用户名: 密码: 验证码:
上扬子地区震旦纪陡山沱期成磷事件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新元古代末-寒武纪的地史转折期是第一个全球性海相磷块岩大规模沉积的时期。在中国扬子地台上,震旦纪陡山沱期也出现了大规模成磷现象。陡山沱期广泛海侵形成的碳酸盐岩-磷块岩-黑色页岩的沉积组合广泛分布于扬子地台。地史时期海相磷块岩的沉积问题是目前地学领域的研究难点之一,存在诸多争议。陡山沱期的成磷事件、生物进化事件都与冰期后的全球性环境改变有很大关系。如Rodinia超大陆的解体、“雪球”事件结束后古海洋生态系统的重建都对成磷事件及生物进化与生命创新事件(略早于典型的Ediacaran生物群出现)产生不可低估的影响。而磷的生物聚集作用是磷富集的重要方式,其大规模埋藏记录可以反映古海洋变化的重要信息,也可以反映出生物的成磷作用。同时,生物的新陈代谢、光合作用等生命活动都离不开磷的参与,磷对生命的演化有重要作用。越来越多的研究成果表明海相磷块岩与生物作用存在密切联系,这也反映了环境与生物具有协同演化的关系。
     受国家自然科学基金(编号:40743016)和教育部“高等学校博士学科点专项科研基金”(编号:20070616014)共同资助,在综合国内外的磷块岩成因、陡山沱期古生物群研究进展的基础上,以震旦纪陡山沱期形成的代表性磷矿——贵州瓮安磷矿与湖北宜昌磷矿为研究对象,从上述地区的岩相学、古生物学、沉积学、元素地球化学、同位素地球化学及有机地球化学等方面,探讨了上扬子区陡山沱期磷矿的形成及其中的生物成矿作用,并对成磷事件与生物演化的关系进行了研究。贵州瓮安磷矿代表的碳酸盐岩型含磷岩系沉积体系与湖北宜昌磷矿代表的泥页岩-碳酸盐岩型含磷岩系沉积体系之间缺乏物质组合、沉积环境及磷块岩成因对比,有机地球化学研究比较匮乏,同时两地又分别是瓮安生物群与庙河生物群的主要化石产地,因此,以它们为研究对象探讨了上扬子区新元古代陡山沱期磷块岩的形成与海平面变化、生物成矿作用之间的关系,取得了如下成果:
     (1)对瓮安生物群化石出现层位的磷块岩进行有机地球化学分析,烃类有机组分包括正烷烃、萜类、甾类和类异戊二烯。分析图谱结果显示正烷烃碳数分布范围很宽;OEP值接近1,Pr/Ph植烷略显优势;规则甾烷呈不对称的“V”字形分布,C27占优势可能是由大量的带刺疑源类导致的。正烷烃的碳同位素值随碳数增加变化范围较窄,反映陡山沱组磷块岩中有机质的母源物质输入并不复杂的特征。磷块岩样本中测试出的生物标志物及其组成特征指示了瓮安陡山沱组磷块岩中的有机物来源于多细胞藻类和细菌。
     (2)将白果园矿区的陡山沱组地层划分为多个不同的三级层序。通过宜昌、瓮安两个磷矿成磷环境对比发现,能量较高并具有丰富藻类的潮下带为成磷的优势区。冰期时的物理风化和陡山沱期化学风化作用将地表含磷物输入海洋,在高的生物生产率等因素共同作用下,为生物有机质的成矿作用提供了机遇。陡山沱期的成磷作用与海侵作用关系密切,海平面的持续波动为磷块岩的形成提供了物源与动力条件。海侵对磷矿形成十分有利,高品位的含磷层对应于最大海侵阶段。
     (3)大冰期过后生物生产率迅速恢复,为生物有机质的成矿作用提供了条件。宜昌白果园磷矿有机碳含量介于盆地型磷块岩与台地型磷块岩之间,显示了泥页岩-碳酸盐岩型含磷岩系Corg含量的“过渡性”特点;由于其含磷岩系形成的环境为半局限性滞留洼地,白果园磷块岩是弱还原-弱氧化环境的沉积产物。与邻区贵州瓮安的台地型磷块岩进行对比,台地型磷块岩由于较为氧化的环境而具有低Corg和高P2O5特点。Corg和P2O5含量的指标说明生物有机质对磷元素的富集有明显作用。
     (4)白果园整个含磷岩系的磷质来源为火山喷发带来的深部的磷质输入可能性很小,以冰期时的物理风化和陡山沱期化学风化作用将地表含磷物输入海洋为主;白果园下部磷块岩Ceanom指标反映了较还原的环境,说明南沱冰期过后的最早期,古海洋条件仍较为还原,古海洋水体并未完全被氧化。
     (5)同位素数据表明,在陡山沱早期,生物生产率逐渐提高;同时暗示了上升洋流携带的富磷底水成为磷质的来源。随后,生物生产率进一步提高,导致δ13C值变化。磷质海水的运移为陡山沱期生物群的繁盛提供了营养物质,而生物的繁盛又对磷质的进一步聚集及沉淀提供了条件。对瓮安生物群开始出现层位分析,自下而上,δ13Corg值的逐渐减少,与该期海平面变化相一致,显示了明显的升降旋回特征;δ13C值的持续变化,反映了多种条件的影响导致生物生产率的起伏波动。
     (6)对瓮安磷块岩的某些微量元素特征比值进行分析,获得的证据并不支持磷块岩热水沉积成因;瓮安磷矿大塘、穿岩洞矿段的下矿层ΣREE比上矿层ΣREE高出很多,瓮安磷块岩轻、重稀土分馏程度不如鄂西地区。
Sedimentary of marine phosphorites between the late Neoproterozoic and Cambrian was the first large-scale global phosphogenesis event.Phosphogenesis also emerged on the Yangtze platform in Sinian Doushantuo period. The broad transgressive activity in Doushantuo period formed carbonatite -phosphorite- black shale deposition fabric widely distributed on the Yangtze platform.The problem of marine phosphorites'deposition is one of the difficulties in the geological research field.There are many controversies. The phosphogenesis and biological evolution events were associated with changes of global environment. For example,the disassembly of the Rodinia supercontinent, the late Neoproterozoic glacial events' closing and the reconstruction of new ecosystem in ancient marine,which influenced the phosphogenesis and biological evolution and innovation of life.Biological congregation of phosphorus is an important way to phosphorus enrichment.Its large-scale burial records could reflect the important information about changes in the ancient ocean.At the same time, biological metabolism, photosynthesis and other activities of life are inseparable from the participation of phosphorus, phosphorus plays an important role on the evolution of life.More and more research shows that marine phosphorites exist in close contact with the biological effect, which also reflects the co-evolution of the relationship between environment and biology.
