order to avoid distortion in the spatial pattern of the estimated ground motion field, choosing mean source model by evaluating the response spectral residuals at trial points was proposed.
     Two issues in stochastical approach for synthesizing the high-frequency ground motion from point source were studied. Three improvements on the two issues were made, two for source spectral model and one for phase spectrum.
     The first one of the two improvements on source spectral model was connecting the rupture area to the frequency exponents in Masuda source spectral model while keeping the product of the two frequency exponents as 2.0. This improvement describes the decrease of the corner frequency with rupture development and maintains the estimated ground motion independent of the fault-discretization scheme. In the second improvement, the corner frequency from the total seismic moment was adjusted by the ratio of the sub-source moment and the average moment to reflect that asperity was the major scattering source of high-frequency wave. The scaling factor was also adjusted to keep the estimated ground motion and far-field received energy independent of the fault-discretization scheme. With the second improvement, the precision of stochastical approach was enhanced significantly. The observed data of the Northridge earthquake was used to test the effects of the two improvements.
     The phase spectrum of ground motion from a point source should be related to crustal parameters, propagation medium parameters, and the geometrical relation between the source and the observation point. The uncertainties in the estimated ground motion from adopting random phase spectrum should be reduced. A new idea to improve phase spectrum was proposed. In the proposal, random phase spectrum was replaced by the phase spectrum of the acceleration Fourier spectrum from the displacement caused by shear dislocation source in infinite homogeneous space, the complex spectrum was formed by combining the new phase spectrum and the estimated amplitude spectrum, and the acceleration time history was obtained by the inverse Fourier transform of the complex spectrum. The new approach was tested with different fault mechanisms and rupture starting points. The test results showed that the response spectrum of the synthesized acceleration time history using the above proposal can represent the mean level of ground motions with different random phase spectra. The observed data of the Northridge earthquake was also used to test the effect of this improvement. This improvement eliminates the distortion of the random phase spectrum on the spatial pattern of estimated ground motion field.
     The detailed computation of the displacement caused by shear dislocation source in infinite homogeneous space was introduced. Equations for variables such as point source orientation, dislocation vector, and normal vector were deduced in seismological universal coordinate system. Two issues, the simplification of numerical integration and the computation of sub-source rise time, were discussed. The results show that: when the sub-source size is smaller than 1km, the numerical integration could be simplified by multiplying the sub-source area to the displacement from point dislocation source; the sub-source rise time should be determined by the relation between magnitude and rise time rather than by sub-source dislocation.
     The consequences of filtration, numerical differentiation, and numerical integration in the superposition of ground motions at low and high frequencies were studied. Some reference principles were proposed: the displacement and velocity in high frequencies can be obtained by the integration of acceleration instead of by changing the ground motion indicator; When computing the velocity and acceleration from low-frequency displacement, low-pass filtration must be performed after numerical differentiation to avoid the oscillation; The final displacement and velocity could be obtained either by the integration of the superposed acceleration or by the direct superposition of the filtered displacement and velocity.
     Ground motion in the near field is quite complicated. This dissertation only improved some links of the estimation of strong ground motion field but didn’t solve all problems. Issues that need to be researched further were proposed at the end of the dissertation.
