用户名: 密码: 验证码:
油页岩热解特性及原位注热开采油气的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际油价的飙升及在全球能源需求不断增长的今天,石油资源短缺已是制约全球经济发展的重大难题,开发石油及替代品是各国能源开发研究的主要课题,开发油页岩矿藏的时机已经到来。油页岩油气作为一种重要的石油补充和替代能源,以其巨大的储量、丰富的综合利用层次,引起了全世界的关注。我国已探明的油田绝大多数进入老井后期挖潜阶段,未来原油产量难以增加,能源的供需矛盾日益突出。因此,立足国内,寻求油页岩的有效开发与经济利用的途径,对于缓解我国石油供需矛盾,具有重大的现实意义。
     本文以油页岩原位注热开采新技术为背景,采用宏观与细观实验研究相结合,理论研究与数值模拟相结合的方法,借助于新的实验手段、实验设备及仪器,对油页岩在高温下的热解特征、渗流特性、容重及孔隙率的变化、裂隙和孔隙的发展演化规律等进行了深入细致的研究。利用过热水蒸汽作为热量传输的载体,研究了油页岩在其加热条件下的产油、产气规律。建立了油页岩原位注热开采的热-流-固耦合数学模型,编制相应计算机程序,进行了数值模拟,为进行大规模油页岩原位注热开采提供了理论依据和工程参考。主要研究内容及结果如下:
     1、油页岩热解失重特征为:从室温到300℃,此阶段的失重主要是由于水分的析出引起,失重约3﹪;300℃~600℃,在这个相对较小的温度区间内,油页岩中的有机质大量热解,生成页岩油和气态产物,失重量很大,失重约占20%;600℃~900℃,此阶段的热失重与方解石、白云石、碳质颗粒的高温崩解相关,失重约3﹪。
     2、采用比重瓶法,测定了不同温度下抚顺西露天矿油页岩的容重、比重、孔隙率。实验结果表明:从常温到200℃,油页岩的容重、比重、孔隙率变化不大;温度超过200℃后,油页岩的容重随温度升高迅速下降,同时比重、孔隙率则随温度升高而大幅增加。
     3、利用太原理工大学的MDS-200型三轴渗透实验台测定了干馏后油页岩试件在三维应力状态下的渗透系数,结果表明:干馏后油页岩的渗透系数随体积应力的增加而衰减,随孔隙压力的升高而增大,且满足公式:
     4、利用太原理工大学和中国工程物理研究院共同研制的μCT225kVFCB型高精度(μm级)CT试验分析系统对边长为7.0mm的正方体油页岩试件内部的热破裂特征进行了无损伤扫描分析。实验表明:当温度低于300℃时,裂隙多发育于原生层理面以及硬质矿物颗粒的周围,破裂面基本都与层理面互相平行,且数量不多,宽度较小。当温度超过300℃,由于受到热分解化学反应的作用,裂隙的数量、长度和宽度有了剧烈的增加,且裂隙面仍具有与层理面平行的特点;同时形成了许多垂直于层理面微裂隙,小裂隙与大裂隙的搭接连通,增大了渗流空间,形成了一个庞大的连通网络结构。从分形理论入手,分析了油页岩的热破裂过程,宏观量化了裂隙的分布状况和复杂程度。研究表明:油页岩内部裂隙的分布具有很强的自相似性规律,符合分形规律。
     5、对不同温度下φ0.82mm×7mm的油页岩试件进行了CT扫描实验,研究高温下油页岩内部μm级孔隙结构的发展、演化规律。研究表明:从常温到300℃,研究区域内孔隙数量、孔隙占有面积、平均孔径、孔隙率都没有发生大的变化;当温度超过300℃,孔隙数量、孔隙占有面积、平均孔径、孔隙率都在同步急剧增长,500℃时达到最大值,稍后有所回落,因此,将300℃确定为油页岩孔隙结构参数变化的分界点。高于300℃,热解反应促使油页岩内部产生了大量新生孔隙,造成孔径在1.5~3.5μm和大于3.5μm孔隙数量的增加,其次,大量小于1.5μm的孔隙在高温下发生了贯通连接,汇聚成一些较大的孔隙结构,促进了1.5~3.5μm和大于3.5μm孔隙数量的增加,同时也造成了小于1.5μm的孔隙本身数量的相对减少。从总体上看,无论在哪一个温度段,孔径小于1.5μm和1.5~3.5μm的孔隙是油页岩中的主要孔隙结构,两者之和要占到总孔隙数量的90%以上。采用多孔介质三维逾渗理论,计算了不同温度下油页岩三维数字岩芯的逾渗概率。结果表明:当温度到达300℃~400℃时,油页岩存在逾渗阈值,且逾渗阈值处于8﹪~12﹪之间。
     6、利用太原理工大学自行研制的热解试验台对产自辽宁和内蒙的油页岩进行了热解实验。实验结果表明:两类油页岩经过热水蒸汽加热后,剩余残渣的含油率均保持在0.30%左右,有机成分所剩无几,达到了非常高的油气采收率。同时,在过热水蒸汽的参与下,可使热解气体中H2和CO的产量明显提高。过热水蒸汽的高效驱油机理主要体现在:对流的传热方式、加热降粘作用、高温蒸汽的沸腾剥蚀效应、热膨胀作用、解堵作用和脱气作用。
     7、在理论分析的基础上,建立了油页岩原位注热开采的热—流—固耦合数学模型,并给出了其数值解法,利用Fortran语言编制的相应计算机程序,对“九点法”布井的一个井组进行了油页岩原位注热开采的数值模拟。模拟结果表明:
     1)在相同的开采时间内,距离注热井越近,温度越高。系统运行1年时,注热井和采油井之间的大部分油页岩地层的温度都小于400℃,到2.5年时,区域内油页岩地层的温度大部分都达到了500℃。因此,1~2.5年间,为页岩油和热解气体的大量产出期,并确定该模型的运作周期为2.5年。
     2)流体孔隙压力以注热井为峰值向四周逐渐降低,并随时间延长,压力波及的范围逐渐扩大到采油井以外的区域。注热井、采油井附近区域的压力梯度很大,流速较快;而中间区域的压力梯度较低,流速稳定。同时,顶、底板岩石的渗透性较油页岩弱,最初孔隙压力上升缓慢,明显落后于中部油页岩地层,出现了滞后现象。到1年左右时,两者压差已很小。
     3)随着地层温度的上升,逐步由压应力演化为拉应力,并随着时间的延长,拉应力作用区域以注热井为中心不断向外扩张。拉应力的提高,使孔隙体积扩大的同时,增加了裂隙的宽度,为高温流体的进一步注入和油气的产出创造了有利条件。
     4)随着热量的不断注入,注热井和采油井之间的地层出现了明显的膨胀变形,且随时间的延长,鼓起量不断增加。到2.5年时,地表注热井处鼓起量为1.29cm;采油井处鼓起量为0.51cm。
Today, with international oil price rises violently and the global energy demand is increasing constantly, petroleum resources shortage already is the great difficult problem of restricting global economic development, develop the petroleum and substitute is the main subject for research of various countries, the opportunity of developing oil shale mineral deposit already come. Oil shale, as a kind of important supplement and substitute petroleum energy, with its enormous reserves and abundant comprehensive use level , have aroused the attention from whole world. The majority verified oil field of our country has already entered the later stage of old well developing, the future output of crude oil of our country is difficult to increase, the imbalance between supply and demand of the energy is conspicuous day by day. So, base on our country, seeking effective and economic utilization route of oil shale, for relieving the imbalance between supply and demand of energy of our country and promoting the development of society have great realistic meanings.
