用户名: 密码: 验证码:
新疆西南天山晚古生代沉积盆地及大地构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天山位居欧亚大陆的腹地,是由一系列近东西走向的山脉和夹持于诸山脉之间的盆地、谷地所组成的一条结构复杂的山系,是世界上最复杂的造山带之一。西南天山造山带是整个天山造山带中地质构造最复杂的地区之一,保存有亚洲大陆形成演化的重要信息,难能可贵的是完整保存了该地区古生代洋壳演化发展的信息。其中,晚古生代西南天山的大地构造演化是天山造山带形成演化过程中最重要、最复杂的事件。目前对该地区的研究,由于不同学者所采取的研究方法、研究侧重点及测试分析手段不尽相同,因此对西南天山沉积盆地及构造演化认识尚存在不小的分歧。对西南天山晚古生代构造岩浆演化与沉积响应进行研究,不仅可以推动晚古生代西南天山的大地构造演化及天山造山带演化发展的研究,具有重大的理论意义,同时对该地区正在开展的矿产勘探工作也有现实的指导意义。
     上泥盆统——下石炭统地层在西南天山地区广泛发育,是西南天山地区的主要沉积地质体,主要岩组有库勒湖组((D3-C1)k)、图尤克阿秀组(C1t)、甘草湖组(C1g)和野云沟组(C1yy)。
     库勒湖组((D3-C1)k)为斜坡——深海沉积相沉积,可进一步细分为浊积岩亚相和深海盆地硅质岩、泥质粉砂岩亚相,发育碳酸盐岩浊积岩、火山碎屑浊积岩及深海放射虫硅质岩(夹锰矿层)和放射虫凝灰岩。在硅质岩中大量发育晚泥盆世——早石炭世放射虫。通过该组硅质岩宏观特征及结构构造、微量元素、稀土元素等的研究表明,硅质岩为大陆边缘环境产物,部分有火山作用释放的SiO2加入。库勒湖组形成于盆地拉张环境,由于拉张幅度较大,已拉到洋壳,大量发育基性火山岩,基性火山岩发育明显的枕状构造。
     图尤克阿秀组(C1t)为本次论文研究新建的岩石地层单元。该组第一岩性段主要发育大量基性火山岩与火山岩间互沉积的碳酸盐岩,根据其岩石组合、沉积结构、层序特征及稀土微量元素特征分析,基性火山岩为洋岛火山岩;第二段为一套复理石建造,显示浊流沉积岩的特征, Ce负异常,沉积环境处于较深水的还原环境或沉积环境离大陆相对较远的环境;第三岩性段的硅质岩组成高位域,硅质岩中大量发育放射虫化石,硅质岩的大量出现及灰岩的消失说明当时海盆深度达到了深海碳酸盐补偿深度(CCD)以下,导致沉积物以硅质沉积物等远洋沉积为主,具Ce正异常特征,表明在此期间沉积环境离大陆相对较近,洋盆具有深海欠补偿盆地的特征。
     甘草湖组为浅海陆棚沉积和陆棚边缘盆地沉积,岩石组合主要为一套碳酸盐岩夹少量碎屑岩、中基性火山岩、超镁铁质火山角砾熔岩,其碳酸盐岩地层为潮下低能带→高能带的浅海台地相→台地边缘浅滩相过渡带环境沉积产物。
     通过对西南天山晚泥盆世——早石炭世地层的分析,可以得出这样的结论,晚古生代南天山洋盆在晚泥盆世至石炭纪的这一阶段发生了新一轮的陆壳伸展,洋壳新生,洋盆扩张,并形成晚古生代南天山有限洋盆。
     西南天山晚古生代蛇绿岩带沿哈尔山南坡——霍拉山一带呈南北两支展布,北支则沿库勒湖、铁力买提达坂南坡、科克铁克达坂南坡一带产出;南支西起梅斯布拉克,经穹格果勒、阿尔腾柯斯河上游、满大勒克、喀拉果勒、独库公路965km处、色日克牙依拉克分布。蛇绿岩中的基性岩TFe、MgO平均含量与MORB平均值接近,富钾。多数微量元素含量介于洋岛玄武岩(OIB)和洋中脊玄武岩(MORB)之间,比较而言总体与洋中脊玄武岩接近,但具有由洋中脊玄武岩向洋岛玄武岩过渡的特征。岩石轻稀土亏损,重稀土富集,稀土分配曲线右倾,其总体特征与N-型洋中脊玄武岩相似。在岩石宏观组成上,与火山岩相伴生的岩石主要为远洋沉积的硅质岩、放射虫硅质岩。根据硅质岩中的放射虫鉴定与40Ar/39Ar测年结果,可以将该蛇绿岩套的地质时代确定为D2-C1。
     西南天山晚古生代火山岩比较发育,火山岩主要分布在下泥盆统、下石炭统及下二叠统。下泥盆统火山岩赋存于阿尔腾柯斯组和阿帕达尔康组中,阿尔腾柯斯组火山岩主要为玄武岩,结合其微量元素、稀土元素特征,综合判定该套玄武岩形成于洋中脊环境。阿帕达尔康组火山岩兼有钙碱性系列和拉斑玄武岩系列特征,形成于活动大陆边缘弧后盆地扩张环境。下石炭统火山岩主要赋存于图尤克阿秀组内,岩性主要为玄武岩,枕状构造发育,表现K、Zr、Sm强烈亏损,轻稀土明显富集,重稀土亏损,其玄武岩的稀土分配曲线曲线形态与夏威夷Kohala火山的洋岛碱性相似,综合判断该火山岩应形成于为洋岛(海山)环境。二叠纪火山岩主要赋存地层为小提坎里克组,主要为中酸性火山岩,微量元素表现K、Zr、Sm亏损,总体特征与A型花岗岩相似,轻稀土明显富集,重稀土亏损,稀土分配曲线呈一右倾单斜曲线,在稀土分配曲线上Eu也显示强烈亏损,形成于板内环境,与陆内造山运动有关。
     西南天山晚古生代构造演化是其整个地质构造演化的一个重要片段,继承了早古生代西南天山的构造演化背景。综合西南天山晚古生代沉积岩、火山岩、蛇绿岩特征进行分析,南天山洋并没有在早古生代的俯冲碰撞过程中闭合,而是在晚泥盆世至石炭纪期间洋盆经历了一次扩张过程。在晚古生代,西南天山沉积盆地及大地构造演化经历了如下三个阶段:1、晚古生代南天山洋盆的扩张阶段,该阶段起始于晚泥盆世,至少延续至早石炭世;2、晚古生代南天山洋的俯冲碰撞及洋盆闭合阶段,晚古生代南天山洋俯冲碰撞造山可能结束于晚石炭世末,塔里木微板块和中天山伊犁微板块最终弥合、焊接,原来四分五裂的新疆古克拉通再次拼接在一起,形成统一的陆块,并形成残留海盆;3、碰撞期后板内演化阶段,两大板块碰撞弥合后,由于热松弛发生引张作用,引发一期花岗岩浆活动,其特点为分布范围广,不受已有构造单元界限的限制,还出现一系列碱性岩体的侵入。
Tianshan in the hinterland of the Eurasian continent, is a complex structure of the mountain, Composed by a series of near east-west mountain ranges and basin, valley Holding on Many Mountains,and is one of the most complex orogenic belt in the world .Southwestern Tianshan orogenic belt is one of the most complex geological structures areas in the whole Tianshan orogenic belt, conserving the important information of the Asian continent evolution, and it's valuable is that it completely saved the information of the region's Paleozoic oceanic crust evolution and development. Among them, Late Paleozoic tectonic evolution of southwestern Tianshan is the most important and most complex events in the process of formation and the Tianshan orogenic belt