引文
1陶夏新,李小军.工程地震基本科学问题-学科发展战略研究报告(2006年~2010年).国家自然科学基金委员会工程与材料科学部.北京:科学出版社,建筑、环境与土木工程II(土木工程卷). 2006: 367~381
    2 A. Beresnev, G. M. Atkinson. Modeling Finite-Fault Radiation from theωn Spectrum. Bulletin of the Seismological Society of America. 1997, 87(1):67~84
    3 P. Somerville. Seismic Hazard Evaluation. Proceedings of 12th World Conference on Earthquake Engineering. Auckland. 2000: 2833
    4 K. Irikura. Prediction of Strong Motions from Future Earthquakes Caused By Active Faults-Case of the Osaka Basin. Proceedings of 12th World Conference on Earthquake Engineering. Auckland. 2000
    5 C. H. Loh. Analysis of the Spatial Variation of Seismic Waves and Ground Movements from Smart-1 Array Data. Earthquake Engineering and Structural dynamics. 1985, 13(5): 561~581
    6 H. Hao, C. S. Oliveira, J. Penzien. Multiples-Station Ground Motion Processing and Simulation Based On Smart-1 Array Data. Nuclear Engineering and Design. 1989, 111(3): 293~310
    7 H. Kawakami and S. Sharma. Statistical Study of Spatial Variation of Response Spectrum Using Free Field Records of Dense Strong Motion Arrays. Earthquake Engineering and Structural dynamics. 1999, 28(11):1273~1294
    8中华人民共和国交通行业标准《公路桥梁抗震设计细则》(JTG/TB02-01-2008).中华人民共和国交通部. 2008
    9 G. W. Housner. Interaction of Building and Ground during an Earthquake. Bulletin of the Seismological Society of America. 1957, 47(3): 179~186
    10 K. Kanai. Some New Problems of Seismic Vibrations of a Structure. Auckland and Wellington, New Zealand. 1965: 11-260-75. A
    11 R. D. Mindlin, L. E. Goodman. Beam Vibrations with Time-Dependent Boundary Conditions. Journal of Applied Mechanics. 1950, 17: 377~380
    12 M. Dibaj, J. Penzien. Response of Earth Dams to Traveling Seismic Waves. Journal of Soil Mechanics and Foundations Division, ASCE. 1969, 95: 541~560
    13松野操平.各橋脚点に到達する地震波形の位相差が橋梁の動的応答に与える影響.土木学会論文集. 1971, 188: 1~16
    14 E. H. Vanmarcke. Probabilistic Modeling of Soil Profiles. Journal of GeotechnicalDivision, ASCE. 1977, 103: 1227~1246
    15 R. S. Harichandran, E. H. Vanmarcke. Stochastic Variation of Earthquake Ground Motion in Space and Time. Journal of Engineering Mechanics Division, ASCE. 1986, 112: 154~174
    16 J. E. Luco, H. L. Wong. Response of a Rigid Foundation to a Spatially Random Ground Motion. Journal of Earthquake Engineering and Structural Dynamics. 1986, 14(6): 891~908
    17 C. H. Loh, Y. L. Yeh. Spatial Variation and Stochastic Modeling of Seismic Differential Ground Movement. Earthquake Engineering and Structural Dynamics. 1988, 16(4): 583~596
    18 N. A. Abrahamson, J. F. Schneider, J. C. Stepp. Empirical Spatial Coherency Functions for Application to Soil Structure Interaction Analyses. Earthquake Spectra. 1991, 7(1): 1~27
    19 H. Nakamura, F. Yamazaki. Spatial Variation of Earthquake Ground Motion Based On Dense Array Records. Transaction of the 13th International Conference on Structure Mechanics in Reactor Technology. 1995, 3:19~24
    20 A. Der Kiureghian. A Coherency Model for Spatially Varying Ground Motions. Earthquake Engineering and Structural Dynamics. 1996, 25(1): 99~111
    21 S. Santa-Cruz, E. Heredia-Zavoni, R. S. Harichandran. Low-Frequency Behavior of Coherency for Strong Ground Motions in Mexico City and Japan. Proceeding of the
    12th World Conference on Earthquake Engineering. 2000: pp0076
    22 A. A. Dumanogluid, K. Soyluk. A Stochastic Analysis of Long Span Structures Subjected to Spatially Varying Ground Motions Including the Site-Response Effect. Engineering Structures. 2003, 25(10): 1301~1310
    23 S. H. Kim, M. Q. Feng. Fragility Analysis of Bridges under Ground Motion with Spatial Variation. International Journal of Non-Linear Mechanics. 2003, 38(5): 705~721