     This text takes oil shale in-situ steam drive technology as the background, combine macroscopic and detailed view experiment, method of the theoretical research combines with numerical simulation, with the aid of new experiment means, experimental facilities and Instrument, further study the weightless characteristic, permeability characteristic, change of density and porosity, development and evolvement law of fissures and pore of oil shale under different temperatures. Use superheated steam as the carrier of heat transmit, studied the oil and gas producing law of oil shale under its heating condition. Set up the coupled mathematical model of heat, fluid flow and solid deformation for oil shale in-situ steam drive, work out the corresponding computer program, carry on the numerical simulation, it offer theoretical foundation and project reference for carrying on extensive oil shale in-situ steam drive. The following is main research contents and research results:
     1. The oil shale pyrolysis weightlessness mainly display in 3 temperature sections. From room temperature to 300℃, weightlessness of this stage mainly caused by moisture appear, weightlessness is about 3%. 300℃~600℃, a large amount of organic matter in the oil shale turn into shale oil and pyrolysis gas in this relatively smaller temperature block, weightlessness is about 20%. 600℃~900℃, weightlessness of this stage mainly caused by the breaking out of calcite, dolomite and carbon particle, weightlessness is about 3%.
     2. Determine the density, proportion and porosity of the Fushun oil shale under different temperature using the specific gravity bottle. The experiment result shows: from normal atmospheric temperature to 200℃, the density, proportion, porosity of the oil shale do not change much, after temperature exceeds 200℃, the density of the oil shale drops rapidly with the rising of temperature, at the same time, proportion and porosity increase by a wide margin with the rising of temperature.
     3. The permeability coefficient of distilled oil shale under three dimension stress state is measured through the 3D permeable experimental machine (MDS-200) devised by Taiyuan University of Technology. Result of study show the permeability coefficient of distilled oil shale attenuates with the increase of volume stress and increases with the rise of pore pressure, and follows the formula:
     4. Utilized theμCT225kVFCB micro-CT experimental system (μm grade), which was newly co-designed by Taiyuan University of Technology, and Applied Electronics Institute, Academy of Engineering Physics of China, carried on the no damaged triaxial micro-observation and analysis on thermal cracking of oil shale of square body of 7.0mm to be long under different temperatures. The experiment shows: Under 300℃, it was observed that certain few micro-fissures in the specimen which mainly evolved from the raw original bedding and the border of hard mineral particle, the fissure surfaces were basically all parallel with each other, and there is little quantity, the width is relatively small. After temperature exceeded 300℃, due to the influence of chemical reaction of the oil shale pyrolysis, the quantity, length and width of the fissures had seen a violent increase, all fissure surfaces were still parallel with each other, At the same time, formed a lot of micro-fissures perpendicular to the bedding direction, caused the connection between small fissures and large fissures, so formed a huge connecting network structure, fundamentally improved the influent ability of the oil shale. Start with fractal theory, analyzed the thermal cracking course of the oil shale, quantized distribution state and complexity of the fissures. Studies have suggested: The thermal fissures have strong self-similarity, according with fractal law.