evolution. Currently because different research methods adopted by academics, research focus and testing of analytical tools focus on different, We are many differences between understanding of sedimentary basins and tectonic evolution of Southwestern Tianshan in the region. Studying the evolvement of late paleozoic era tectono-magmatic and sedimentary response in Southwestern Tianshan mountains, not only can promote the study of Southwestern Tianshan Late Paleozoic tectonic evolution and development of the Tianshan orogenic belt evolution, also has great guidance significance for mineral exploration in this place.
     Upper Devonian - Lower Carboniferous strata extensively developed in the southwestern Tianshan area.It is the major sedimentary geological body of southwestern Tianshan region, Formed by ku-le-hu group ((D3-C1) k), tu-you-ke-a-xiu Group (C1t), gan-cao-hu Group (C1g) and ye-yun-gou Group (C1yy).
     Ku-le-hu group((D3-C1)k)is a slope-Deep-sea sedimentary facies deposit, it is divided into turbidite intrafacies and deep sea basin silica rock、argillaceous siltstoue intrafacies,development of carbonate turbidite,Pyroclastic turbidites,deep-sea radiolarian chert(Manganese layer folders)and radiolarian tuff.There are a large number of Late Devonian - Early Carboniferous radiolarians in the siliceous rocks。Siliceous rocks by the group characteristics and structure of macro-structure, trace elements, rare earth elements and other studies have shown that,siliceous rocks is product of the continental margin environment, part of the role of the release of volcanic SiO2 adding into it。Ku-le-hu group was formed in the basin, an extensional environment,As the tensile by a big margin, ocean crust has been pulled a large number of developmental basic volcanic rocks, mafic volcanic rocks developed a clear pillow-like structure.
     Tu-you-ke-a-xiu group (C1t) is the new study in rock stratigraphic units of this paper,the first group developed a large number of inter-sedimentary carbonate rocks which with major lithologic mafic volcanic rocks and volcanic rocks.In accordance with its combination of rock, sedimentary structures, sequence features and characteristics of rare-earth trace elements analysis, mafic volcanic rocks of oceanic island volcanic rocks; the second paragraph of the construction of a set of flysch, shows the characteristics of turbidite sedimentary rocks, Ce negative anomaly,sedimentary environment in the deeper water to restore the environment or the sedimentary environment is relatively distant from the continental environment; The third lithologic composition of the siliceous rocks high field,development of a large number of radiolarian fossils in siliceous rocks, siliceous rocks and limestone of the disappearance of a large number of emergence indicating that they reached a deep-sea basin depth of the carbonate compensation depth (CCD) below, led to siliceous sediments and other ocean sediments deposited mainly,has Ce positive anomalies features,indicates that away from the continental sedimentary environment during this period is relatively close, ocean basin with a deep-sea basins due to the characteristics of compensation.