    24 K. Soyluk. Comparison of Random Vibration Methods for Multi-Support Seismic Excitation Analysis of Long-Span Bridges. Engineering Structures. 2004, 26(11): 1573~1583
    25 A. Lupoi, P. Franchin, P. E. Pinto, G. Monti. Seismic Design of Bridges Accounting For Spatial Variability of Ground Motion. Earthquake Engineering and Structural Dynamics. 2005, 34(4~5): 327~348
    26 A. Zerva, O. Zhang. Correlation Patterns in Characteristics of Spatially Variable Seismic Ground Motions. Earthquake Engineering and Structural Dynamics. 1997, 26(1): 19~39
    27金星,廖振鹏.地震动随机场的物理模拟.地震工程与工程振动. 1994, 14(3):1~19
    28 H. Hao, C. S. Oliveira, J. Penzien. Multiples-Station Ground Motion Processing and Simulation Based On Smart-1 Array Data. Nuclear Engineering and Design. 1989, 111(3): 293~310
    29 T. S. Khosrow, F. Yamazaki. Near-Fault Spatial Variation in Strong Ground Motion Due To Rupture Directivity and Hanging Wall Effects from the Chi-Chi, Taiwan Earthquake. Earthquake Engineering and Structural Dynamics. 2003, 32(14): 2197~2219
    30 X. X. Tao, J. G. Anderson. Near Field Strong Ground Motion Simulation. Proceedings of the International Conference on Advances and New Challenges in Earthquake Engineering Research. Harbin. 2002: 79~86
    31 Y. Kakehi, K. Irikura. Estimation of High-Frequency Wave Radiation Areas on the Fault Plane by the Envelope Inversion of Acceleration Seismograms. Geophysical Journal International. 1996, 125(3): 892~900
    32 N. Morikawa, T. Kanno, A. Narita, et al. Strong Ground Motion Variation of Events in Some Specific Areas extracted from Observed Records. The Centennial Meeting of the Seismological Society of America. San Francisco, USA. 2006
    33 S. Hartzell, J. N. Brune. The Horse Canyon Earthquake of August 2, 1975-Two-Stage Stress-Release Process in A Strike-Slip Earthquake. Bulletin of the Seismological Society of America. 1979, 69(4): 1161~1173
    34 A. S. Papageorgiou, K. Aki. A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. I. Description of the Model. Bulletin of the Seismological Society of America. 1983, 73(3): 693~722
    35 R. Sato, T. Hirasawa. Body Wave Spectra from Propagation Shear Crack. Journal of Physics of the Earth. 1973, 21: 415~431
    36 W. B. Joyner, D. M. Boore. On simulating large earthquakes by Green’s-function addition of smaller earthquakes. Earthquake Source Mechanics, American Geophysical Union Monograph 37. 1986: 269~274.
    37 Y. H. Zeng, J. G. Anderson, G. Yu. A Composite Source Model for Computing Realistic Synthetic Strong Ground Motions. Geophysical Research Letters. 1994, 21(8): 724~728
    38 F. Gallovic. High Frequency Strong Motion Synthesis for k-2 Rupture Models. Master Thesis, Department of Geophysics, Charles University, Prague. 2002
    39 W. J. Silva, R. Darragh, C. Stark, et al. A Methodology to Estimate Design Response Spectra in the Near-Source Region of Large Earthquakes Using the Band-Limited-White-Noise Ground Motion Model. Proceeding of the 4th U.S. NationalConference on Earthquake Engineering. Palm Springs, California. 1990, 1: 487~494
    40 W. J. Silva, C. Stark. Source, Path, and Site Ground Motion Model for the 1989 M 6.9 Loma Prieta Earthquake. Report to California Division of Mines and Geology. 1992
    41 J. F. Schneider, W. J. Silva, C. Stark. Ground Motion Model for the 1989 M 6.9 Loma Prieta Earthquake Including Effects of Source, Path, and Site. Earthquake Spectra. 1993, 9(2): 251~287
    42 W. J. Silva, N. Abrahamson, G. Toro, et al. Description and Validation of the Stochastic Ground Motion Model. Submitted to Brookhaven National Laboratory, Associated Universities Inc. Upton, New York. 1997