     5. Carry on CT scan experiment to the oil shale standard ofφ0.82mm×7mm under different temperatures, aim to study the development rule of theμm grade pore structure within the oil shale at high temperature. The study show: From room temperature to 300℃, pore quantity, pore area, average of pore diameter and porosity do not change much in the study area. After temperature exceeded 300℃, the above-mentioned parameters all increase sharply and reach the maximum at 500℃, subsequently fall a little, so, confirm 300℃as the boundary point of the pore structure parameters changes. After 300℃, a large number of new pores emerge within the oil shale because of pyrolysis chemical reaction, cause the increase of quantity of medium-sized pores and large pores, secondly, Because a large number of little pores are joined under the high temperature, promote the increase of quantity of medium-sized pores and large pores, at the same time, cause the little pores quantity to reduce relatively. As a whole, no matter in which temperature section, little pores and medium-sized pores are main pore structure within oil shale, the sum of the two should account for more than 90% of the total pore number. Start from pore medium percolation theory, calculate percolation probability of 3D data oil shale under different temperatures. The result of calculation indicates: As temperature is in 300℃- 400℃, the percolation threshold of oil shale is between 8﹪-12﹪.
     6. Utilized the high temperature and high pressure superheated steam boiler devised by Taiyuan University of Technology carried on pyrolysis experiment to two kinds of oil shales are separately produced in Liaoning and Neimeng. The experimental result shows:The oiliness rate keep about 0.30% of two kinds of oil shale residue after the superheated steam heated,have achieved very high oil and gas recovery ratio. At the same time, the output of H2 and CO is obviously improved in the pyrolysis gas under the participation of superheated steam. The driving oil mechanism of superheated steam mainly embody: The convection heat way, lower viscosity by heating, boiling and denudation effect of high-temperature steam, function of thermal expansion, solve stop up function and take off gas function.
     7. On the foundation of analyzing of the theory, set up the coupled mathematical model of heat, fluid flow and solid deformation for oil shale in-situ steam drive, work out the corresponding program using Fortran computer language and carry on the numerical simulation to nine point wells disposal. The numerical simulation result show:
     1) Within the same exploitation time, temperature is relatively high near the hot injection well. In the system runs for one year, the majority oil shale stratum temperature is low at 400℃between hot injection well and oil adopting well, after running for 2.5 years, temperature has already reached 500℃. So, among 1-2.5 years, the shale oil and gas are produced in a large amount and confirm operation cycle of this model as 2.5 years.
     2) Fluid pressure regard hot injection well as peak value to reduce gradually all around, and as time lengthens, the range that the pressure involves expands to the area beyond the oil adopting well gradually, the pressure gradient is very large and the velocity of flow is very fast near the area of hot injection well and oil adopting well, and the pressure gradient of middle area is relatively low, the velocity of flow is steady. At the same time, because the permeabilities of roof, baseplate rock are weaker than the oil shale, so the fluid pressure slowly rises, obviously lag behind the oil shale stratum. By about one year, the two press difference already very small.
     3) With the rising of the stratum temperature, reach from pressure stress change tensile stress progressively, and the extension with time, the area of tensile stress regard hot injection well as the centre to expand outwards constantly. The improvement of the tensile stress, while making the hole volume expand, have increased the width of the fissure, creating the advantage for the furtherly pouring into of high-temperature fluid.
     4) With the running into constantly of heat, the stratum has presented obvious inflation between hot injection well and oil adopting well, and is up to the extension of time, the heaving amount is increasing constantly. By 2.5 years, The heaving amount in the earth's surface of hot injection well is 1.29cm and the oil adopting well is 0.51cm.
引文
1.侯祥麟.中国页岩油工业[M].北京:石油工业出版社,1984
    2.刘飞.中国油页岩加工业新的发展机遇[J].当代化工,2005,34(3):154-156
    3.梁增英,陈文仲,王春华等.油页岩开发与利用可行性研究[J].工业炉,2008,30(2):10-13
    4.徐顺福.一种值得重视发展利用的能源—油页岩[J].炼油技术与工程,2004,34(3):60-62
    5.肇永辉.我国油页岩的主要性质和利用[J].沈阳化工,2000,29(1):37-39
    6. Shuhua Guo, Zhu Ruan. The composition of Fushun and Maoming shale oils, Fuel,1995, 74(11):1719-1721
    7.秦宏,姜秀民,孙键等.中国油页岩的能源利用[J].节能,1997,12:17-18
    8.郭永刚,许修强,王红岩等.非常规能源油页岩开发利用的研究进展[J].江苏化工,2008,36(2):6-9
    9.刘招君,柳蓉.中国油页岩特征及开发利用前景分析[J].地学前沿,2005,12(3):315-323
    10.张显良.辽宁油页岩资源及潜力分析[J].地质与资源,2005,14(2):143-145
    11.蔡湛,黄策.油母页岩重出江湖[J].中国石油化工,2005,19:36-37
    12.钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势[J].吉林大学学报(地球科学版),2006,36(6):877-887
    13.赵阳升,杨栋,冯增朝等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328
    14.姜秀民,刘德昌,郑楚光等.油页岩燃烧性能的热分析研究[J].中国电机工程学报,2001,21(8):55-59.
    15.赵文智,胡永乐,罗凯.边际油田开发技术现状、挑战与对策[J].石油勘探与开发,2006,33(4):393-398.