     Gancaohu Group deposition of shallow continental shelf and the continental shelf edge of sedimentary basins, rocks are mainly of a combination of a small amount of carbonate clastic rock folder, intermediate-mafic volcanic rocks, ultramafic volcanic breccia lava, its carbonate rocks of tidal energy with low-energy band→shallow platform facies transition zone→platform marginal shoal relative to the product of environmental sedimentology.
     By Southwestern Tianshan Late Devonian - Early Carboniferous Stratigraphic analysis can draw such a conclusion, in the period between Late Devonian and Carboniferous, late Paleozoic South Tianshan oceanic basin changed, such as extended continental crust, new oceanic crust, expansion of ocean basin, and the formation of Late Paleozoic South Tianshan oceanic limited basin.
     Ophiolite suite of Late Paleozoic South Tianshan limited in the southern slopes of Hal Hill - Hora Hill along with north and south. The north branch of Ophiolite suite belt along with the kul lake, the southern slope of Ke Ke Tie Ke Da Ban, the southern slope of Tie li Mai Tida Ban. The south Branch of Ophiolite suite belt along with the Mei Si Bu La Ke, Al-teng Coles River, Man Da Le Ke, Kara Guo Le, Du Ku Highway 965km ,Se Ri Ke Ya Yi La Ke. The basic rocks TFe, MgO average content of Ophiolite close to the average MORB,K-rich. Most of trace elements ranging from ocean island basalts (OIB) and mid-ocean ridge basalt (MORB), close to mid-ocean ridge basalt, but has the character of transition by the mid-ocean ridge basalt transitional to oceanic island basalts. Loss of rock light rare earth and heavy rare earth rich and rare-earth distribution curve of right-wing which characteristics similar to N-type mid-ocean ridge basalt. Macro-composition of the rock, and volcanic rocks accompanied the deposition of mainly pelagic chert, radiolarian chert. According to radiolarian siliceous rocks in the identification and 40Ar/39Ar dating results, the ophiolite may be the geological age identified as D2-C1.
     Comparison of Late Paleozoic volcanic rocks in southwestern Tianshan Development, volcanic rocks are mainly distributed in the next Devonian, Lower Carboniferous and Lower Permian. Lower Devonian volcanic rocks occur in the Al-teng Coles Group and Apa DELCAM group.Al-teng Caicos Formation volcanic rocks are mainly basalt.Its trace elements and REE characteristics indicate the environment of mid-ocean ridge basalt.Apa DELCAM Group volcanic rocks in both calc-alkaline series and tholeiitic series features, formed in the active continental margin back-arc basin expansion. Lower Carboniferous volcanic rocks occur in the diagram show You Kee Group. It’s lithology mainly basalt and pillow-like structure.It’s K, Zr, Sm strong losses and significant enrichment of light rare earth and heavy rare-earth loss.Its rare earth basalt distribution curve curve shape similar to volcano oceanic island alkaline of Hawaii Kohala. Comprehensive determine the volcanic rocks should be formed in the oceanic island (seamounts) environment. Occurrence of Permian volcanic rocks Tikanlike formation for small groups, mainly in acidic volcanic rocks, trace the performance of K, Zr, Sm losses, the overall characteristics and A-type granites are similar significant enrichment of light rare earth and heavy rare-earth loss. Rare-earth distribution curve showed a right-wing single-oblique curve and Eu also showed a strong loss. It is formed in the intraplate environment, in relation to the intracontinental orogeny.
     Late Paleozoic tectonic evolution of Southwestern Tianshan is an important segment, and inherited the early Paleozoic tectonic evolution of southwestern Tianshan background. Integrated Southwestern Tianshan Late Paleozoic sedimentary rocks, volcanic rocks, ophiolites features were analyzed.South Tian shan ocean didn’t closure during the collision in the early Paleozoic subduction.Oceanic basin going through an expansion in the Late Devonian to Carboniferous. In the late Paleozoic, Southwest Tianshan and tectonic evolution of sedimentary basins through the following three stages: 1, Late Paleozoic South Tianshan oceanic basin of the expansion phase, which began in the Late Devonian, at least extend to the Early Carboniferous; 2, Late Paleozoic South Tianshan Ocean subduction collision and oceanic basin closure stage, the Late Paleozoic South Tianshan ocean subduction-collision orogeny may end at the end of the Late Carboniferous, the Tarim plate and the central Tianshan micro-Yili micro-plate end-bridging, welding, the original split Xinjiang ancient Craton again, stitching together to form a unified land mass, and the formation of residual basin; 3, Collision period intraplate evolution stage, the two bridging plate collision, due to thermal relaxation effects occurring tensile, triggering a granitic magma activity.It’s characterized by wide distribution and free from the boundaries of tectonic units.There was a series of basic intrusive rock.