    43 G. Atkinson, W. Silva. Stochastic Modeling of California Ground Motions. Bulletin of the Seismological Society of America. 2000, 90(2): 255~274
    44 D. M. Boore, G. M. Atkinson. Notes on the Prediction of Ground Motion and Response Spectra at Hard-Rock Sites in Eastern North America. Proceedings of Workshop on Strong Ground Motion Predictions in Eastern North America. Electric Power Research Institute. 1987, NP-5875(16): 1~16
    45 H. Y. Wang, X. X. Tao. Relationships between Moment Magnitude and Fault Parameters: Theoretical and Semi-Empirical Relations. Earthquake Engineering and Engineering Vibration. 2003, 2(2): 201~211
    46 H. Y. Wang, X. X. Tao, J. Li. Global Source Parameters of Finite Fault Model for Strong Ground Motion Predictions. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver. 2004: pp2743
    47 X. X. Tao, H. Y. Wang. A Random Source Model for Near Filed Strong Ground Motion Prediction. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver. 2004: pp1945
    48王海云,陶夏新.近场强地震动预测中浅源地震的Asperity模型特征.哈尔滨工业大学学报. 2005, 37(11): 1533~1539
    49 J. D. Achenbach. Wave Propagation in Elastic Solids. North-Holland Series in Applied Mathematics and Mechanics. 1973
    50安乙敬一, P. G.理查兹.定量地震学:理论和方法.地震出版社.北京. 1986
    51 A. Ben-Menahem, S. J. Singh. Multipolar Elastic Fields in a Layered Half Space. Bulletin of the Seismological Society of America. 1968, 58(5): 1519~1572
    52陈运泰.多层弹性半空间中的地震波.地球物理学报. 1974, 17(1): 20~436
    53 I. Kawasaki, Y. Suzuki, R. Sato. Seismic Wave Due to a Shear Fault in a Semi-Infinite Medium. Part 1: Point Source. Journal of Physics Earthquake. 1972, 21(3): 251~284
    54 M. A. Bouchon. Simple method to calculate Green’s functions for elastic layeredmedia. Bulletin of the Seismological Society of America. 1981, 71(4): 959~971
    55 S. N. Hartzell. Earthquake Aftershocks as Green's Functions. Geophysical Research Letters. 1978, 5(1): 1~4
    56 H. Kanamori. A Semi-Empirical Approach to Prediction of Long-Period Ground Motions from Great Earthquakes. Bulletin of the Seismological Society of America. 1979, 69(6): 1645~1670
    57 D. M. Hadley, D. V. Helmberger. Simulation of strong ground motions. Bulletin of the Seismological Society of America. 1980, 70(2): 617~630
    58 K. Irikura, I. Muramatu. Synthesis of Strong Ground Motions from Large Earthquakes Using Observed Seismograms of Small Events. Proceedings of the 3rd International Earthquake Microzonation Conference. Seattle. 1982: 447~458
    59 S. H. Hartzell. Simulation of Ground Accelerations for May 1980 Mammoth Lakes, California Earthquakes. Bulletin of Seismological Society of America. 1982, 72(6A): 2381~2387
    60廖振鹏,魏颖.设计地震加速度图的合成.地震工程与工程振动. 1988, 8(1): 12~30
    61罗奇峰,胡聿贤.合成近场地震图的经验格林函数法评介.世界地震工程. 1988, 4: 1~16
    62 Z. Alterman, F. C. Karal. Propagation of Seismic Wave in Layered Media by Finite Difference Methods. Bulletin of the Seismological Society of America. 1968, 58(1): 367~398
    63 D. M. Boore. Finite-Difference Methods for Seismic Wave Propagation in Heterogeneous Materials. Methods in Computational Physics, v. II, Academic Press. 1972: Chapter 1
    64 R. Madariaga. Dynamics of an Expanding Circular Fault. Bulletin of the Seismological Society of America. 1976, 66(3): 639~666
    65 A. R. Levander. Fourth-Order Finite-Difference P-SV Seismograms. Geophysics. 1988, 53(11): 1425~1436
    66 P. C. Liu, R. J. Archuleta. The effect of a low-velocity surface layer on simulated ground motion. Seismological Research Letters. 2002, 73: 267
    67 L. Zhu, L. A. Rivera. A Note on the Dynamic and Static Displacements from A Point Source in Multi-Layered Media. Geophysical Journal International. 2002, 148(3): 619~627