     The subject is supported by Natural Science Foundation(N0. 40743016) and Ministry of Education university special scientific research fund for doctor(N0.20070616014).Based on the advances in the study of genesis of phosphorite and biota of Doushantuo period, analyses of petrography, paleontology, sedimentology,elemental-chemistry, isotopic geochemistry and organic geochemistry are conducted on representative phosphorite of Doushantuo Formation-Weng'an phosphorite in Guizhou and Yichang phosphorite in Hubei. The purpose of this study is to explore Doushantuo phosphorite's formation in the upper Yangtze region and its biomineralization and the relationship between phosphogenesis and biological evolution.There is less contrast material fabric-sedimentary environment-genesis of phosphorite between the carbonatite phosphatic series in Weng'an and the shale-carbonatite phosphatic series in Yichang.The study of organic geochemistry is deficient too.At the same time, Weng'an biota and Miaohe biota were discovered in Guizhou and Hubei.Therefore, we probed into the relationship between Doushantuo phosphorite's formation and sea-level changes and the bio-mineralization in the upper Yangtze region, yielded the following results:
     (1)An organic geochemical analysis of the phosphorite samples coming from the stratigraphic position of Weng'an biota has been carried out, and the hydrocarbons fractions contain n-alkanes,terpanes, steranes and isoprenoids. The results show that the distribution pattern of n-alkanes has a wide range of carbon atom numbers.The OEP near 1.The Pr/Ph ratio indicating phytane dominance.The sterane content of C27>C29>C28 shows asymmetrical“V”shape.The dominance of C27 may be caused by acritarchs. The curve of the carbon isotope compositions of individual n-alkanes of the phosphorite has a narrow variation range.Carbon isotope compositions of individual n-alkanes show that the organic material of the phosphorite from the Doushantuo Formation originates is singleness.The biomarkers characteristics indicate that the main sources of the organic matters are algaes and bacteria.
     (2)The Doushantuo Formation of Baiguoyuan could be divided into some third-order sequences. Compared Yichang and Weng'an phosphorite's depositional environment, we could conclude that subtidal zone was favorable area for phosphogenesis,which had high energy and abundant algaes.The physical weathering during glacial epoch and chemical weathering during the Doushantuo period produced the phosphoric material,which was input into ocean,with high biological productivity,providing opportunity for biomineralization.Phosphogenesis and transgression have the closed relationship.Intermittent fluctuations of sea level provided the source and power conditions for phosphorite's deposition. The transgression was very favour of phosphorite'sformation,high grade phosphoria formation corresponds to the maximum transgression.
     (3)After the great glaciation period,the biological productivity recovered rapidly, providing condition for biomineralization. The Yichang phosphorite's organic carbon content is between basin phosphorite and platform phosphorite's content, intergrade is characteristic of its.Because the environment was retention basin of semi-limitations, the phosphorites of Baiguoyuan were resulted from weak reduction-weak oxidation environment.Compared with platform phosphorite of Weng'an,platform phosphorite has the characteristic of low organic carbon content and high P2O5 content as a result of more oxidative environment.Carbon content and high P2O5 content indicated that organic material played a significant role in phosphorus element's enrichment.
