用户名: 密码: 验证码:
汶川地震重灾区多源影像处理及震害信息提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工大我国是一个自然灾害频发且种类繁多的国家,如何有效地监测灾情,及时有效地处理综合信息,并作出科学可行的救灾应急措施,这些都将成为政府日常管理的重要组成部分。以遥感技术为主要手段获取多时相、多分辨率、多类型的遥感影像及遥感图像处理技术一直以来被应用于各种自然灾害防治的各个环节之中。特别是近十多年以来,随着遥感技术的不断成熟和遥感图像处理手段的不断提高,遥感技术已成为开展灾害动态监测与预警和灾情实时调查与评估等方面中不可缺少的重要手段之一。以遥感图像处理为主体的遥感技术在自然灾害信息提取和灾后重建等方面正发挥越来越大和不可替代的作用。而震后信息的及时有效的处理,尤其是以遥感技术为主要手段获取的多源影像信息及时有效地处理还有待进一步深入,数据的综合分析利用还有待进一步拓展与完善。
     5.12汶川特大地震发生突然,其破坏和强度超出我们想象。灾区路断,桥断,通信中断,重灾区陷入信息隔绝状态。在地震灾区通信、交通被严重破坏的情况下,卫星遥感和航空遥感技术成为快速获取灾情的最佳途径。事实上在5.12抗震救灾中,不仅是国内的多支科研力量,包括美国、欧盟和日本等国外也提供了大量遥感数据,因此灾区遥感影像来源丰富,类型多种,各自都有相应的特点。在汶川大地震这样的巨灾面前,如何有效的处理影像数据及震害信息提取,使其在灾后应急及灾情评估与灾后重建中发挥其应有的作用是突然发生的巨大灾难对遥感技术应用提出的挑战,也是值得深入研究和思考的问题。
     本研究综合分析获取的灾区遥感影像数据,结合地震发生后实际情况及灾后应急救灾、灾害评估及重建的实际需要,在“救灾响应”前提下,按轻重缓急原则处理灾后多源遥感影像。在多源遥感影像处理过程中,综合前人研究成果,采用遥感图像处理和摄影测量技术,充分应用震前地形图等资料,有效地处理多类型、多时相和不同空间分辨率遥感图像,提出了分块局部校正、无控制影像快速拼接等遥感影像处理的关键技术和方法。根据研究区域实际情况提出震害信息提取的内容,归纳了震害信息提取的一般方法,并建立典型震害信息的遥感影像解译标志。在此基础上,利用目视解译、遥感图像分类、面向对象自动识别等信息提取技术对汶川地震灾区地质灾害等震害信息进行了有效地提取,准确确定滑坡、泥石流、倒塌城镇房屋、受损公路等各种灾情信息,研究成果为抗震救灾指挥部全面准确的掌握灾情,科学评估灾情,进而采取有效救灾防灾抢险措施和灾后重建提供科学依据,实现防灾减灾的科学直观有效指导具有重要的理论和实践意义。
     本论文取得的主要研究成果与的创新认识如下:
     (1)重点分析了IKONOS高空间分辨率卫星遥感影像的特点,在研究中采用矢量与影像自动匹配方法,根据震前矢量信息(如水系等)的空间分布及形态,辅助选择校正所需控制点,解决了校正过程中由于灾后局部地区地形及地貌相对震前发生改变在原有的地形图等资料上难以选取必要的控制点的难题。并利用IKONOS影像RPC参数采取有理多项式(Rational Polynomial Coefficients)模型校正方法,快速生成汶川地区高分辨率的灾后数字校正影像图,满足了震后应急的需要。
     (2)本文针对获取的WorldView(WV)影像缺乏姿态位置参数信息,提出采用分块校正的方法,解决了WorldView卫星遥感影像全图校正后影像扭曲的弊端,提高了校正精度,为WorldView(WV)影像校正处理提供了新的思路。
     (3)根据无人机航空影像特点及“救灾响应”原则,提出无控制影像快速拼接的应急处理模式。在缺乏影像参数的前提下,借助数字摄影测量和图像拼接软件,采用同名像点自动匹配的方法完成无人机影像的无控制镶嵌、拼接,快速制作响应需求的无控制影像镶嵌图,并采用多项式变换几何校正模型完成无控制影像镶嵌图的校正处理,得到的灾区宏观的校正镶嵌影像,满足应急救灾需求。
     (4)运用坐标转换关系通过POS系统导航解(即每个曝光点的经纬度、高度和惯性导航坐标系统测量的姿态角(Ф,θ,Ψ))计算每一张影像的近似外方位元素,采取IMU/ DGPS辅助空中三角测量方法,以立体模型为基本单元,进行数字正射影像图的生产。
     (5)根据相关资料,结合研究区的实际情况,分析研究区震害信息类型并确定震害信息提取内容。运用地学相关分析方法,结合影像的色调、形状、纹理等特征,综合前人研究的基础上确立了研究区典型震害信息(受损房屋建筑物、地质灾害等)的遥感解译标志。根据处理的多源遥感影像分辨率、光谱信息等特点,结合灾后应急灾害评估等实际需要,采用目视解译、计算机自动提取及面向对象等多种方法提取震害信息。初步形成了实用的基于多源遥感影像震害信息识别与提取的技术流程。
China is a country where various natural disasters happen frequently, natural disasters such as earthquakes are sudden, massive, frequent, and dangerous, it decides that the government must establish an effective disaster monitoring and integrated data processing system based on remote sensing, telemetry values recorded automatic transmission and bring emergency management into the daily management and operation, making it an important part of daily management of the government. Remote sensing technology as the primary means of access to multi-temporal, multi-resolution, multi-types of remote sensing images and remote sensing image processing technology has been applied to the segments of various natural disasters prevention and control. Particularly in the last 10 years, with the remote-sensing technology continues to mature and remote sensing image processing improves constantly, remote sensing technology has become one of important and indispensable means of dynamic monitoring in early warning for hazards and disasters,real-time survey and assessment. Remote sensing image processing as the main body of remote sensing technology is playing an increasingly large and irreplaceable role in natural disasters, information extraction and post-disaster reconstruction.The timely and effective treatment to post-disaster information, particularly in obtaining multi-source image information timely and processing effectively based on remote sensing technology should be further in-depth, and comprehensive analysis of the use of the data to be further expanded and improved.