    16. Darrell N, Taulbee. Measurement of absorption and cracking of hydrocarbons over processed oil shale particles, Fuel,74(8):1133-1139
    17. A. Sadiki, W. Kaminsky, H. Halim. Fluidised bed pyrolysis of Moroccan oil shales using the hamburg pyrolysis process, Journal of Analytical and Applied Pyrolysis,2003,70:427-435
    18. X.M.Jiang, X.X.Han, Z.G.Cui. New technology for the comprehensive utilization of Chinese oil shale resources, Energy,2007,32:772-777
    19. X.M.Jiang, X.X.Han, Z.G.Cui. Progress and recent utilization trends in combustion of Chinese oil shale, Progress in Energy and Combustion science,2007,33:552-579
    20. Jamal Othman Jaber, S.D.probert. Reaction kinetics of fluidised bed gasification of Jordanian oil shales, Int.J.Therm.Sci,2000,39:295-304
    21.高健.世界各国油页岩干馏技术简介[J].煤炭加工与综合利用,2003,20(2):44-46
    22.何红梅,许德平,张香兰.油页岩的开发与利用[J].洁净煤技术,2002,8(2):44-47
    23.闫澈,姜秀民.中国油页岩的能源利用研究[J].中国能源,2000,9:22-26
    24.张明华,陈宇腾,张美琴等.我国油母页岩综合利用的现状和可能的途径[J].吉林建材,2003,3:15-21
    25. M.Hammad, Y.Zurigat, S.Khzai. Fluidized bed combustion unit for oil shale, Energy Convers. Mgmt,1998,39(3):269-272
    26.钱家麟,王剑秋.世界油页岩发展近况—并记2006年两次国际油页岩会议[J].中外能源,2007,12(1):7-11
    27.高书香,曹克广,陈殿义,等.油页岩的地下转化工艺[J].承德石油高等专科学校学报,2007,9(2):1-4.
    28.高书香,曹克广,孟庆萍.油页岩生产技术研究[J].吉林地质,2007,26(1),45-48.
    29. Elmer E. Method and apparatus for the destructive of kerogen in situ: United States Patent,5058675[P].1991-10-22.
    30. Harold J. Heat sources with conductive material for in situ thermal processing of an oilshale formation: United States Patent,6929067[P].2005-08-16.
    31. Scott Lee W. In situ thermal processing of an oil shale formation to produce acondensate: United States Patent,6923257[P].2005-05-09.
    32.郭永刚,许修强,王红岩,等.壳牌公司页岩油开采技术与进展[J].大庆石油学院学报,2007,31(3):53-55
    33.吴武军,白云来.国内外油页岩利用及采收方法现状[J].西北油气勘探,2006,18(3):55-60
    34.牛继辉,陈殿义.国外油页岩的地下转化开采方法[J].吉林大学学报(地球科学版),2006,36(6):1027-1030
    35. U.S. department of energy. Strategic significance of America’s oil shale resource, volume II[M], Washinton, D.C., 2004,3
    36. American’s Oil Shale- A roadmap for federal decision making, Office of Naval Petroleum and Oil Shale Reserves, December 2004.
    37. Dr. K. Brendow. Globe oil shale issues and perspectives, Synthesis of symposium on oil shale[M], Tallinn(Estonia), 18-19, November 2002.
    38.李丹梅,汤达祯,杨玉凤.油页岩资源的研究、开发与利用进展[J].石油勘探与开发,2006,33(6):657-661
    39.游君君,叶松青,刘招君,等.油页岩的综合开发与利用[J].世界地质,2004,23(3):261-265
    40.《炼油技术与工程》编辑部.吉林油页岩将进入商业开发[J].炼油技术与工程,2005,35(6):51
    41. S.M.Shin, H.Y.Sohn. Nonisothermal determination of the intrinsic kinetics of oil generation from oil shale, Ind.Eng.Chem.Process Des.Dev,1980,19,420-426
    42. J.O.Jaber, S.D.Probert. Pyrolysis and gasification kinetics of Jordanian oil-shales, Applied Energy,1999,63:269-286
    43. Shuyuan Li, Changtao Yue. Study of different kinetic models for oil shale pyrolysis, Fuel Processing Technology,2003,85:51-61
    44. Mustafa Versan K?k, M.Reha.Pamir. Comparative pyrolysis and combustion kineticsof oil shales, Journal of Analytical and Applied Pyrolysis,2000,55:185-194
    45. ?.Murat Do?an, B.ZühtüUysal. Non-isothermal pyrolysis kinetics of three Turkish oil shales, Fuel,1996,75(12):1424-1428
    46.姜秀民,刘德昌,郑楚光.油页岩燃烧性能的热分析研究[J].中国电机工程学报,2001,21(8):55-59
    47.宋岩,石岩,闫锋.影响油页岩低温干馏因素的考察[J].精细石油化进展,2004,5(7):45-47
    48.于海龙,姜秀民.升温速率对油页岩燃烧特性及动力学参数的影响[J].燃料科学与技术,2003,9(1):54-57
    49.柏静儒,王擎,胡爱娟等.茂名油页岩的热解特性[J].东北电力大学学报,2006,26(2):73-78
    50.李术元,钱家麟,王剑秋.块状油页岩热解过程的研究[J].石油学报,1990,5(4):86-93