     (4)The source of Baiguoyuan phosphatic series' was discussed. The deep phosphorus' input caused by volcanic eruptions was unlikely.The physical weathering during glacial epoch and chemical weathering during the Doushantuo Period produced the phosphoric material,which was input into ocean. The Baiguoyuan lower phosphate rock Ceanom indicators reflect a relatively reducing environment,after the Nantuo ice age,the conditions of ancient sea was a still relatively reducing environment.Ancient ocean water was not completely oxidized.
     (5)The isotope data indicate that the biological productivity was gradually increased in the early stages of the Doushantuo period.It implied that upwelling of phosphorus-rich bottom water brought the phosphorus source.And then,biological productivity's increase causedδ13C value's changes. The migration of phosphorus water provided nutrients for the Doushantuo biota's flourished, and biota's flourished provided the condition for phosphorus's further aggregation and precipitation. Began the analysis from Weng'an Biota's occurrence layer, the value ofδ13Corg gradually diminished,and the sea-level changes unanimously,showing the obvious characteristics of fluctuating cycles.With theδ13C value's shocking, the impact of various conditions caused the large fluctuations of biological productivity.
     (6)With the analysising of Weng'an phosphate rock's characteristic ratios of trace elements,the evidence did not support the phosphate rock's hydrothermal sedimentation. Datang and Chuanyandong's lower seam ofΣREE was much higher than the upper seam;The LREE/HREE of Weng'an phosphorite was less than the western of Hubei.
引文
[1] Algeo T J,Ingall E.Sedimentary Corg:P ratios,paleocean ventilation,and Phanerozoic atmospheric pO2[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,256:130-155.
    [2] Amane W,Hideki N.Geochemical characteristics of terrigenous and marine sourced oils in Hokkaido, Japan[J].Organic Geochemistry,1998,28(12):27-41.
    [3] Anbar A D,Knoll A H.Proterozioc ocean chemistry and evolution:A bioinorganic bridge [J].Science,2002,297:1137-1142.
    [4] Aris-Brosou S,Yang Z.Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa[J].Molecular Biology and Evolution,2003,20(12):1947-1954.
    [5] Atlas E,Pytkowicz,R M.Solubility behaviour of apatites in seawater[J].Limnology and Oceanography, 1977,22(2):290-300.
    [6] Baturin G N.The origin of marine phosphorites[J].International Geology Review,1989,31(4):327-342.
    [7] Baturin G N.Phosphorites on the Sea Floor-origin,composition and distribution[M].New York:Elservier Scientific Publishing Company,1981,1-341.
    [8] Bechtel A, Shieh Y N, Pervaz M,et al.Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt Dome environment-inferences from sulfur isotope and organic geochemical investigations of the bahloul formation at the Bon Grine Zn/Pb Ore Deposit,Tunisia[J].Geochimica et Cosmochimica Acta,1996,60(15):2833-2855.
    [9] Benmore R A,Coleman H L,McArthur J M.Carbon and sulfur isotopes in phosphorites:evidence of origin[J].Nature,1983,302(5908):516-518.
    [10] Berkaloff C,Casadevall E, Largeau C,et al.The resistant polymer of the walls of the hydrocarbon-rich algae Botryococcus braunii [J].Photochemistry,1983,22:389-397.
    [11] Bottjer D. The early evolution of animals:Tiny fossils reveal that complex animal life is older than we thought-by at least as much as 50 million years[J].Scientific American, 2005,293(2):42-47.
    [12] Brasier M,Antcliffe J.Decoding the Ediacaran enigma[J].Science,2004,305:1115-1117.
    [13] Cao C,Wang W,Jin Y,et al.Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section,Zhejiang Province,China[J].Chinese Science Bulletin, 2002,47(13):1125-1129.
    [14] Collister JW, Lichtfouse E, Hieshima G,et al.Partial resolution of soucees of n-alkanes in the saline portion of the parachute Creek Member,Green River Formation(Piceance Creek Basin, Colo-rado)[J].Organic Geochemistry,1994, 21(6-7):645-659.
    [15] Cook P J.Phosphogenesis around the Proterozoic-Phanerozoic transition[J].Journal of the Geological Society,1992,149:615-620.
    [16] Cook P J,Shergold J H.Phosphorus,Phosphorites,and Skeletal Evolution at the Precambrian-Cambrian Boundary[J].Nature,1984,308:231-236.
    [17] Condon D,Zhu M,Bowring S.U-Pb ages from the Neoproterozoic Doushantuo Formation,China[J].Science,2005,308:95-98.
    [18] Cranwell P A,Eglinton G,Robinson N.Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ[J].Organic Geochemistry,1987,11(6):513-52.
    [19] DeBaar H J W,Bacon M P,Brewer P G,et al.Rare earth elements in the Pacific and Atlantic Oceans[J].Geochim.Cosmochim. Acta, 1985,49:1943-1959.
    [20] Delaney M L.Extinctions and carbon cycling[J].Nature,1989,337:18-19.
    [21] Derenne S, Largeau C, Berkaloff C,et al.Nonhydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum[J].Photochemisty,1992,31:1923-1929.
    [22] Dickens G R, O'Neil J R, Rea D K,et al.Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J].Paleoceanography,1995,10:965-971.