     5.12 Wenchuan earthquake happens unexpectedly; its destruction and intensity are beyond our imaging. The roads were cut, the bridges were destroyed, communications were interrupted, earthquake -stricken areas were in the status of information isolation. Telecommunications and transportations in the quake-hit areas have been severely damaged; satellite remote sensing and aerial remote sensing technology become the best ways to access the situation of a disaster quickly. In fact, in 5.12 earthquake relief, not only the multi-branch domestic scientific research strength, foreign countries including the United States, the European Union and Japan provided a large number of remote sensing data for the Wenchuan earthquake. Remote sensing images’sources were rich, types were various and each has a corresponding characteristics. In front of such a catastrophe risk, how to deal with image data and extract earthquake damage information effectively are the challenges that the sudden disaster give to application of remote sensing technology ,making it plays its proper role in post-disaster emergency and assessment and post-disaster reconstruction.It is also worthy of further study and reflection.
     In this study ,we analysis of the actual situation after the earthquake, disaster emergency relief, disaster assessment and the actual needs of reconstruction comprehensively , put forward a theory based on "disaster response" according to the principle of sub-level priorities to process post-multi-source remote sensing image, and establish a set of practical multi-source image processing and analysis system initially. After specific analysis of the obtained data and comprehensive results of previous studies, we propose remote sensing image processing and other key technologies and methods such as region rectification, uncontrolled rapid mosaic images ,using topographic maps and other vector pre-disaster information to deal with many types, different spatial resolution multi-temporal remote sensing image effectively based on the use of remote sensing image processing and photogrammetry technology.On this basis,by use of remote sensing image classification,object-oriented automatic identification technologies ,we extract Wenchuan earthquake disaster information effectively, determine the disaster information of landslide, debris flow, earthquake lake, collapsed town houses, cottages and schools, damaged roads, railways, farms and other disasters. Research results provide a scientific basis for the earthquake relief headquarters to accurately grasp the situation of a disaster, scientifically assess the situation and then take effective measures for disaster prevention and rescue work and reconstruction.
     This paper's main research and innovation are as follows:
     (1) Through the analysis of the source, characteristics and relevant parameter information of the multi-type, multi-temporal and the different spatial resolution remote sensing images (TM, IKONOS, etc.) .This paper use remote sensing image enhancement, geometric correction, mosaic, integration and other methods to deal with satellite image data effectively.