    68 K. Irikura. Prediction of Strong Motions from Future Earthquakes Caused By Active Faults-Case of the Osaka Basin. Proceedings of 12th World Conference on Earthquake Engineering. Auckland. 2000: pp1243
    69 O. C. Zienkiewicz. The Finite Element Method (Third edition). McGraw-Hill BookCompany (UK) Limited. 1977: 536~539
    70佐藤泰夫.弹性波动论.岩波书店. 1977
    71 A. Ohtsuki, K. Harumi. Effect of Topography and Subsurface Inhomogencities on Seismic SV Waves. Earthquake Engineering and Structure Dynamics. 1983, 11(4): 441~462
    72廖振鹏.近场波动问题的有限元解法.地震工程与工程振动. 1984, 4(2): 1~14
    73廖振鹏,刘晶波.波动有限元模拟-基本问题和基本研究方法.地震工程与工程振动. 1989, 9(4): 1~14
    74 R. J. Archuleta, G. A. Frazier. Three Dimensional Numerical Simulations of Dynamic Faulting in a Half-Space. Bulletin of the Seismological Society of America. 1978, 68(3): 541~572
    75张冬丽.基于数值格林函数方法的近场长周期强地震动模拟.中国地震局工程力学研究所博士论文. 2005
    76 T. C. Hanks. b-Value Andω-r Seismic Source Models: Implications for Tectonic Stress Variations along Active Crustal Fault Zones and the Estimation of High-Frequency Strong Ground Motion. Journal of Geophysical Research. 1979, 86(B5): 2235~2242
    77 T. C. Hanks, R. K. Mcguire. The Character of High-Frequency Strong Ground Motion. Bulletin of the Seismological Society of America. 1981, 71(6): 2071~2095
    78 D. M. Boore. Stochastic Simulation of High-Frequency Ground Motions Based On Seismological Models of the Radiated Spectra. Bulletin of the Seismological Society of America. 1983, 73(6A): 1865~1894
    79 I. A. Beresnev, G. M. Atkinson. Stochastic Finite-Fault Modeling of Ground Motions from the 1994 Northridge, California, Earthquake. I. Validation on Rock Sites. Bulletin of the Seismological Society of America. 1998, 88(6): 1392~1401
    80 I. A. Beresnev, G. M. Atkinson. FINSIM-A FORTRAN Program for simulating Stochastic Acceleration Time Histories from Finite Faults. Seismological Research Letters. 1998, 69(1): 27~32
    81 G. M. Atkinson, W. J. Silva. Stochastic Modeling of California Ground Motions. Bulletin of the Seismological Society of America. 2000, 90(2): 255~274
    82 I. A. Beresnev, G. M. Atkinson. Generic Finite-Fault Model for Ground-Motion Prediction in Eastern North America. Bulletin of the Seismological Society of America. 1999, 89(3): 608~625.
    83 V. Y. Sokolov. Empirical Models for Estimation Fourier-Amplitude Spectra of Ground Acceleration in the Northern Caucasus. Bulletin of the Seismological Society of America. 1997, 87(6): 1401~1412
    84 K. Kamae, K. Irikura, A. Pitarka. A Technique for Simulating Strong Ground Motion Using Hybrid Green's Function. Bulletin of the Seismological Society of America. 1998, 88(2): 357~367
    85 A. Pitarka, P. Somerville, Y. Fukushima, et al. Simulation of Near-Fault Strong-Ground Motion Using Hybrid Green's Functions. Bulletin of the Seismological Society of America. 2000, 90(3): 566~586
    86 K. Irikura. Prediction of strong acceleration motion using empirical Green's function. Proceedings of the 7th Japan Earthquake Engineering Symposium. Tokyo. 1986: 151~156,
    87 S. H. Hartzell, S. Harmsen, A. Frankel, et al. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bulletin of the Seismological Society of America. 1999, 89(6): 1484~1504
    88 S. H. Hartzell, A. Leeds, A. Frankel, et al. Simulation of Broadband Ground Motion Including Nonlinear Soil Effects for a Magnitude 6.5 Earthquake on the Seattle Fault, Seattle, Washington. Bulletin of the Seismological Society of America. 2002, 92(2): 831~853
    89 M. A. Bouchon. Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions. Journal of Geophysical Research. 1979, 84(B7): 3609~3614