引文
[1] Allen,M.B. ,B.F. Windley,and Zhang chi ,1992,Paleozoic collisional tectonics and magmatism of the China Tian Shan,central Asian:Tectonophysics, vol.200:89-115.
    [2] Allmendinger,R.W.,1990,Foreland Shortening and crustal balancing in the Andes at 30°s latitude:Tectonics,vol.9,No.4:789-809.
    [3] Bally A W , Snelson S. Realms of subsidence [A ]. In: A D M ialled Facts and principles of world petro leum occurrence [C ]. Canadian Society of Petro leum Geologists M emoir 6,1980.9-94.
    [4] Barrett,T.J.,Friedrichsen,H.,1989.Stable isotopic composition of atypical ophiolitic rocks from east Liguria,Italy.Chemical Geology,80:71-84.
    [5] Canil,D.,2004,Mildly incompatible elements in peridotites and the origins of mantle lithosphere,Iithos,77:375-393.
    [6] Coleman,R.G.,1984,The diversity of ophiolites,Geol.Mijinbrum,63:141-150.
    [7] Coleman R G. The diversity of ophiolites [ J ]. Geol. M ijnbouw ,1984, 63: 141- 150.
    [8] Cloetingh S, Fernandez M , Munoz J A , et al. Structural controls on sedimentary basin evolution:introduction [J ]. Tectonophysics,1997, 282:10-18.
    [9] Cloetingh S, Sassi W ,Horvath F, et al. Basin analysis and dynam ics of sedimentary basin evolution [J ]. Sediment Geo l, 1993,86:1-201.
    [10] David K, et al. 2000.Assessment of t he Zr/ Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet. Sci. Letters,178:285-301.
    [11] Dickinson,W.R.,1974,Sedimentation within and baside ancient and monder magmatic arcs,in:Dott,R.H.,Jr.,and R.R.Shaver,eds.,Modern and ancient geoynclinal sedimentation:Society of Economil Paleontologists and Mineralogists Special Publication 19:230-239.
    [12] El-Rus, M. A. A., Neumann, E. R., Peters, V., 2006. Serpentinization and dehydration in the uppor mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths.Lithos,89:24-46.
    [13] Fallon T J , Malahoff A , Zonenshain L P , Bogdanov Y. 1992. Petrology and geochemistry of back-arc basin basalts from lau Basin spreading ridges at 15°,18°and 19°S. Mineral . Petrol.,47:1-35.
    [14] Frey F A , Green D H,Roy S D.1978. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimntal petrological data. J . Petrol.,19 : 463-513.
    [15] Gealey W K. Ophiolite obduction mechenism [A ]. Proc Inter-Ophiolite Symp [M ]. Cyprus Geol Surv. Dept, 1980. 228- 243
    [16] Harios,J.,1990,Rare earth element geochemistry or Thetford Mines ophiolite complex,Northern Appalachians,Canada,Contribution to Moneralogy and Pertology,Vol.105,433-445.
    [17] Hartmann,G.,Wedepohl,H.,1990.Metasomatically altered peridotite xenoliths from theHessian depression(Northwest,Germany).Geochim.Cosmochim,Acta,54:71-86.
    [18] Jung S, Masberg P. 1998. Major and trace element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg ( central Germany) Const raints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. Journal of Volcanology and Geot hermal Research , 86:151-177.
    [19] Laurent R. Peridotite intrusions emplaced in the fossil suprasubduction zone environment of Cyprus. in : Parson , et al.,eds. Ophiolites and their Modern Oceanic Analogues. London : Geol. Soc. Publ. House , 1992 , 233~239.
    [20] Liang,Y.H.,Li,W.Q.,2000.Discussion of opening-Closing tectonic belt of Paleozoic in south Tianshan mountains, China. Xinjiang Geology, 18(3): 220-228 (in Chinese with English abstract).
    [21] M ascle A , Puigdefabregas C, L uterbacher H P, et al. Cenozoic Foreland Basins of Western Europe[C ]. Geological Society, London, Special Publication London: Geo logical Society Publishing House. 1999.
    [22] McDonough,W.F.,Sun,S.S,,1995.The composition of the earth.Chemical Geology,120:223- 253.
    [23] McDonough W F, Frey F A. 1989. Rare earth elements in upper mantle rocks. Rev. Mineral , 21:99-145.
    [24] Melcher,E.,Meisel,T.,Puhl,J.,et a1.,2002.Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps:Constraints from geochemistry.Lithos,65:69一112.
    [25] Michael,P.J.,1988.The concentration,behavior and storage of H2O in the suboceanic mantle:Implications for mantle metasomatism. Geochim. Cosmochim. Acta,52:555—566.
    [26] M ichard A , Juteau T,Whitechurch H. L’obduction: revue desmodeles et confrontation au cas de l’oman [J ]. B ull. S oc. Geol. ,France, 1985, 2: 189- 198
    [27] Nicolas A. S tructure of Ophiolite and D y nam ics of Oceanic L ithosphere[M ]. [ s. l. ]: Kluwer A cadam ic Publishers, 1989
    [28] Niu,Y.,2004.Bulk-rock major and trace element compositions of abyssal peridotites:Implications for mantle melting,melt extraction and post-melting processes beneath ocean ridges.J.Petro1.,45:2423—2458.