    [23] Didyk B M,Simoneit BRT, Brassell S C,et al.Organic geochemical indicators of paleoenvironmental conditions of sedimentation[J].Nature,1978, 272:216-222.
    [24] Di-Giovanni C,Disnar J R,Macaire J J,et al.Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering[J].Global and Planetary Change,2002,32:195-210.
    [25] Dornbos S Q,Bottjer D J,Chen J,et al.Environmental Controls on the Taphonomy of Phosphatized Animals and Animal Embryos from the Neoproterozoic Doushantuo Formation,Southwest China[J].Palaios,2006,21:3-14.
    [26] Fairchild I J,Kennedy M J.Neoproterozoic glaciation in the earth system[J].Journal of the Geological Society,2007,164:895-921.
    [27] Farrimond P, Taylor A, Talnaes N.Biomarker maturity parameters.The role of generation and thermal degradation[J].Organic Geochemistry,1998,29:1181-1197.
    [28] F?llmi K B.The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits[J].Earth Science Reviews,1996,40:55-124.
    [29] Folk R L.Practical petrographical classification of limestone[J].AAPG,1959,43(1):1-38.
    [30] Grazhdankin D.Patterns of distribution in the Ediacaran biotas:facies versus biogeography and evolution[J].Paleobiology,2004,30(2):203-221.
    [31] Grantham P J.The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil[J].Organic Geochemistry,1986,9 (1):1-10.
    [32] Gulbrandsen R A.Physical and chemical factors in the formation of marine apatite[J].Economic Geology,1969,64:365-382.
    [33] Gehling J G.Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite,South Australia[J].Precambrian Research,2000,100:65-95.
    [34] Hayes J M, Poppa B N, Takigiku R,et al.An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation[J].Geochimica et Cosmochimica Acta,1989,53:2961-2972.
    [35] Hiroto K,Yoshio W.Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29(11):995-998.
    [36] Hofmann H J,Narbonne G M,Aitken J D.Ediacaran remains from intertillite beds in northwestern Canada[J].Geology,1990,18:1199-1202.
    [37] Hofmann H J,O'BrienS J, King A F.Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada[J].Journal of Paleontology,2008,82(1):1-36.
    [38] Huang W Y,Meinschein W G.Sterols in sediments from Barrin Bay,Texas[J].Geochimica et Cosmochimica Acta, 1978,42(9): 1391-1396.
    [39] Huang WY, Meinschein W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979,43(5):739-745.
    [40] Hubert B, Alvaro J J, Chen J Y.Microbially mediated phosphatization in the Neoproterozoic Doushantuo Lagerst?tte, South China[J].Bulletin de la Societe Geologique de France, 2005, 176(4):355-361.
    [41] Hunt J M.Distribution of carbon in crust of Earth[J].AAPG Bulletin,1972,56(11):2273-2277.
    [42] Ingall E D,Jahnke R.Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J].Marine Geology,1997,139:219-229.
    [43] Ilyin A V.Rare-earth geochemistry of“old”phosphorites and probability of syngenetic precipitation and accumulation of phosphate[J].Chemical Geology,1998,144:243-256.
    [44] Javaux E J,Knoll A H,Walter M R.Morphological and ecological complexity in early eukaryotic ecosystems[J].Nature,2001,412:66-69.
    [45] Kaufman A J,Jacobsen S B,Knoll A H.The Vendian record of Sr and C isotopic variations in seawater:implications for tectonics and paleoclimate[J].Earth and Planetary Science Letters,1993,120:409-430.
    [46] Kaufman A J,Knoll A H.Neopreoterozoic variation in the C-isotopic composition of seawter stratigraphic and biogeochemical implication[J].Precambrian Research,1995,73:27-49.
    [47] Knoll A H.Learning to tell Neoproterozoic time[J].Precambrian Research,2000,100:3-20.
    [48] Kolaczkowska E,Shougui NE,Watt DS,et al.Thermodynamic stability of various alkylated, dealkylated and rearranged 17α-and 17β-hopane isomers using molecular machanics calculations[J].Organic Geochemistry,1990,16(4-6):1033-1038.
    [49] Kurtz A C,Derry L A,Chadwick O A. Accretion of Asian dust to Hawaiian soils:Isotopic,elemental, and mineral mass balances[J]. Geochimica et Cosmochimica Acta,2001,65:1971-1983.
    [50] Li Z X,Zhang L,Powell C M.Positions of the East Asion cratons in the Neoproterozoic Supercontinent Rodinia[J]. Australian Journal of Earth Sciences, 1996,43(6):593-604.
    [51] Lucas J, Prevot L.The Synthesis of Apatite by Bacerial Activity:Mechanism[J].Sciences Geologiques. Memoire,1985,77:83-92.
    [52] Machel H G,Krouse H R,Sassen R.Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J].Applied Geochemistry,1995,10:373-389.
    [53] Marais D J.Isotopic Evolution of the Biogeochemical Carbon Cycle During the Precambrian[J].Reviews in Mineralogy and Geochemistry,2001,43:555-578.