    90 B. Mena, E. Durukal, M. Erdik. Effectiveness of Hybrid Green’s Function Method in the Simulation of Near-Field Strong Motion: An Application to the 2004 Parkfield Earthquake. Bulletin of the Seismological Society of America. 2006, 96(4B): S183~S205
    91 P. C. Liu, R. J. Archuleta, S. H. Hartzell. Prediction of Broadband Ground-Motion Time Histories: Hybrid Low/High-Frequency Method with Correlated Random Source Parameters. Bulletin of the Seismological Society of America. 2006, 96(6): 2118~2130
    92 D. Motazedian, G. M. Atkinson. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bulletin of the Seismological Society of America. 2005, 95(3): 995~1010
    93中国地震局地质研究所.××市目标区主要断裂地震危险性评价.内部报告. 2008
    94王海云.近场强地震动预测的有限断层震源模型.中国地震局工程力学研究所博士论文. 2004
    95 P. G. Somerville, K. Irikura, R. W. Graves, et al. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological ResearchLetters. 1999, 70(1): 59~80
    96孙晓丹.震源对大跨度空间结构地震动输入的影响.哈尔滨工业大学硕士论文. 2005
    97 B. Mohammadioum, L. Serva. Stress Drop, Slip Type, Earthquake Magnitude and Seismic Hazard. Bulletin of the Seismological Society of America. 2001, 91(4): 694~707
    98张小涛,韩丽萍,张双凤等.邯郸-邢台地区尾波Qc值分布特征研究.大地测量与地球动力学. 2007, 27(4): 119~123
    99 J. N. Brune. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. Journal of Geophysical Research. 1970, 75(26): 4997~5009
    100 R. K. McGuire, T. C. Hanks. RMS Accelerations and Spectral Amplitude of Strong Ground Motion during the San Fernando, California, Earthquake. Bulletin of the Seismological Society of America. 1980, 70(5): 1907~1919
    101 T. C. Hanks, R. K. McGuire. Stochastic Point Source Modeling of Ground Motion in the Cascadia Region. Seismological Research Letter. 1997, 68(1): 74~85
    102 W. B. Joyner, D. M. Boore. Measurement, Characterization, and Prediction of Strong Ground Motion. Proceeding of Earthquake Engineering and Soil Dynamics, Journal of the Geotechnical Division, ASCE. Park City, Utah. 1988: 1~60
    103 W. B. Joyner. A Scaling Law for the Spectra of Large Earthquakes. Bulletin of the Seismological Society of America. 1984, 74(4): 1167~1188
    104 J. Boatwright, G. L. Choy. Acceleration Source Spectra Anticipated For Large Earthquakes In Northeastern North America. Bulletin of the Seismological Society of America. 1992, 82(2): 660~682
    105 G. M. Atkinson. Earthquake Source Spectra in Eastern North America. Bulletin of the Seismological Society of America. 1993, 83(6): 1778~1798
    106 G. M. Atkinson, W. J. Silva. An Empirical Study of Earthquake Source Spectra for California Earthquakes. Bulletin of the Seismological Society of America. 1997, 87(1): 97~113
    107 G. M. Atkinson. The High-Frequency Shape of the Source Spectrum for Earthquakes in Eastern and Western Canada. Bulletin of the Seismological Society of America. 1996, 86(1A): 106~112
    108 J. C. Savage. Relation of Corner Frequency to Fault Dimensions. Journal of Geophysical Research. 1972, 77(20): 3788~3795
    109 T. Masuda. Scaling Relations for Source Parameters of Micro-Earthquakes in the Northeastern Part of Japan. Doctorial Dissertation of Tohoku University. 1982
    110王国新.强地震动衰减研究.中国地震局工程力学研究所博士论文. 2001
    111陶夏新,王国新.近场强地震动模拟中对破裂的方向性效应和上盘效应的表达.地震学报. 2003, 25(2): 191~198
    112郑天愉,姚振兴.用近场记录研究唐山地震的震源过程.地球物理学报. 1993, 36(2): 174~184
    113 H. Miyake, T. Iwata, K. Irikura. Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. Bulletin of the Seismological Society of America. 2003, 93(6): 2531~2545
    114 C. Ji, G. Hayes. Finite Fault Model—Preliminary Result of the May 12, 2008 Mw7.9 Eastern Sichuan, China Earthquake. http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.php. 2008
    115 K. Hikima. The 2008 Sichuan earthquake (Preliminary Finite Fault Model). http://www.eri.u-tokyo.ac.jp/topics/china2008/source_eng.html. 2008