     Especially, some areas of the terrain and landscape in post-disaster is different from pre-disaster,the original topography such as topographic maps is not in accord with the objective situation, it is hard to select the necessary control points and using the conventional method of remote sensing image correction to correct local serious deformation,the study take IKONOS images as example, according to the actual situation after the earthquake, disaster emergency relief, disaster assessment and the actual needs of reconstruction, through a comprehensive analysis of previous studies results, based on the current status of remote sensing image data acquisition.
     This paper put forward a theory based on "disaster response" according to the principle of sub-level priorities to process post-multi-source remote sensing image,and establish a set of practical multi-source image processing and analysis system framework.according to the spatial distribution of pre-disaster vector information (such as water, etc.) and morphology, this paper use auto-matching method of vector and image to selection control point correction needed, and take local "window" region rectification methods to generate a post-digital correction image maps.
     (2) The image processing study of WorldView (WV) which a new high-resolution remote sensing data less eaborated. In this paper, proposed block correction method for the WorldView (WV) image processing. Because lacking of attitude parameter information of WV original image and having serious distortions problems such as distortion corrected image as a whole big. So the original image is divided into a number of small regional, after correction of sub-block image and other processing in order to improve the accuracy of image correction and provide a new way for the WorldView (WV) image correction.
     (3) According to the characteristics of UAV aerial images and the "disaster response" principle, This paper put forward emergency measures against the lack of image parameter, use corresponding points automatic match method to complete the uncontrolled UAV image mosaic, mosaic, produce uncontrolled mosaic responsed to the needs rapidly , and get the macro-mosaic image of earthquake-striken area, meet emergency relief needs.
     (4) Aerial images having orientation attitude elementary obtained by aerophotographical camera, aerial digital camera and IMU / DGPS system loaded in low-level platform. In the condition of lack ground calibration and the necessary calibration, this paper take of direct orientation method to produce digital elevation models and digital orthophoto map with three-dimensional model, regional or map sheet as the basic unit.
     (5) For the earthquake damage information extraction, First, Using automatic extraction methods to extract post-disaster information such as geological disasters based on processing images in image-based correction. According to the differences between body information on the disaster and its surrounding features in different types of tone and texture after the color correction processing, This paper use high-precision color aerial edge detection algorithms combined single-band edge enhancement with multi-band color composite weighted to extract disasters body information automatically. Second, extract information of earthquake-damaged buildings, using object-oriented, high spatial resolution remote sensing image.
引文
[1]商彦蕊.我国自然灾害研究进展与减灾思路调整[J].地域研究与开发,2005(4):6~10.
    [2]朱洪栓,秦耀辰.基于3S的区域自然灾害监测与预防信息系统研究[J].安徽农业科学2008,36(4):1699~1701.
    [3]何建邦,田国良.中国重大自然灾害监测与评估信息系统的建设与应用[J].自然灾害学报,1996,5(3):1~7.
    [4]卜玉坤,范强,孙丽敏等.基于3S技术的森林火险预警方法研究——以大连市为例[J].矿山测量,2007(1):48~49.
    [5]蒋勇军,况明生,李林立等.重庆市自然灾害管理综合信息系统研究[J].地域研究与开发,2004,23(1):84~87.
    [6]武洪涛,张震宇,邬恺夫等.河南省自然灾害监测与评估信息系统研究[J].地域研究与开发,2005,24(6):125~126.
    [7] SHEN YONG R.Application of gis 2based information model on assessment ofgeological hazards risk J .Journal of the Chengdu Institute of Technology,2001(28):89~92.
    [8]摄影测量与遥感技术为抗震救灾提供保障[N].[2008-07-03],来源:新华网.
    [9]李晓明.巨灾呼唤完善遥感应急体系[N].科学时报,[2008-7-7].
    [10]王瑜婷.抗震救灾测绘高新技术显身手[N].中国测绘报,[2008-05-30].
    [11]李德仁.地球空间信息学的机遇[J].武汉大学学报信息科学版,2004(9):753~756.
    [12]李德仁,李清泉.论地球空间信息科学的形成[J].地球科学进展,1998,13(4):319~326.