    51.金义范,金玳,庄允迪.物理化学[M] .北京:高等教育出版社,1997
    52. R.L.Braun, A.J.Rothman. Oil shale pyrolysis: kinetics and mechanism of oil production, Fuel,1975, 54(4):129-131
    53. Allred V D. Kinetics of oil shale pyrolyis[M],Chem.Eng.Proc, 1996
    54. M.V.K?k, M.R.Pamir. Comparative pyrolysis and combustion kinetics of oil shale, J.Anal.Appl.Pyrolysis,2000,55(2):185-194
    55. M.V.K?k, G.Pokol. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques, Journal of Thermal Analysis and Calorimetry,2004,76:247-254
    56. M.V.K?k. Thermal investigation of Seyitomer oil shal. Thermochimica Acta,2001,369:149-155
    57. J.P.Vantelon, C.Breillat, F.Gaboriaud. Thermal Degradation of Timahdit oil shale: Behaviour in inert and oxidizing environments, Fuel,1990,69(2):89-105
    58. R.kuusik, M.Veiderma. Combustion of oil shale at the fluidized-bed conditions, Oil Shale,1977,9:16-19
    59. John H.Patterson, Leslie S.Dale, James F.Chapman. Trace element partitioning during the retorting of Julia Creek oil shale, Environ.Sci.Technol,1987,21:490-494
    60. P.R.Solomon, F.P.Miknis. Use of Fourier Transform infrared spectroscopy for determining oil shale properties. Fuel,1980, 59(12):893-896
    61. A.J.Berkovicha, J.H.Levyb, et al. Heat capacities and enthalpies for some Australian oil shales from non-isothermal modulated DSC. Thermochimica Acta,2000,357(1):546-551
    62. J.T.Schrodt, A. Ocampo. Variations in the pore structure of oil shales during retorting and combustion. Fuel,1984,63:1523-1527
    63. Y.Wang and S.Lee. A single particle model for pyrolysis of oil shale, Fuel Science and Technology International,1986, 4(4):447-481
    64. R.M.Chow, A model for the pyrolysis, gasification and combustion of individual oil shale particles, M.S.Thesis, University of New Mexico,1975
    65. K.EL harfi, C.Bennouna, A.Mokhisse, et al. Supercritical fluid extraction of Moroccan(Timahdit) oil shale with water, Journal of Analytical and Applied Pyrolysis,1999,50:163-174
    66. K.EL harfi, A.Mokhisse, M.Ben Chanaa. Effect of water vapor on the pyrolysis of the Moroccan(Tarfaya) oil shale, Journal of Analytical and Applied Pyrolysis,1998,48,65-76
    67. K.EL harfi, A.Mokhisse, M.Ben Chanaa, et al. Pyrolysis of Moroccan(Tarfaya) oil shales under microwave irradiation, Fuel,2000,79:733-742
    68. Jale Yanilk, Mithat Yüksel, Mehmet Sa?lam, et al. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction, Fule,1995,74(1):46-50
    69. M.Razvigorova, T.Budinova, B.Petrova, et al. Steam pyrolysis of Bulgarian oil shale kerogen, Oil Shal,2008,25(1):27-36
    70. M.V.K?k, G.Guner和S.Bagci. Laboratory steam injection applications for oil shale fields of Turkey, Oil Shale,2008, 25(1):37-46
    71. E.Eseme , R.Littke , B.M.Krooss. Factors controlling the thermo-mechanical deformation of oil shales: Implications for compaction of mudstones and exploitation, Marine and Petroleum Geology,2006,23:715-734
    72.王剑秋,邬立言,钱家麟.抚顺和茂名油页岩热解生烃动力学的研究,《油页岩科学研究论文集》,1984,120-127
    73.杨继涛,程廷蕤.抚顺油页岩热分解过程的热重法研究,《油页岩科学研究论文集》,1984,98-110
    74.杨继涛,程廷蕤,秦匡宗.茂民油页岩中有机质与矿物质热分解过程的研究,.《油页岩科学研究论文集》,1984,111-119
    75.王廷芬.关于油页岩燃烧性能的差热分析法研究[J],华东石油学院学报,1983,1:97-107
    76.刘柏谦.桦甸油页岩燃烧过程的热重分析[J],燃烧科学与技术,1998,4(1):52-54
    77.刘柏谦.桦甸油页岩颗粒特性研究[J],东北电力学院学报,1994,14(3):64-67
    78.姜秀民,韩向新,刘德昌等.油页岩着火机理的研究[J],发电设备,2002,5:1-5
    79.李术元.块状页岩的热解及其传热传质的研究[D],北京,石油大学,1989
    80.范士彦,汤振清.埃塞俄比亚亚尤煤田阿齐堡—堡区油页岩特征[J],2001,29(1):5-7
    81.李术元,钱家麟.煤和油页岩燃烧过程的对比[J],燃料化学学报,1992,20(4):400-403