    116 N. Nishimura, Y. Yagi. Rupture Process for May 12, 2008 Sichuan Earthquake (Version 2). http://www.geol.tsukuba.ac.jp/~nisimura/20080512/. 2008
    117 A. Sladen. Preliminary Result, 05/12/2008 (Mw 7.9), East Sichuan. http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html. 2008
    118王卫民,赵连锋,李娟等.四川汶川8.0级地震震源过程.地球物理学报. 2008, 51(5): 1403~1410
    119张勇,冯万鹏,许力生等. 2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学. 2008, 38(10): 1186~1194
    120 D. M. Boore, W. B. Joyner. Site Amplifications for Generic Rock Sites. Bulletin of the Seismological Society of America. 1997, 87(2): 327~341
    121 D. J. Wald, T. H. Heaton, K. W. Hudnut. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data. Bulletin of the Seismological Society of America. 1996, 86(1B): S49~S70
    122 http://peer.berkeley.edu/products/nga_flatfiles_dev.html
    123 D. M. Boore. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics. 2003, 160: 635~676
    124 N. C. Nigam. Phase Properties of Earthquake Ground Acceleration Records. Proceedings of the 8th World Conference on Earthquake Engineering. Prentice Hall, New York. 1984, 2: 549~556
    125 T. Kubo. The Importance of Phase Properties in Generation of Synthetic Earthquake Strong Motions. Transactions of the 9th International Conference on Structure Mechamics in Reactor Technique. 1987, K(1): 49~54.
    126 T. Yokoyama, N. Theofanopoulos, M. Watabe. Distribution of Phase Differences inRelation to the Earthquake Magnitude, Distance to the Fault and Local Soil Conditions. Proceedings of 9th World Conference on Earthquake Engineering. Tokyo-kyoto, Japan. 1988: 2,819~818
    127朱昱,冯启民.地震加速度相位差谱分布的数字特征.地震工程与工程振动. 1993, 13(2): 30~37
    128赵凤新,胡聿贤,李小军.地震动相位差谱的统计规律.自然灾害学报. 1995, 4(Suppl.): 49~56
    129杨庆山,姜海鹏,陈英俊.基于相位差谱的时-频非平稳人造地震动的生成.地震工程与工程振动. 2001, 21(3): 10~16
    130 H. Thráinsson, A. S. Kiremidjian. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform. Earthquake Engineering and Structural Dynamics. 2002, 31(12): 2023~2048
    131 L. Lu. A Procedure to Modify the Frequency and Envelope Characteristics of Empirical Green's Function. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland. 2000: pp 0730
    132 S. Sawada, H. Morikawa, K. Toki, et al. Identification of Path and Local Site Effects on Phase Spectrum of Seismic Ground Motion. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland. 2000: pp 0683
    133 J. F. Chai, C. H. Loh. Modeling of Phase Spectrum to Simulate Design ground Motions. Journal of the Chinese Institute of Engineers. 2002, 25(4): 447~459
    134 T. Sato, Y. Murono, A. Nishimura. Phase Spectrum Modeling to Simulate Design Earthquake Motion. Journal of Natural Disaster Science. 2002, 24(2): 91~100
    135 D. M. Boore. Phase Derivatives and Simulation of Strong Ground Motions. Bulletin of the Seismological Society of America. 2003, 93(3): 1132~1143
    136 T. Yamane, S. Nagahashi. A Generation Method of Simulated Earthquake Ground Motion Considering Phase Difference Characteristics. Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China. 2008
    137陶夏新,孙晓丹等.九龙江断裂上6级强烈地震引起的漳州盆地及周边地区地震动预测工作报告.哈尔滨工业大学.内部报告. 2007
    138陶夏新,孙晓丹等.兰州市活断层地震危害性评价.哈尔滨工业大学.内部报告. 2007
    139路建波.模拟的近断裂地震动场的空间相关性.中国地震局工程力学研究所硕士论文. 2009
    140 H. Narahashi, S. Omote, J. Maeda. Spatial Correlations of the Ground Motion Recorded by the Strong Motion Earthquakes Instrument Array. Proceedings of the 8th World Conference on Earthquake Engineering. Prentice Hall, New York. 1984:239~246
    141 J. F. Schneider, J. C. Stepp, N. A. Abrahamson. The Spatial Variation of Earthquake Ground Motion and Effects of Local Site Conditions. Proceedings of the 10th World Conference on Earthquake Engineering. Madrid, Spain. 1992: 967~972.