    [29] Niu,Y. Hekinian,R.,1997,Basaltic liquids and harzburgitic residues in the Garrett transform:A case study at fastspreading ridges.Earth Planet.sci.Lett.,146:243- 258.
    [30] Nui Y, O’Hara M J . 2003. Origin of ocean island basalts:a new perspective from petrology, geochemistry, and mineral physics considerations. J . Geophys. Res.,108: ( B4, 2209).
    [31] Parkinson,I.J.,Pearce,J.A.,Thirlwal1,M.F.,et a1.,1992.Trace element geochemistry of peridotites from Izu-Bo-nin-Mariana forearc,Leg 125.Proc.Ocean Dril1.Program Sci.Results,125:487-506.
    [32] Pearce,J.A.,Lippard,S.J.,Roberts,S.,1984.Characteristics and tectonic significance of suprasubduction zone ophiolites.In:Kokelaar,B.P.,Howells,M.F.,eds.,Marginal basin geology.Geological Society of London Special Publication,16:77- 94.
    [33] Prinzhofer,A.,Allegre,C.J.,1985.Residual peridotites and the mechanisms of partial melting.Earth Planet.Sci.Lett.,74:251—265.
    [34] Proenza,J.,Gervilla,F.,Melgarejo,J.C.,et a1.,1999.Alrich and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt(eastern Cuba):Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle.Econ.Geo1.,94:547-566.
    [35] Quinlan G, Walsh J , Sassi W , et al. Relationship between deeper litho spheric processes and near-surface tectonics of basins [ J ].Tectonophysics, 1993, 226:217- 225.
    [36] Rampone,E.,Romairone,A.,Hofmann,A.W .,2004.Contrasting bulk and mineral chemistry in depleted mantle peridotites:Evidence for reactive porous flow.Earth and Planetary Science Letters,218:491-506.
    [37] Robinson P T , Malpas J . The Troodos ophiolite of Cyprus : New perspectives on its origin and emplacement . in : Malpas J. et al.,eds. Ophiolites , Oceanic Crustal Analogues. Nicocia , Cyprus : Geol. Sur. Dept . , 1990 , 13~26.
    [38] Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology,184:123-138.
    [39] Saunders A D and Tarney J. 1991. Back-arc basins. In : Floyd P A.ed. Oceanic Basalts,219-263.
    [40] Solomovich L I and Trifonov B V. 2002. Postcollisional granites in the South Tien Shan ( Tianshan Mountains) Variscan collisional belt , Kyrgyztan. Journal of Asian Earth Sciences,21:7-21.
    [41] Stephenson R A , W ilson M, De Boorder H, et al. EUROPROBE:Intrap late tectonics and basin dynam ics of the Eastern European platform [J]. Tectonophysics, 1996, 268:1-309.
    [42] Sun,S.,McDonough,W.F.,1 989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J.,eds. , Magmatism in the ocean basins . Geological Society of London Special Publication,42:313-345.
    [43] Sun S-S , McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saunders A D , Norry M J . eds. Magmatism in the Ocean Basins. Special Publication , Geological Society of London,42:313-345.
    [44] Sun S S.McDonough W F Chemical and tsotapic systemattcs of oceanic basalts: implicaoom for mantle composition and proceses[A] In:Saunders A D.Norry,M J(eds) Magmatism in thc ocean bastans[C] Geol SocSpec Pub,Lundon.1989.42:313-345.
    [45] Taylor S R,McLennan S M. 1985. The Continental Crust:Its Composition and Evo- lution. Oxford : Blackwell Scientific Publ.,1-312.
    [46] Taylor R N and Nesbitt R W. 1988. Light rare-earth enrichment of supra subduc- tion-zone mantle:evidence from the Troodos ophiolite,Cyprus. Geology,16: 448-451.
    [47] Thompson R N, Morrison M A, Hendry GL,Parry S J . 1984. An assessment of the relative roles of crust and mantle in magma genesis:an elemental approach. Philos. Trans. R. Soc.London A , 310:549-590.
    [48] Volkava,N.I.,Budanov,V.I.,1999.Geochemica1 discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt,South Tianshan,Tajikistan,seamount volcanism and accretionary tectonics.Lithos,47:201-216.
    [49] Wang,C.,Liu L,Che,Z.C.,et al.,2007a.Geochrono1ogy,petrogenesis and significance of Baleigong mafic rocks in Kokshal segment , Southwest Tianshan. Geological Review,53(6):743-754 (in Chinese with English abstract).
    [50] Wang,C.,I iu,L,Luo,J.H.,et a1.,2007b.Late Paleozoic post-collisional magmatism in the southwestern Tianshan orogenic belt:Take the Baleigong pluton in the Kokshal region as an example.Acta Petrologica Sinica,23(8):1830-1840 (in Chinese with English abstract).