    82.孙佰仲,王擎,姜庆贤等.油页岩含油率的测定及其影响因素分析[J],东北电力大学学报,2006,26(1):13-15
    83.孙柏仲,王擎,李少华等.桦甸油页岩及半焦孔结构的特性分析[J],动力工程,2008,28(1):163-167
    84.韩向新,姜秀民,崔志刚等.油页岩颗粒孔隙结构在燃烧过程中的变化[J],中国电机工程学报,2007,27(2):26-30
    85.闫澈,韩向新,王辉等.油页岩颗粒的热解模型[J],化学工程,2004,32(1):9-12
    86.朱亚杰,杨煌,熊亢侯等.煤及油页岩的超临界抽提研究,《油页岩科学研究论文集》,1984,58-65
    87.王擎,桓现坤,刘洪鹏等.桦甸油页岩的微波干馏特性[J],化工学报,2008,59(5):1288-1293
    88.王擎,徐峰,柏静儒等.桦甸油页岩基础物化特性研究[J],吉林大学学报(地球科学版),2006,36(6):1006-1011
    89.陈晨,张祖培,王淼.吉林油页岩开采的新模式[J],中国矿业,2007,16(5):55-57
    90.赵阳升,冯增朝,杨栋.对流加热油页岩开采油气的方法:中国发明专利公开号,200510012473[P],2005-10-01
    91.杨栋,薛晋霞,康志勤等.抚顺油页岩干馏渗透实验研究[J],西安石油大学学报(自然科学版),2007,22(2):23-25
    92.刘中华,杨栋,薛晋霞等.干馏后油页岩渗透规律的实验研究[J],太原理工大学学报[J],37(4):414-416
    93.赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    94.赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力的实验研究[J],岩土工程学报,1995,17(3):26-31
    95.赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩气体渗流规律影响的实验研究[J],岩石力学与工程学报,1999,18(6):651-653
    96. Zhao Y S, Kang T H, Hu Y Q. The permeability classification of coal seam in China, Int.J.Rock Mech.Min.Sci.,1995, 32(4):365-369
    97. Zhao Yangsheng, Yang Dong, Zheng Shaohe, et al. The experimental study on water seepage constitute law of fracture in rock under 3D stress, Science in China,(seriesE), 1999,42(1):108-112
    98. Yangsheng Zhao, Yaoqin Hu, Baohu Zhao, et al. The experimental approach to effective stress law of coal mass by effect of methane, Transport in porous Media,2003, 53(3):235-244
    99. Dong Yang, Yangsheng Zhao, Yaoqing Hu. The constitute law of gas seepage in rock fractures undergoing Three-dimensional stress, Transport in porous media,2006, 63(3):463-472
    100.胡耀青,赵阳升,魏锦平等.三维应力作用下煤体瓦斯渗透规律实验研究[J],西安矿业学院学报,1996,16(4):308-311
    101.郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J],岩石力学与工程学报,1999,18(2):133-136
    102.Johnson B, Gangi A F, Handin J. Thermal cracking of rock subject to slow uniform temperature changes, Proc 19th US Symp. Rock Mech,1978,259-267
    103.Heuze F E. High-temperature mechanical, physical and thermal properties of granitic rocks a review, Int.J.Rock Mech.Min.Sci,1983,20(1):3-10
    104.Fredrich J T, Wong T F. Micromechanics of thermally induced cracking in three crustal rocks. J.Geo.Res,1986,91(12)12743-12764
    105.Jones C, Keaney G, Meredlth P G, et al. Acoustic emission and fluid permeability measurements on thermally cracked rocks. Phys.Chem.Earth, 1997,22(1):13-17
    106.Darot M. Permeability of thermally cracked granite, Geophysics Research Letters,1992,19:869-872
    107.陈颙.岩石物理学[M].北京:北京大学出版社,2001
    108.赵阳升.高温岩体地热开发导论[M].北京:科学出版社,2004
    109.吴晓东,刘均荣.岩石热开裂影响因素分析[J],石油钻探技术,2003,31(5):24-27-136
    110.刘均荣,吴晓东.岩石热增渗机理初探[J],石油钻采工艺,2003,25(5):43-46
    111.张元中,楚泽涵,陈颙.岩石热开裂研究现状及其应用前景[J],特种油气藏,1999,6(2):1-5
    112.周克群,楚泽涵,张元中等.岩石热开裂与检测方法研究[J],岩石力学与工程学报,2000,19(4):412-416
    113.Heard H C. Thermal expansion and inferred permeability of climax quartz monzonite to 300℃and 2716MPa, Int.J.Rock Mech.Min.Sci,1980,17:289-296
    114.Somerton W H, Gupta V S. Role of fluxing agents in thermal alteration of sandstones, Journal of Petroleum Technology,1965,17(5):585-588
    115.Homand-Etienne F, Honpert R. Thermally induced micro cracking in granites: characterization and analysis, Int.J.Rock Mech.Min.Sci,1989,26(2):124-134
    116.陈颙,吴晓东,张祖勤.岩石热开裂的实验研究[J],科学通报,1999,44(8):880-883
    117.梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和试验研究[J],岩石力学与工程学报,2005,24(12):2009-2012
    118.张渊,张贤,赵阳升.砂岩的热破裂过程[J],地球物理学报,2005,48(3):656-659