    [13] GewinV. Mapping Opportunities.Nature,2004,427(122):376~377.
    [14]李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报·信息科学版,2003,28(2):127~131.
    [15]万幼川,刘良明,张永军.我国摄影测量与遥感发展探讨[J].测绘通报,2007(1):1~4.
    [16]李德仁.21世纪测绘发展趋势与我们的任务[J].中国测绘,2005(2):1~5.
    [17] Ping Li ,Xiaxin Tao. Quantitative Earthquake Damage Detection from Changes in Remote Sensing Images-Acase study[J].Geoscience and Remote Sensing Symposium,2005 (3):1~4.
    [18] Castleman K R. Digital Image Processing[M]. New Jersey:Prentice Hall,1996.
    [19] Baatz M,A Schape.Object2Oriented and Multi-Scale ImageAnalysis in Semantic Networks[A]∥Proc. of the International Symposium on Operationalization of Remote Sensing[C]. Enschede: ITC,1999:2563~2575.
    [20]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004:170~173.
    [21] Adams B J,Huyck C K, Mansouri B,et al. App lication of high-resolution optical satellite Imagery for post-earthquake damage assessment: The 2003 Boumerdes (Algeria) and Bam (Iran) Earthquakes[R /OL]. Http: / /mceer. Buffalo. Edu /publications/ resaccom /042SP01 /04~SP01. pdf.
    [22]岳焕印,郭华东,刘浩等.对地观测技术在重大自然灾害监测与评估中的应用实例分析[ J ].自然灾害学报,2001,10 (4) : 123~128.
    [23] LemmensM J PM,Heuvel F A. Detailed and accurate 3D object models from laser: 3D close-range laser mapping system [J]. GIM International,2001,(1):30~33.
    [24] Zlatanova S,Fabbri A G. Large-scale 3D data needed by urban areas: Geo-information for disaster management [J]. GIM International,2005,(3): 10~13.
    [25]万幼川,张永军.摄影测量与遥感学科发展现状与趋势[J].工程勘察, 2009(6): 6~12.
    [26] Z. Lin. UAV for mapping. In: CHEN Jun, J IANG Ji, Alain Baudoin, eds. the International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, Beijing, 2008.Vol. XXXVII, Part B2.
    [27]李健,刘先林,万幼川等. SWDC-4数码航空相机虚拟影像生成[J] .武汉大学学报(信息科学版),2008,33 (5) : 450~453.
    [28]刘先林,段福洲,宫辉力.航空摄影科技发展成就与未来展望[J].《前沿科学》季刊2007(3) :10~14.
    [29] VOSSELMAN G,KESSELS P, et al. The Utilisztion of Airborne Laser Scanning for Three-dimensional Mapping [J]. International Journal of Applied Earth Observation and Geoinformation,2005, 6 (3-4) : 177~186.
    [30] Baltsavias E P. A.Comparison between Photogrammetry and Laser Scanning [J]. ISPRS Journal of Photogrammetry & Remote Sensing 1999(54): 83~94.
    [31]张小红.机载激光雷达测量技术理论与方法[M].武汉大学出版社,2007.
    [32]欧阳平.LIDAR与DMC结合的无地面控制的航测新方法[J].测绘科学,2008,33(6): 141~143.
    [33]马洪超,姚春静,张生德.机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J].遥感学报,2008,12(6):925~932.
    [34]高洪涛,史伟哲.国外对地观测卫星技术发展趋势[J] .卫星应用,2007 (4) :47~54.
    [35]李德仁摄影测量与遥感学的发展展望[J].武汉大学学报·信息科学版,2008, 33(12):1211~1215.
    [36]张永生,巩丹超等著.高分辨率遥感卫星应用——成像模型、处理算法及应用技术[M].北京:科学出版社,2004.
    [37]张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社, 2005.
    [38]余旭初,冯伍法,林丽霞.高光谱——遥感测绘的新机遇[J].测绘科学技术学报,2006, 23 (2):101~105.
    [39]杨国鹏,余旭初,冯伍法等.高光谱遥感技术的发展与应用现状[J].测绘通报,2008(10): 1~4.
    [40]万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社, 2006.
    [41]王晓青,魏成阶,苗崇刚等.震害遥感快速提取研究—以2003年2月24日巴楚-伽师6.8级地震为例[J].地学前缘,2003,(10)增刊:285~291.