    [54] McArthur J M,Walsh J N.Rare-earth geochemistry of phosphorites [J].Chemical Geology,1984, 47:191-220.
    [55] McCall G J H.The Vendian (Ediacaran) in the geological record:Enigmas in geology’s prelude to the Cambrian explosion[J].Earth Science Reviews, 2006,77:1-229.
    [56] McFadden K A, Huang J, Chu X,et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J].Proceedings of National Academy of Sciences of USA, 2008,105(9): 3197-3202.
    [57] Meert J G,Lieberman B S.The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation[J].Gondwana Research, 2008,14:5-21.
    [58] Mort H P,Adatte T,F?llmi K B,et al.Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event2[J].Geology,2007,35(6): 483-486.
    [59] Narbonne G M,Gehling J G.Life after snowball: the oldest complex Ediacaran fossils[J].Geology, 2003,31(1):27-30.
    [60] Nathan Y,Lucas J.Experiments on the direct precipitation of apatite in sea water;implication in the genesis of phosphorites[J].Chemical Geology,1976,18(3):181-186.
    [61] Patricia G L, Feist R, Albarede F. Rare earth elements in old biogenic apatites[J].Geochimica et Cosmochimica Acta, 1993,57(11):2507-2514.
    [62] Peterson K J, McPeek M A, Evans D A D.Tempo and mode of early animal evolution:inferences from rocks,Hox, and molecular clocks[J].Paleobiology,2005,31(2):36-55.
    [63] Powell T G,Cook P J,Mckirdy D M.Organic geochemistry of phosphorites;relevance to petroleum genesis[J].AAPG Bulletin,1975,59(4):618-632.
    [64] Rona P A.Criteria for recognition of hydrothermal mineral deposits in ocean crust[J].Economic Geology,1987,73 (2):135-160.
    [65] Seifert W K,Moldowan J M.Alications of steranes, terpanes and monoaromatics to the maturation,migration and source of crude oils[J].Geochimica et Cosmochimica Acta,1978,42(1): 77-95.
    [66] Shields G,Stille P.Diagenetic constrains on the use of cerium anomalies as palaeoseawater redox proxies:an isotopic and REE study of Cambrian phosphorites [J].Chemical Geology,2001,175:29-48.
    [67] Shen Y,Schidlowski M.New C isotope stratigraphy from southwest China:impications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations[J].Geology,2000,28:623-626.
    [68] Shi Jiyang, Mackenzie A S, Alexander R,et al.A biological marker investigation of petroleums and shales from the Shengli oilfield, The P.R.C.[J].Chemical Geology,1982,35:1-31.
    [69] Strauss H,Des Marais D J,Hayes J M,et al.Proterozoic organic carbon-its preservation and isotopic record[C]//In Early Organic Evolution:Implication for Mineral and Energy Resources. Berlin: Springer Verlag,1992,203-211.
    [70] Sun Y Z,Puttmann W.The role of organic matter during metal accumulation in Permian Kupferschiefer from the Sangerhausen Basin, Germany[J].Organic Geochemistry,2000,31(11):1143-1161.
    [71] Ten Haven HL,De Leeuw J W,Rullkotter J,et al.Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J].Nature,1987,330:641-643.
    [72] Cappellen P V,Ingall E D.Benthic phosphorus regeneration,net primary production and ocean anoxia:A model of coupled marine biogeochemical cycles of carbon and phosphorus[J].Paleoceanography,1994, 9(5):677-692.
    [73] Volkman J K. A review of sterol markers for marine and terrigenous organic matter [J].Organic Geochemistry,1986,9(3):83-99.
    [74] Wang T G,Li Meijun,Wang Chunjiang,et al.Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region,southern China[J].Precambrian Research,2008,162:317-326.
    [75] Wright J, Schrader H, Holser W T.Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatites [J]. Geochimica et Cosmochimica Acta,1987,51:637-644.
    [76] Xiao S, Knoll A H.Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China[J].Journal of Paleontology, 2000,74(5),767-788.
    [77] Xiao S,Zhang Y,Knoll A H.Three-demensional preservation of algae and animal embryos in a Neoproterozoic phosphorite[J].Nature,1998,391:553-558.
    [78] Xiao S,Laflamme M.On the eve of animal radiation:phylogeny,ecology and evolution of the Ediacara biota[J].Trends in Ecology and Evolution, 2008,24(1):31-40.
    [79] Yuan X L,Li J,Cao R J.A diverse metaphyte assemblage from the Neoproterozoic black shales of South China [J].Lethaia,1999,32(2):143-155.
    [80] Yang Q,Sun X,Wu P, et al. Arthropod phylogenetic chronology[J].Journal of Genetics and Molecular Biology,2003,14(3):145-158.
    [81] Zhu M,Zhang J,Yang A.Integrated Ediacaran(Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254:7-61.
    [82]巴图林.海底磷块岩(东野等译) [M].北京:地质出版社,1985:1-20.
    [83]巴克C.石油勘探中的有机地球化学(胡伯良译) [M].北京:石油工业出版社,1982.