    [51] Wang,X.B.,Bao,P.S.,1996.Genetic types of Chinese ophiolite and their metallogenetic specialization.In:Zhang,Q.,ed.,Study on ophiolites and geodynamics.Geological Publishing House,Beijing,69-74(in Chinese).
    [52] Workman R K, Hart S R , Blusztajn J , J ackson M , Kurz M ,Staudigel H. 2003. Enriched mantle II : a new view f rom the Samoan hot spot . Geophys. Res. Abstr . , 5:13-656.
    [53] Wilson M. 1989. Igneous Pet rogenesis. London : Unwin Hyman , 1-466.
    [54] Zheng,J.P.,Lu,F.X.,Yu,C.M.,et a1.,2003.Mantle replacement:Evidence from comparison in trace elements between peridotite and diopside from refractory and fertile mantle,North China.Earth Science- journal of China University of Geosciences,28(3):235-240(in Chinese with English abstract).
    [55] Zheng,J.P.,I u,F.X.,Yu,C.M.,et a1.,2006.Peridotite petrochemistry of the eastern North China:Significance for lithospheric mantle evolution.Earth Science-Journal of China University of Geosciences,31(1):49-56(in Chinese with English abstract).
    [56] Zoback M D, Stephenson R A , Cloetingh S, et al. Stresses in the litho sphere and sedimentary basin formation [J ]. Tectonophysics,1993,226:1-13.
    [57]陈骏、王鹤年、王汝成等,地球化学,北京:科学出版社,2004。
    [58]陈毓川、刘德权、唐延龄等,中国新疆战略性固体矿产大型矿集区研究,北京:地质出版社,2007。
    [59]陈衍景、鲍景新、张增杰等,西天山艾肯达坂组火山岩系的元素地球化学特征和构造环境,矿物岩石,24(3):36-45。
    [60]邓东松等,新疆1∶5万托克逊牧场幅(K-44-69-A)东半幅、阿里格郎木幅(K-44-69-B)区域地质调查报告,内部出版,1989。
    [61]邓泽景、魏永峰、陈大健等,新疆1:5万老虎台一带区域地质调查成果报告,内部出版,2009。
    [62]董连慧、沙德铭,西天山地区晚古生代浅成低温热液金矿床,北京:地质出版社,2005。
    [63]董云鹏、王润三、周鼎武,南天山北缘榆树沟变质基性!超基性岩的地球化学及其成因机制,地球化学,2001,30(6):559-568。
    [64]范廷宾、郑玉壮、胡新华等,新疆拜城县阿克塔什一带1∶5万区域地质矿产调查成果报告,内部出版,2009。
    [65]冯增昭、鲍志东、吴茂柄等,塔里木地区寒武纪和奥陶纪岩相古地理,北京:地质出版社,2005。
    [66]高俊、肖序常、汤耀庆等,西南天山构造地层学初步研究,地层学杂志,1995,19(2):122-128。
    [67]高俊、龙灵利、钱青等,南天山:晚古生代还是三叠纪碰撞造山带,岩石学报,2006,22(5):1049-1061。
    [68]郭令智、舒良树、卢华复等,中国地体构造研究进展综述,南京大学学报(自然科学),2000,36(1):1-17。
    [69]郭令智、朱文斌、马瑞士等,论构造耦合作用,大地构造与成矿学,2003,27(3):197-205。
    [70]郭召杰,蛇绿岩中伸展变形与古洋盆扩张构造研究综述,地质科技情报,2000,19(4):6-9。
    [71]耿全如、王立全、潘桂堂等,西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据,地质学报,2007,81(9):1259-1276。
    [72]管海晏、王学佑、袁宏仕等,塔里木盆地遥感地质,北京:地质出版社,1997。
    [73]郝杰、刘小汉,南天山蛇绿混杂岩形成时代及大地构造意义,地质科学,1993,28(1):93-95。
    [74]何国琦、李茂松、韩宝福等,中国西南天山及邻区大地构造研究,新疆地质,2001,19(1):7-11。
    [75]胡霭琴、张国新、陈义兵等,中国新疆地壳演化主要地质事件年代学和地球化学,北京:地质出版社,2006。
    [76]姜常义、穆艳梅等,南天山东段古洋盆的形成与消亡,中国新疆天山地质与矿产论文集,北京:地质出版社,2004。