    [42] Mitomi Y, Takeuchi S. Analysis of spectral feature of thedamaged areas by liquefaction andfire using airborne MSS data[A]∥18th Japanese Conference on Remote Sensing[C].1995: 117~118.
    [43] Masashi Matsuoka, Fumio Yamazaki. Identification of Damaged areas Due to the 1995 Hyogoken-Nanbu Earthquake Using Satellite Optical Images[A]∥Proceedings of the 19th Asian Conference on Remote Sensing,Q9[C]. Philippines: Traders Holel , Manila.1998:126.
    [44] Miguel Estrada, Fumio Yamazaki. Use of Landsat Images forthe Identification of Damage Due to the 1999 Kocaeli,TurkeyEarthquake[A]∥Proceedings of the 21st Asian Conference onRemote Sensing[C]. Taiwan: Taipei.2000: 1211.
    [45] Hajime Mitomi,Fumio Yamazaki,Masashi Matsuoka. Auto-mated detection of building damage due to recent earthquakesusing aerial television images[A]∥Proceedings of the 21st Asian Conference on Remote Sensing[C]. Taiwan: Taipei.2000:127.
    [46] Mitomi H,Yamazaki F, Matsuoka M. Development of automated extraction method for building damage area based onmaximum likelihood classifier[A]∥Proceedings of 8th International Conference on Structural Safety and Reliability[C].California: New Beech.2001:2430~442.
    [47] M Turker,B T San. Detection of collapsed buildings causedby the 1999 Izmit,Turkey earthquake through digital analysisof post-event aerial photographs[J]. INT.J. Remote Sensing, 2004, 25(21):4701~4714.
    [48] Masashi Matsuoka, Fumio Yamazaki. Use of SAR IntensityImagery for Earthquake Damage Detection[A]∥2nd Workshop on Application of Remote Sensing Technologies for Disaster Response[C]. 2004, Newport Beach, CA, USA: 125.
    [49] Charles K Huyck, Beverley J Adams. Damage Detection Using Neighborhood Edge Dissimilarity in Very High-Resolution Optical Data [EB/OL]. http:// mceernt. Mceer. Buffalo. edu/ second_workshop/papers/05paper_huyck.pdf ,2005.
    [50] Rathje E M,Kyu-Seok Woo,Crawford M, et al. Neuenschwander,A. Earthquake damage identification using multitemporal high-resolution optical satellite imagery[A]∥2005,IEEE International[C].2005 ,7:5045~5048
    [51] T Thuy Vu, Masashi Matsuoka, Fumio Yamazaki. Preliminary results in development of an object-based image analysis method for earthquake damage assessment[A]∥3rd International Workshop on Remote Sensing for Post-Disaster Response[C]. 2005, Chiba, Japan: 128.
    [52]杨喆,程家喻.澜沧-耿马地震灾情的航空遥感调查[J].国土资源遥感,1993(15) :17~22.
    [53]张德成.建筑物震害航空照片目视判读标志的初步研究[J].地震,1993,(2) :26~30.
    [54]程家喻,杨喆,唐汉军等.利用航空摄影进行震害调查的精度估计[J].地震地质,1995,17(1):88~95.
    [55]丁军,王丹.遥感图像上城市震害信息德获取及其应用[J].灾害学,1996,11 (1):82~86.
    [56]朱博勤,魏成阶,张渊智.航空遥感地震灾害信息的快速提取[J].自然灾害学报,1998,7 (1):34~39.
    [57]杨喆,任德凤.利用机载SAR震害影像特征快速圈定极震区[J].地震地质,1999,21(4): 52~458.
    [58]张景发,谢礼立,陶夏新.建筑物震害遥感图像的变化检测与震害评估[J].自然灾害学报,2002,(5):59~64.
    [59]柳家航.利用遥感技术进行城市建筑震害的自动识别与分类方法研究[D].北京:中国地震局地质研究所,2003.
    [60]窦爱霞.震害遥感图像变化检测技术研究[D].济南:山东科技大学,2003.
    [61]张桂芳.基于高分辨率遥感影像的建筑物三维信息自动提取震害识别及震害预估方法研究[D].北京:中国地震局地质研究所,2004.
    [62]李萍.基于遥感技术的2003年2月24日新疆巴楚地震震害快速评估[D].哈尔滨:中国地震局工程力学研究所,2004.