    [84]陈超,谢发鹏.白果园黑色页岩型银钒矿床[J].矿床地质,1986,5(1):53-62.
    [85]崔福斋.生物矿化[M].北京:清华大学出版社,2007.
    [86]陈骏.地球化学[M].北京:科学出版社,2004,128-129.
    [87]陈均远,王修强.动物黎明期的点断辐射演化、激发机制和分子背景[C]//生物的起源、辐射与多样性演变-华夏化石记录的启示.北京:科学出版社,2006: 74-81.
    [88]陈兰,钟宏,胡瑞忠.湘黔地区早寒武世黑色页岩有机碳同位素组成变化及其意义[J].矿物岩石,2006,26(1):81-85.
    [89]陈孟莪,陈其英,萧宗正.试论宏体植物的早期演化[J].地质科学,2000,35(1):1-15.
    [90]陈其英.含磷岩系和磷块岩相-中国磷块岩[M].北京:科学出版社,1989,7-56.
    [91]陈其英.含磷岩系的沉积分带及生物成矿作用-生物有机质成矿作用[M].北京:海洋出版社,1993,25-40.
    [92]陈其英,陈孟莪,李菊英.沉积磷灰石形成中的生物有机质因素[J].地质科学,2000,35 (3):316-324.
    [93]陈其英,陈友明.碳酸质条带状磷块岩的特点及成因[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,273-282.
    [94]曹瑞骥,唐天福,薛耀松,等.扬子区震旦纪含矿地层研究[C]//扬子区上前寒武系.南京:南京大学出版社,1989:1-94.
    [95]陈世加,王廷栋,黄清德,等.C29甾烷成熟度指标的“倒转”及其地质意义[C]//第六届全国有机地球化学学术会议,论文摘要汇编,1996,205.
    [96]陈义才,沈忠民,罗小平.石油与天然气有机地球化学[M].北京:科学出版社,2007.
    [97]丁莲芳,李勇,陈会鑫.湖北宜昌震旦系-寒武系界线地层Micrhystridium regulare化石的发现及地层意义[J].微体古生物学报,1992, 9 (3): 303-309.
    [98]东野脉兴.海相磷块岩成因理论的沿革与发展趋势[J].化工地质,1992,14(3):3-7.
    [99]东野脉兴,周宜忍,黄守英,等.扬子盆地磷块岩岩石学及磷块岩序列[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,283-299.
    [100]范德廉,张焘,叶杰,等.中国的黑色岩系及其有关矿床[M].北京:科学出版社,2004:76-437.
    [101]葛朝华,韩发.大宝山铁-多金属矿床的海相火山热液沉积成因特征[J].矿床地质,1986,1:3-14.
    [102]戈定夷,刘永光.滇东磷块岩物质组分研究[J].矿物岩石,1989,9(2):25-44.
    [103]高峰.新元古代陡山沱期瓮安生物群的埋藏[D].南京:中国科学院南京地质古生物研究所,2002,1-115.
    [104]贵州省地质局.1:20万瓮安幅调查报告[R].贵阳:贵州省地质局三分队,1965.
    [105]贵州省地质局.1:20万瓮安幅调查报告[R].贵阳:贵州省地质局,1970.
    [106]郭庆军,刘丛强,Harald Strauss,等.贵州瓮安陡山沱组剖面碳同位素生物地球化学研究[J].矿物岩石,2005,25(2):75-80.
    [107]郭庆军,杨卫东,刘丛强.贵州瓮安生物群和磷矿形成的沉积地球化学研究[J].矿物岩石地球化学通报,2003,2(3):202-207.
    [108]湖北省地质局区域地质测量队七分队.1:20万宜昌幅调查报告[R].武汉:湖北省地质局,1970.
    [109]黄贵生.云南东部寒武纪磷块岩岩石学特征的初步研究[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,303-312.
    [110]胡珞兰,东野脉兴,郑文忠.鄂西磷块岩沉积序列[J].沉积学报,1993,11(1):84-92.
    [111]郝诒纯,茅绍智.微体古生物学教程[M].武汉:中国地质大学出版社,1989.
    [112]黄永建,Thierry A,邹艳荣,等.古海洋活性磷埋藏记录及其在氧气地球化学循环研究中的运用[J].地学前缘,2005,12(2):189-197.
    [113]黄第藩,赵孟军.塔里木盆地满加尔油气系统下古生界油源油中蜡质烃来源的成因分析[C]//第六届有机地球化学学术讨论会,论文摘要汇编,1996,2.
    [114]韩秀玲.碳氟磷灰石的红外吸收光谱[J].地质科学,1980,(2):156-166.
    [115]蒋干清,史晓颖,张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J].科学通报,2006,51(10):1121-1137.
    [116]金瞰昆.欧洲有机质成矿作用研究进展[J].地球科学进展,2002,17(5):787-788.
    [117]姜乃煌,黄第藩,宋孚庆,等.不同沉积环境地层中的芳烃分布特征[J].石油学报,1994,15(3):42-50.
    [118] K E彼得斯,J M莫尔多万(姜乃煌等译).生物标记化合物指南. [M].北京:石油工业出版社,1995.