    119.左建平,谢和平,周宏伟等.不同温度作用下砂岩热开裂的实验研究[J],地球物理学报,50(4):1150-1155
    120.左建平.温度—应力共同作用下砂岩破坏的细观机制与强度特征[D],北京,中国矿业大学,2006
    121.李皋,孟英峰,董兆雄等.砂岩储集层微波加热产生微裂缝的机理及意义[J],石油勘探与开发,2007,34(1):93-97
    122.尹小涛,党发宁,丁卫华等.基于单轴压缩CT实验的砂岩破损机制[J],岩石力学与工程学报,2006,25(Supp.2):3891-3897
    123.杨更社,刘慧.基于CT图像处理的岩石损伤特性研究[J],煤炭学报,2007,32(5):463-468
    124.任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J],长安大学学报(自然科学版),2002,22(6):46-49
    125.葛修润,任建喜,蒲毅彬等.岩石细观损伤扩展规律的CT实时试验[J],中国科学(E辑),2000,30(2):104-111
    126.杨更社,谢定义.岩石损伤特性的CT识别[J],岩石力学与工程学报,1996,15(1):48-54
    127.杨更社,谢定义,张长庆.煤岩体损伤特性的CT检测[J],CT理论与应用研究,1996,5(2):21-25
    128.赵阳升,孟巧荣,康天合等.显微CT试验技术与花岗岩热破裂特征的细观研究[J],岩石力学与工程学报,2008,27(1):28-34
    129.李玉彬,李向良,张奎祥等.用微焦点X射线计算机层析(CMT)及其在石油领域的应用[J],CT理论于应用研究,2000,9(3):35-40
    130.李玉彬,李向良,高岩.用微焦点XCCT成像研究岩石微观特点[J],油气采收率技术,2000,7(4):50-52
    131.李玉彬,李向良.利用微焦点X射线CT描述特殊岩性油藏岩芯[J],特种油气藏,2000,7(4):53-55
    132.谢和平.分形—岩石力学导论[M].北京:科学出版社,1996
    133.H.Xie. Fractals in rock mechanice[M]. A.A.Balkema Publisher, Rotterdam,1993
    134.Turcotte D.L. Fractal and fragmentation, J.Geophys Res,1986,91:1921-1926
    135.Kang Tianhe, Jin Zhongming. Fractal character of crack scale-number on coal surface and its application, New Development in Rock Mechanics and Engineering. Shengyang, China,1994:94-104
    136.Closs J C. Natural fractural in coal, In Hydrocarbons from coal AAPG, 1993,30:119-130
    137.Mandelbrot B.B. The fractal geometry of nature[M]. W.H.Freeman and Company,1983
    138.谢和平,陈忠辉,王家臣.放顶煤开采巷道裂隙的分形研究[J],煤炭学报,1998,23(3):252-257
    139.谢和平,Sanderson D J.断层分形分布之间的相关关系[J],煤炭学报,1994,19(5):445-449
    140.谢和平.岩石节理的分形描述[J],岩土工程学报,1995,17(2):18-23
    141.谢和平,陈至达.分形几何与岩石断裂[J],力学学报,1988,20(3):246-271
    142.康天合,赵阳升,靳钟铭.煤体裂隙尺度的分布的分形研究[J],煤炭学报,1995,20(4):393-398
    143.靳钟铭,康天合,弓培林等.煤体裂隙分形与顶煤冒放性的相关研究[J],岩石力学与工程学报,1996,15(2):143-149
    144.赵阳升,马宇,段康廉.岩层裂缝分形分布相关规律研究[J],岩石力学与工程学报,2002,21(2):219-222
    145.胡耀青,赵阳升,杨栋等.煤体的渗透性与裂隙分维的关系[J],岩石力学与工程学报,2002,21(10):1452-1456
    146.易顺民,唐辉明.山峡工程区岩体断裂的分形研究[J],大地构造与成矿学,1998,22(2):177-184
    147.Walker P L. Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fule,1988,67(10):1615-1623
    148.Parkash S, Chakrabartly S K. Porosity of the coals from Alberta plane. Int J Coal Geol,1986,6(1):55-70
    149.Liu G, Benyon P, Benfell K E. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically conditions, Fuel,2000,79(6):617-626
    150.Feng B, Bhatia S K. Variation of pore structure of coal chars during gasification, Carbon,2003,41(3):507-523
    151.Davini P, Ghetti P, Bonfanti L. Investigation of the combustion of particles of coal, Fuel,1996,75(9):1083-1088
    152.Sastry P U. Structural variations in lignite coal: a small angle X-ray scattering investigation, Solid State Communications,2000,114:329
    153.戴中蜀,马立红,罗明.低温热解处理对兖州煤孔结构的影响[J],燃料与化工,1998,29(1):1-5
    154.秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J],煤炭学报,1995,20(3):266-270
    155.周军,张涛,吕俊复等.高温下热解温度对煤焦孔隙结构的影响[J],燃料化学学报,2007,35(2):155-159
    156.谢克昌.煤的结构与反应性[M].北京:科学出版社,2002
    157.陈鸿,孙学信,韩才元等.煤粉孔隙结构对燃烧过程的影响[J],化工学报,1994,45(3):327-332
    158.琚宜文,姜波,侯泉林等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J],地质学报,2005,79(2):269-285
    159.刘辉,吴少华,孙锐等.快速热解褐煤焦的比表面积及孔隙结构[J],中国电机工程学报,2005,25(12):86-90
    160.王云鹤,梁栋,肖淑衡等.煤表面结构介观表象的原子力显微镜(AFM)观测[J],黑龙江科技学院学报,2006,16(5):272-274
    161.张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J],电子显微学报,2000,19(4):531-532
    162.张慧,李小彦.扫描电子显微镜在煤岩学上的应用[J],电子显微学报,2004,23(4):467
    163.陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J],岩土力学,2004,25(9):1363-1367