    [63]李德仁.摄影测量与遥感的现状及发展趋势[J] .武汉测绘科技大学学报,2000,25 (1) :125
    [64]李德仁,周月琴,金为铣.摄影测量与遥感概论][M] .北京:测绘出版社,2001.
    [65]许亚平.从汶川地震看遥感技术在突发自然灾害中的应用[J].贵州地质, 2008(25):306~310
    [66]杨健,赵忠明,黄铁青等.汶川地震遥感图像处理与灾难分析[J].中国体视学与图像分析,2008,13(3):151~157.
    [67]北京安翔动力科技有限公司资料.无人机遥感系统[D]. 2008.
    [68]中科院遥感所,遥感所与地理所首批科研人员今赴汶川灾区开展工作.[2008-05-14] ,http://www.irsa.ac.cn.
    [69]中科院遥感所,中科院三架无人飞机已获取第一批灾区遥感监测数据.[2008-05-15], http://www.irsa.ac.cn.
    [70]科学时报:无人遥感机将在灾区进行超低空飞行.[2008-05-18],http://www.irsa.ac.cn.
    [71]中科院遥感所,来自抗震救灾一线的报道.[2008-05-18],http://www.irsa.ac.cn.
    [72]根据百度百科TM影像词条整理,http://baike.baidu.com/view/1314159.htm.
    [73]根据百度百科汶川县词条整理,http://baike.baidu.com/view/384989.htm.
    [74]根据百度百科北川羌族自治县词条整理,http://baike.baidu.com/view/912780.htm.
    [75]根据百度百科绵竹市词条整理, http://baike.baidu.com/view/81223.htm.
    [76]中国地震网专稿:中科院王卫民副研究员、姚振兴院士再谈汶川8.0级地震震源破裂过程,[2008-09-05],http://blog.163.com/chelmi/blog/static/110869622008856717949.
    [77]陈智梁.汶川大地震地质背景[J].地球,2009(2):68~69.
    [78]林茂炳.汶川大地震与龙门山构造带[J].成都理工大学学报(自然科学版),2008,35(4): 366~370.
    [79]蔡学林,曹家敏,朱介寿,程先琼.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报(自然科学版),2008,35(4):357~365.
    [80]张培震,徐锡伟等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066~1073.
    [81]独家解读:是什么让5.12.汶川大地震爆发?人民网科技频道,[2008-05-29], http://scitech.people.com.cn/GB/7312932.html.
    [82]绵竹地震受灾遇难数据[EB/OL].[2008-11-16].http://help.mz.gov.cn/.
    [83]许冲,戴福初,陈剑等.汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J].遥感学报2009, 13(4):754~760.
    [84]根据百度百科IKONOS卫星词条整理,http:// baike.baidu.com/view/1519675.htm.
    [85]赵英石.遥感应用原理与方法[M].北京:科学出版社,2003.
    [86]张冰,林岚岚,腾鹏飞.浅谈遥感图像增强的处理[J].防护林科技,2006,(2) : 68~69.
    [87]张永生,巩丹超.高分辨率遥感卫星应用[M] .北京:科学出版社,2004.
    [88] Zhang Z,Deriche R,Faugeras O,et al . A Robust Techniquefor Matching Two Uncalibrated Images Through t he Recovery of t he Unknown Epipolar Geometry [J] . Artificial Intelligence,1995, 78,(122):872~119.
    [89]张翼,曾庆业,唐娉.获取均匀控制点的遥感影像自动空间匹配方法[J].中国图象图形学报,2009,14(8):1475~1479
    [90]陆灯盛等. TM图像的信息量分析及特征信息提取的研究[J].环境遥感,1991,6 (4) :267~274.
    [91]陈述彭,赵英时.遥感地学分析(修订本) [M] .台湾文化大学出版社,1992.
    [92]戴昌达,雷莉萍.TM图像的光谱信息特征与最佳波段组合[J].环境遥感,1989,4(4):282~292.
    [93]姜小光,王长耀,王成.成像光谱数据的光谱信息特点及最佳波段选择——以北京顺义区为例[J].干旱区地理,2000,23 (3): 215~220
    [94]章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,2003:174~175.
    [95]关元秀,程晓阳.高分辨率卫星影像处理指南[M].科学出版社,2008年,北京.