    142丁海平,刘启方,金星等.基岩地震动的一个相干函数模型—倾滑断层情形.地震学报. 2003, 23(2): 1~5
    143 C. Bassin, G. Laske, G. Masters. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU. 2000, 81: 897
    144 Y. Ohsaki. On The Significance of Phase Content in Earthquake Ground Motions. Earthquake Engineering and Structural Dynamics. 1979, 7: 427~439
    145 J. G. Anderson, P. G. Richards. Comparison of Strong Ground Motion from Several Dislocation Models. Geophysical Journal of the Royal Astronomical Society. 1975, 42(2): 347~373
    146 M. Israel, R. L. Kovach. Near-Field Motions from A Propagating Strike-Slip Fault in An Elastic Half-Space. Bulletin of the Seismological Society of America. 1977, 67(4): 977~994
    147刘启方.基于运动学和动力学震源模型的近断层地震动研究.中国地震局工程力学研究所博士论文. 2005
    148 W. G. Huang, J. H. Wang, B. S. Huang, et al. Estimates of Source Parameters for the 1999 Chi-Chi, Taiwan, Earthquake Based On Brune's Source Model. Bulletin of the Seismological Society of America. 2001, 91(5): 1190~1198
    149 R. Sato. Theoretical Basis on Relationships between Focal Parameters and Earthquake Magnitude. Journal of Physics of the Earth. 1979, 27: 353~372
    150 S. M. Day. Three-Dimensional Finite Difference Simulation of Fault Dynamics: Rectangular Faults with Fixed Rupture Velocity. Bulletin of the Seismological Society of America. 1982, 72(3): 705~727
    151 T. H. Heaton. Evidence For and Implications of Self-Healing Pulses of Slip In Earthquake Rupture. Physics of the Earth and Planetary Interiors. 1990, 64: 1~20
    152 P. G. Somerville. Engineering Application of Strong Ground Motion Simulation. Tectonophysics. 1993, 218: 195~219
    153 J. V. Ross, J. Fillipone, J. R. Elsby, et al. Geometry of a Convergent Zone, Central British Columbia, Canada. Tectonophysics.1985, 119: 285~289
    154 I. A. Beresnev. Short Notes: What We Can and Cannot Learn about Earthquake Sources from the Spectra of Seismic Waves. Bulletin of the Seismological Society of America. 2001, 91(2): 397~400
    155王国权,周锡元. 921台湾集集地震近断层强震记录的基线校正.地震地质. 2004, 26(1): 1~14
    156赵光宙,舒勤.信号分析与处理.机械工业出版社. 2006
    157马强.强震观测数据实时处理方法的研究.中国地震局工程力学研究所硕士论文. 2002
    158大崎顺彦.地震动的谱分析入门.地震出版社. 1980
    159 S. E. Hough, D. S. Dreger. Source Parameters of the 4/23/92 M6.1 Joshua Tree Earthquake and Its Aftershocks: Empirical Green's Function Analysis of GEOS and Terrascope Data. Bulletin of the Seismological Society of America. 1995, 85: 1576~1590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700