    [77]姜常义、穆艳梅、白开寅等,南天山花岗岩类的年代学、岩石学、地球化学及其构造环境,岩石学报,1999,15(02):298-308。
    [78]江元生、周幼云、王明光等,西藏冈底斯山中段第四纪火山岩特征及地质意义,地质通报,2003,22(1):16-20。
    [79]李才、胡敬仁、翟庆国等,印度与亚洲板块碰撞及碰撞时限的新证据,地质通报,2007,26(10):1299-1303。
    [80]李春昱、郭令智、朱夏等,板块构造基本问题,北京:地质出版社,1986。
    [81]李华芹、陈富文等、中国新疆区域成矿作用年代学,中国新疆区域成矿作用年代学,北京:地质出版社,2004。
    [82]李建兵、彭波、李振江等,新疆阿合奇县托什干河上游一带1∶5万区域地质矿产调查成果报告,内部出版,2005。
    [83]李建兵、魏永峰、杜红星等,西南天山下二叠统小提坎立克组火山岩的地球化学特征,新疆地质,2009,27(4):315-319。
    [84]李建兵、肖渊甫、李再会等,新疆西南天山托什干河上游下石炭统火山岩特征、年代依据及地质构造意义,2010,28(2)。
    [85]李建兵、杨桂荣、陈奎等,新疆西南天山川乌鲁铜、金、锑多金属矿地质特征及成矿规律,新疆地质,2007,25(4):210-214。
    [86]李建兵、周超、薛红雷,新疆西南天山图尤克阿秀组的建立及地质特征,新疆地质,2009,27(2):210-214。
    [87]李强张立飞,新疆西南天山木扎尔特一带低压麻粒岩相变质作用P—T轨迹及其地质意义,岩石学报,2004,20(03):0583-0589。
    [88]李荣社、计文化、杨永成,昆仑山及邻区地质,北京:地质出版社,2008。
    [89]李双建、王清晨、李忠等,砂岩碎屑组份变化对库车坳陷和南天山盆山演化的指示,地质科学,2006,41 (3) : 465—478。
    [90]李天福、杨军臣,天山西段木扎尔特河和独库公路沿线火山岩与晚古生代构造的关系,西北地质科学,1997,18(2):11-20。
    [91]李玮、胡健民、高卫等,新疆南天山库尔干一带泥盆纪——早石炭世放射虫组合的发现,中国地质,2007,34(4):584-591。
    [92]李永军、张天继、栾新东等,西天山特克斯达坂晚古生代若干不整合的厘定及地质意义,地球学报,2008,29(2):145—153。
    [93]李曰俊、孔龙德、吴浩若等,南天山西端乌帕塔尔坎群发现石炭—二叠纪放射虫化石,地质科学,2005,40(2):220-226。
    [94]李曰俊、宋文杰、买光荣等,库车和北塔里木前陆盆地与南天山造山带的耦合关系,新疆石油地质,2001,22(5):376-382。
    [95]李曰俊、吴锡丹、可加勇,西南天山区域大地构造格局与金矿成矿规律,黄金地质科技,1994,39:11-15。
    [96]李兆鼎、毋瑞身、林宝钦等,中国火山岩地区金矿床,北京:地质出版社,2004。
    [97]李振江、谢云喜、秦华中等,新疆轮台县迪那河上游一带1∶5万区域地质矿产调查成果报告,内部出版,2009。
    [98]李注苍、李永军、李景宏等,西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析,新疆地质,2006,24(2):120-124。
    [99]刘宝珺、余光明、魏沐潮等,岩相古地理学教程,内部试用,1990。
    [100]刘静、李永军、王小刚等,西天山阿吾拉勒一带伊什基里克组火山岩地球化学特征及构造环境,新疆地质,2006,24(2):105-108。
    [101]林景仟、穆克敏、黄福生,岩浆岩成因导论,北京:地质出版社,1987。
    [102]龚一鸣、张克信,地层学基础与前沿,武汉:中国地质大学出版社,2007。
    [103]吕增、张立飞、曲军锋等,新疆西南天山哈布腾苏一带榴辉岩的岩石学特征及变质作用P—T轨迹,岩石学报,2007,23(07):1617-1626。
    [104]马延红、李注苍、李永军,西天山阿吾拉勒一带大哈拉军山组的厘定,甘肃科技,2007,23(5):94-96。
    [105]牛贺才、于学元、许继峰等,中国新疆阿尔泰晚古生代火山作用及成矿,北京:地质出版社,2006。
    [106]牛树银、孙爱群、王宝德,地幔热柱与资源环境,北京:地质出版社,2007。
    [107]芮行健、贺菊瑞、郭坤一等,塔里木地块矿产资源,北京:地质出版社,2002。
    [108]舒良树、卢华复、印栋豪等,中南天山古生代增生——碰撞事件和变形运动学研究,南京大学学报,2003,39(1):17-30。
    [109]舒良树、王博、朱文斌,南天山蛇绿混杂岩中放射虫化石的时代及其构造意义,地质学报,2007,81(9):1161-1168。
    [110]汤耀庆、高俊、赵民等,西南天山蛇绿岩和蓝片岩,北京:地质出版社,1995。
    [111]陶奎元,火山岩相构造学,南京:江苏科学技术出版社,1994。
    [112]万天夫,中国大地构造学纲要,北京:地质出版社,2004。
    [113]王博舒良树Michel FAURE等,科克苏-穹库什太古生代构造.岩浆作用及其对西南天山造山时代的约束,岩石学报, 2007,23(06):1354-1368。
    [114]王超、刘良、车自成等,西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA-ICP-MS U-Pb年龄及其大地构造意义,地质评论,2007,53(06):743-754.