    164.葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J],1999,18(5):497-502
    165.曹广祝,仵彦卿,丁卫华.低渗透压力条件下砂岩渗透性质的CT试验[J],煤田地质与勘探,2005,33(4):59-62
    166.仵彦卿,曹广祝,丁卫华.砂岩渗透系数随渗透水压变化的CT试验[J],岩土工程学报,2005,27(7):780-785
    167.Coles M E, Hazlett R D, Spanne P, et al. Pore level imaging of fluid transport using synchrotron X-ray microtomography. JPSE,1998,19:53-63
    168.丁卫华,仵彦卿,蒲毅彬等.X射线岩石CT的历史与现状[J],地震地质,2003,25(3):467-476
    169.聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J],煤田地质与勘探,2000,28(6):20-22
    170.Stauffer, Aharong, Introduction to percolation theory[M], London,1985,15-18 Vidales A.M.Difference percolation on a square lattice, Physical,A,2000,285:259
    171.Konash A.V, Bagnich S.A, Computer investigation of the percolation processes in tow-and-three dimensional systems with heterogeneous internal structure, SPIE Proc.3176(1997)212
    172.曾玉强.稠油油藏蒸汽吞吐注汽参数优化及动态预测方法研究[硕士论文],四川,西南石油学院,2005
    173.Boberg T.C, Lantzs R.B. Calcalation of the production rate of a thermally stimulated well, J.Pet.Tech,1966:1613-1623
    174.Baker P.E. Effect of pressure and rate on steam zone development in steam flooding, Soc.of.Pet.Engrs.Jourmal.1973,12:274-284
    175.Bursell C.G, Pittman G M. Performance of steam displacement in the Kern River Field, J.Pet.Tech.1995,8:997-1004
    176.Johnson F S, Walker C J, Bayazeed A F. Oil Vaporization during steam flooding, Pet.Tech,1971:731-742
    177.Hsueh L, Hong K C, Duerksen J H. Simulation of high pressure and high temperature steam distillation of crude oils. Venezuela , The Unitar Second International Conference on Heavy Crude and Tar Sands,Caracas,1982:7-17
    178.K.C.洪[美].蒸汽驱油藏管理[M].北京:石油工业出版社,1996
    179.张方礼,赵洪岩.辽河油田稠油注蒸汽开发技术[M].北京:石油工业出版社,2007
    180.蒋生健.稠油热力开采理论与工艺技术[M].北京:石油工业出版社,2004
    181.楚泽涵,李艳华,蔡智鸣等.从世界部分产油国提高采收率的措施看地球物理技术发展[J],特种油气藏,2003,10(2):14-17
    182.柴利文.中深层块状稠油油藏蒸汽驱开发试验主要问题及对策研究[J],特种油气藏,2005,12(6):44-47
    183.Chijlmatsu M, Fujita T, Kobayashi A,et al, Experiment and validation of numerical simulation of coupled thermal, hydraulic and mechanical behavior in engineering buffer material, Int J for Numerical and Analytical Methods in Geomechanics,2000, 24(4):403-424
    184.Chijlmatsu M, Fujita T, Sugita Y,et al. Field experiment, results and THM behavior in the Kamishi Mine experiment, Int of Rock Mechanics and Ming Sciences,2001, 38(1):79-94
    185.Villar M, Lloret V A, Influence of temperature on the hydro-mechanical behavior of a compacted bentonite, Applied Clay Science,2004, 26:337-350
    186.赵阳升,王瑞凤,胡耀青等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J],岩石力学与工程学报,2002,21(12):1751-1755
    187.梁卫国,徐素国,李志萍等.盐矿水溶开采固—液—热—传质耦合数学模型与数值模拟[J],自然科学进展,2004,8(14):945-949
    188.杨兰和.煤炭地下气化干馏气渗流运动多场耦合数值模拟[J],西安交通大学学报,2002,36(7):752-756
    189.张玉军.核废料地质处置近场热—水—应力—迁移耦合二维有限元分析[J],岩土工程学报,2007,29(10):1553-1557
    190.蒋中明,Dashnor Hoxha,Francoise Homand.核废料地质贮存介质黏土岩的三维各向异性热—水—力耦合数值模拟[J],岩石力学与工程学报,2007,26(3):493-500
    191.王自明,杜志敏.弹性油藏中多相渗流的流—固—热耦合数学模型[J],大庆石油地质与开发,2003,22(1):29-31
    192.刘建军,刘先贵.开发过程中三场耦合的数学模型[J],特种油气藏,2001,8(2):31-33
    193.孙辉,李兆敏,焦玉勇.稠油油藏热—流体—力学耦合模型研究及应用[J],岩土力学,2007,28(12):2560-2564
    194.杨立强,陈月明,王宏远等.超稠油直井—水平井组合蒸汽辅助重力泄油物理和数值模拟[J],中国石油大学学报(自然科学版),2007,31(4):64-69
    195.肖占山,宋延杰,石颖等.注水井温度场模型及其数值模拟研究[J],地球物理学进展,2005,20(3):801-807
    196.康志勤,赵阳升,杨栋.利用原位电法加热技术开发油页岩的物理原理及数值分析[J],石油学报,2008,29(4):592-595
    197.侯祥麟,尹亮,王剑秋等.油页岩——石油的补充能源[M].北京:中国石化出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700