    [119]刘宝珺,许效松.中国南方岩相古地理图集(震旦纪-三叠纪)[M].北京:科学出版社,1994.
    [120]刘鸿允.中国震旦系[M].北京:科学出版社,1991,1-380.
    [121]刘魁梧.贵州瓮安磷矿磷酸盐矿物与岩石学研究[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,319-334.
    [122]刘魁梧,陈其英.磷块岩的胶结作用[J].地质科学,1994,29 (1) :62-70.
    [123]李美俊,王铁冠.扬子区新元古代“雪球”时期古环境的分子地球化学证据[J].地质学报,2007,81(2):220-229.
    [124]刘鹏举,尹崇玉,高林志,等.湖北宜昌樟村坪埃迪卡拉系陡山沱组微体化石新材料及锆石SHRIMP U-Pb年龄[J].科学通报,2009,54(6):774-780.
    [125]李任伟,李哲,王志珍,等.分子化石指标在中国东部盆地古环境分析中的应用[J].沉积学报,1988,6(4):108-118.
    [126]李勇.上扬子区晚震旦世地层古生物研究[D].西安:西北大学,2002.
    [127]刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1987.
    [128]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
    [129]黎荫厚,杨秀琦.湖北荆襄磷块岩矿产地质特征及成矿机理探讨[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(2).北京:地质出版社,1984,285-296.
    [130]柳永清,尹崇玉,高林志,等.峡东震旦系层型剖面沉积相研究[J].地质评论,2003,49(2):187-194.
    [131]刘兆莹.滇东磷矿床中粘土矿物的研究[J].矿物岩石,1993,13(1):18-24.
    [132]孟凡巍,周传明,燕夔,等.通过C27/C29甾烷和有机碳同位素来判断早古生代和前寒武纪的烃源岩的生物来源[J].微体古生物学报,2006,23(1):51-56.
    [133]梅冥相,周鹏,张海,等.上扬子区震旦系层序地层格架及其形成的古地理背景[J].古地理学报,2006,8(2):219-231.
    [134]牟南,吴朝东.上扬子地区震旦-寒武纪磷块岩岩石学特征及成因分析[J].北京大学学报(自然科学版),2005,41(4):551-562.
    [135]冉瑞生,赵小明.湖北宜昌磷矿新工业磷矿层的特征及其地质意义[J].地质找矿论丛,2008,23(4):320-324.
    [136]施春华.磷矿的形成与Rodinia超大陆裂解、生物爆发的关系-以贵州瓮安、开阳、织金磷矿为例[D].贵阳:中科院地球化学研究所,2005,1-80.
    [137]尚惠云,姜乃煌.陆相原油及生油岩中的特征生物标志物-伽马蜡烷[J].沉积学报,1984,2(4):84-88.
    [138]孙知明.华南陡山沱期古地理环境及"雪球地球"研究新进展[J].地质通报,2004,23(8):728-731.
    [139]盛章琪,周茂基.中国南方震旦纪磷块岩的岩石学[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,229-240.
    [140]唐天福,张俊明,蒋先健.湘鄂西部晚震旦世地层与古生物的发现及其意义[J].地层学杂志,1978,2(1):32-45.
    [141]吴朝东,陈其英.湘西磷块岩的岩石地球化学特征及成因[J].地质科学,1999,34(2):213-222.
    [142]温汉捷,裘愉卓,姚林波.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].地球化学,2000,29(1):28-34.
    [143]王勇,钟建华,马锋,等.济阳坳陷陡坡带深层砂砾岩体次生孔隙成因机制探讨[J].地质学报,2008,82(8):1152-1159.
    [144]王约,何明华,喻美艺,等.黔东北震旦纪陡山沱晚期庙河型生物群的生态特征及埋藏环境初探[J].古地理学报,2005,7(3):328-335.
    [145]王启军,陈建渝.油气地球化学[M].北京:中国地质大学出版社,1988.
    [146]王玉华,侯启军,孙德君,等.柴达木盆地北缘地区中新生代地层油气生成与资源评价[M].北京:科学出版社,2004.
    [147]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989,292-320.
    [148]王自强,高林志,尹崇玉.峡东地区震旦系层型剖面的界定与层序划分[J].地质论评,2001,47(5):449-457.
    [149]解启来,陈多福,漆亮,等.贵州瓮安陡山沱组磷块岩的稀土元素地球化学特征与沉积古环境[J].矿物学报,2003,23(4):289-293.
    [150]许玩宏,张忠英,沈平,等.贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物[J].沉积学报,1997,15(3):72-77.
    [151]夏文杰,杜森官,徐新煌,等.中国南方震旦纪岩相古地理与成矿作用[M].北京:地质出版社,1994.
    [152]邢裕盛等.中国地层[M].北京:地质出版社,1989,1-310.
    [153]殷纯嘏,张昀,姜乃煌.贵州瓮安新元古代陡山沱组磷块岩中的有机化合物[J].北京大学学报(自然科学版),1999,35(4):509-517.