    [115]王超、刘良、罗金海等,西南天山晚古生代后碰撞岩奖作用:以阔克萨彦岭地区巴雷公花岗岩为例,岩石学报,2007,023(08):1830-1840。
    [116]王超、刘良、罗金海等,西南天山阔克萨彦岭地区巴雷公地幔橄榄岩成因及其地质意义,地球科学——中国地质大学学报,2008,33(2):165-173。
    [117]王根厚、胡玲,第32届国际大会构造地质研究进展综述,现代地质,2004,18(4):423-428。
    [118]王华、陆永潮、任建业等,层序地层学基本原理、方法与应用,武汉:中国地质大学出版社,2008。
    [119]王清晨、李忠,盆山耦合与沉积盆地成因,沉积学报,2003,21(1):24-30。
    [120]王晓刚、杨高学、李永军等,西天山阿吾拉勒赛肯都鲁序列与大哈拉军山组火山岩地球化学对比研究,新疆地质,2007,25(4):345-350。
    [121]王永江、王润生、姜晓玮,西天山吐拉苏盆地与火山岩有关的金矿遥感找矿研究,北京:地质出版社,2004。
    [122]王有标、赵殿甲,中国新疆金矿床,北京:地质出版社,2006。
    [123]王中刚、朱笑青、毕华等,中国新疆花岗岩,北京:地质出版社,2006。
    [124]王作勋、邬继易、吕喜朝等,天山多旋回构造演化与成矿,北京:科学出版社,1990。
    [125]吴滏国、张达、陈柏林等,构造地质学现状和进展,地质评论,2001,47(4):446-447。
    [126]夏林圻、张国伟、夏祖春等,天山古生代洋盆开启、闭合时限的岩石学约束,地质通报,2002,21(2):55-62。
    [127]肖序常、何国琦、成守德等,中国新疆及邻区大地构造图,北京:地质出版社,2004.
    [128]肖序常、刘训、高锐等,中国新疆天山——塔里木——昆仑山地学断面,北京:地质出版社,2004.
    [129]肖序常、汤耀庆、冯益民等.新疆北部及其邻区大地构造,北京:地质出版社,1993.48-67.
    [130]肖渊甫、茅燕石、周济元,新疆东天山泥盆纪火山岩石学特征及其形成的大地构造环境,矿物岩石,1992,12(2):34-42。
    [131]新疆地质矿产局,新疆维吾尔自治区区域地质志,北京:地质出版社,1993。
    [132]新疆地质矿产局,新疆维吾尔自治区岩石地层,武汉:中国地质大学出版社,1999。
    [133]徐学义、马仲平、李向民等,西南天山吉根地区P-MORB残片的发现及其构造意义,岩石矿物学杂志,2003,22(3):245-253。
    [134] Hugh R. Rollison著,杨学明、杨晓勇、陈双喜译,岩石地球化学,合肥:中国科学技术大学出版社。
    [135]杨延兴、叶占福、张显庭等,新疆1:5万塔木其幅、二道卡子幅、乌宗图什河幅区域地质调查成果报告,内部出版,2006。
    [136]杨志华、王宏君、邓亚婷等,西天山那拉提构造带及邻区几个构造问题的讨论,陕西地质,2005,23(2):31-43。
    [137]尹福光、潘桂堂、朱弟成,全球大地构造与沉积关系研究进展,沉积与特提斯地质,2005,25(1-2):219-221。
    [138]伊海生、林金辉,藏北高原新生代高钾钙碱性系列火山岩与壳幔相互作用,北京:地质出版社,2004。
    [139]赵一鸣、吴良士、白鸽等,中国主要金属矿床成矿规律,北京:地质出版社,2004。
    [140]赵振华、白正华、熊小林等,西天山北部晚古生代火山浅侵位岩浆岩40Ar/39Ar同位素定年,地球化学,2003,32(4):317-327。
    [141]张江苏、李注苍,西天山阿吾拉勒一带大哈拉军山组火山岩构造环境分析,甘肃科技,2006,15(2):10-14。
    [142]张学奎、李注苍,西天山大哈拉军山组火山岩地球化学特征及地质意义,甘肃科技,2008,24(3):32-35。
    [143]张成立、周鼎武、陆关祥等,南天山库米什蛇绿混杂岩带中硅质岩的元素地球化学特征及其形成环境,岩石学报,2006,22(1):57-64。
    [144]张旗、钱青、王焰,蛇绿岩岩石组合及洋脊下岩浆作用,岩石矿物学杂志,2000,19(1):1-7。
    [145]郑和荣、蔡立国、李铁军,天山南北前陆盆地演化及褶皱-冲断带构造样式,北京:地质出版社,2007。
    [146]周济元、茅燕石、黄志勋等,东天山古大陆边缘火山地质,成都:成都科技大学出版社,1994。
    [147]周宗良、高树海、刘志忠等,西南天山造山带与前陆盆地系统,现代地质,1999,13(3):275-280。
    [148]中国地质科学院地质研究所,中国地质图,北京:地质出版社,2004.
    [149]朱云海、潘元明、张克信等,蛇绿岩就位机制研究,地质科技情报,2000,19(1):16-18。
    [150]朱志新、张建东、李生虎等,新疆1:25万喀赞其幅(K44C002004)区域地质调查成果报告,内部出版,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700