    [154]尹崇玉,柳永清,高林志,等.震旦(伊迪卡拉)纪早期磷酸盐化生物群:瓮安生物群特征及其环境演化[M].北京:地质出版社,2007:4-119.
    [155]叶杰.华南震旦纪-寒武纪两期成磷事件及其地球动力学意义[D]北京:中国科学院地质与地球物理研究所,2002,1-50.
    [156]叶连俊,等.生物有机质成矿作用和成矿背景[M].北京:海洋出版社,1998,5-441.
    [157]叶连俊,陈其英,赵东旭,等.中国磷块岩[M].北京:科学出版社,1989,1-316.
    [158]叶连俊,陈其英.沉积矿床多因素多阶段成矿论[J].地质科学,1989, (2):109-128.
    [159]杨競红,蒋少涌,凌洪飞,等.黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J].地学前缘,2005,12(2):143-150.
    [160]杨刚忠,廖宗明,李方会,等.宜昌磷矿北部地区中磷层(Ph2)地质特征及富矿带展布[J].资源环境与工程,2008,22(4):406-411.
    [161]杨群.部分后生动物的谱系年代学分析-分子数据与化石记录的结合[C]//生物的起源、辐射与多样性演变-华夏化石记录的启示.北京:科学出版社,2006,160-173.
    [162]杨瑞东,赵元龙.我国早期后生动物群的特异埋藏机理探讨[J].沉积学报,1999,17(1):161-165.
    [163]杨卫东,肖金凯,于炳松,等.滇黔磷块岩沉积学、地球化学与可持续开发战略[M].北京:地质出版社,1997, 41-56.
    [164]杨暹和,陈远德.西南地区地层总结(震旦系)[R].成都:地质部成都地质矿产研究所,1981.
    [165]袁训来,肖书海,尹磊明,等.陡山沱期生物群-早期动物辐射前期的生命[M].合肥:中国科学技术大学出版社,2002.
    [166]袁训来,肖书海,周传明.新元古代陡山沱期真核生物的辐射[C]//生物的起源、辐射与多样性演变-华夏化石记录的启示.北京:科学出版社,2006,13-27.
    [167]周传明.贵州瓮安地区上震旦统碳同位素特征[J].地层学杂志,1997,21(2):124-129.
    [168]周传明,陈哲,薛耀松.江西上饶朝阳磷矿新元古代晚期陡山沱组微体化石新材料[J].古生物学报,2002,41(2):178-192.
    [169]周传明,解古巍,肖书海.湖北宜昌樟村坪陡山沱组微体化石新资料[J].微体古生物学报,2005,22(3):217-224.
    [170]周传明,袁训来,肖书海,等.湖北保康陡山沱组磷酸盐化微体化石组合[J].微体古生物学报,2004,21 (4):349-366.
    [171]周传明,薛耀松,张俊明.贵州瓮安磷矿上震旦统陡山沱组地层和沉积环境[J].地层学杂志,1998,22(4):308-314.
    [172]翟世奎.冲绳海槽的岩浆作用与海底热液活动[M].北京:海洋出版社,2001.
    [173]张俊明,李国祥,周传明.滇东下寒武统含磷岩系底部火山喷发事件沉积及其意义[J].地层学杂志,1997,21(2):91-155.
    [174]周茂基,盛章琪,江荣吉,等.中国南方震旦纪的成磷环境和成磷作用[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,255-265.
    [175]曾允孚,沈丽娟,何廷贵,等.滇东早寒武世含磷岩系层序地层分析[J].矿物岩石,1994,14(3):43-53.
    [176]曾允孚,王宝清.峨眉-雷波地区麦地坪段磷矿沉积环境[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(2).北京:地质出版社,1984,145-166.
    [177]曾允孚,杨卫东.云南昆阳、海口磷矿的富集机理[J].沉积学报,1987,5(3):19-27.
    [178]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
    [179]张叔茂.条带状微粒磷块岩的研究及其成因探讨[C]//国际地质对比计划中国委员会,第五届国际磷块岩讨论会论文集(1).北京:地质出版社,1984,249-269.
    [180]张同钢,储雪蕾,陈孟莪,等.新元古代全球冰川事件对早期生物演化的影响[J].地学前缘,2002,9(3):49-56.
    [181]张同钢,储雪蕾,张启锐.陡山沱期古海水的硫和碳同位素变化[J].科学通报,2003,48(8):850-855.
    [182]郑文忠,东野脉兴.鄂西陡山沱组磷块岩矿层划分对比及成矿规律[J].矿物岩石,1994,14(3):89-95.
    [183]郑文忠,东野脉兴,胡珞兰.鄂西震旦纪陡山沱组磷块岩稀土元素地球化学[J].地质论评,1992,38(4):352-359.
    [184]赵元龙,何明华,陈孟莪,等.新元古代陡山沱期庙河生物群在贵州江口的发现[J].科学通报,2004,49(18):1916-1918.
    [185]赵一阳,翟世奎,李永植.冲绳海槽中部热水活动的新记录[J].科学通报,1996, 41(14):1307-1310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700