    [96]北京东方道迩信息技术有限公司.印度CARTOSAT-1(IRS-P5)卫星介绍.2006.
    [97]付金红,宋立新,王武军.图像序列拼接算法的研究[J].哈尔滨理工大学学报,2004,9(6):37~40.
    [98]蔡丽欢,廖英豪,郭东辉.图像拼接方法及其关键技术研究[J].计算机技术与发展,2008,(3).
    [99] Harris C,Stephens M.A combined corner and edge detector[C]//In Proc.Alvey Conf Vision.England:Manchester Uni-versity Press,1988:189~192.
    [100] Burt P J,Adelson E H.The laplacian pyramid as a compactimage code[J].IEEE Transaction on Communications,1983,com-31(4):532~540.
    [101]侯舒维,郭宝龙.一种图像自动拼接的快速算法[J].计算机工程.2005,8.
    [102]袁修孝.GPS辅助空中三角测量原理及应用[M].北京:测绘出版社,2001.
    [103]张祖勋,郭大海,柯涛,王建超.抗震救灾中航空摄影测量的应急响应[J].遥感学报,2008,12(6):852~856.
    [104]张继贤,唐新明,曾钰等.地学影像一大陆间的纽带——记第二十届ISPRS大会(J).遥感信息,2005(1):59~61
    [105]李学友.IMU/ DGPS辅助航空摄影测量综述[J].测绘科学,2005,30(5):110~113.
    [106]郭大海,吴立新,王建超,郑雄伟.IMU/DGPS辅助航空摄影新技术的应用[J].国土资源遥感,2006,1(67):51~55.
    [107]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1997.
    [108] Mostafa M. History of inertial navigation systems insurvey applications[J] . PE&RS, 2001,67 (12):1225~1227.
    [109] M Bumker and FJ Heimes. New calibration and computing method for direct georeferencing of image anscanner data using the position and angular data of ahybrid inertial navigation system J. OEEPE Workshop Integrated Sensor Orientation , Hannover, Germany, 2001.
    [110] Li Xueyou,et al. First Experience of IMU/DGPSupported Photogrammetry in China A. In: Proceedingsof XXth ISPRS Volume II C,2004,(7)870~875.
    [111]董绪荣等. GPS/ INS组合导航定位及其应用[M] .北京:国防科技大学出版社,1998.
    [112]遥感技术与地震灾害评估[J] .现代班组,2008(6):19.
    [113]魏成阶,刘亚岚,王世新等.四川汶川大地震震害遥感调查与评估[J].遥感学报,2008,12(5):673~682.
    [114]王瑞雪,叶燎原.应用遥感技术进行地震灾害快速调查的研究[J].昆明理工大学学报(理工版),2003,28(4):1~5.
    [115]尹之潜.地震灾害及损失预测方法[M].北京:地震出版社,1995.
    [116]朱博勤,魏成阶,张渊智.航空遥感地震灾害信息的快速提取[J].自然灾害学报, 1998,7(1):34~38.
    [117]常庆瑞,蒋平安,周勇等.遥感技术导论[M].北京:科学出版社,2004.
    [118]陈述彭.遥感大词典[M] .北京:北京科学出版社,1990.
    [119]杨哲等.震害影像特征和主要震害要素的分级影像标志[C].《重大自然灾害遥感监测与评估研究进展文集》,北京:中国科学技术出版社,1993.
    [120]黄润秋.“5·12”汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育,2008(2):21~24.
    [121]韩金良,吴树仁,何淑军等.5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J].地学前缘(中国地质大学(北京)北京大学),2009,16(3):307~326.
    [122]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16 (4) : 433~444.
    [123]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都:成都理工大学,2007.
    [124]张文君.滑坡灾害遥感动态特征监测及其预测分析研究[D].成都:西南交通大学,2007.
    [125]杨武年,刘汉湖,曾涛等.汶川地震区地震诱发斜坡地质灾害[R].成都理工大学档案馆,2008年6月.
    [126]孙崇绍等.我国历史地震时滑坡崩塌的发育及分布特征.自然灾害学报,1997,6(1):25~30.
    [127]杨为民,吴树仁,张永双等.陕西宁陕县城坡面型泥石流形成条件及其诱发机制[J].地质力学学报,2006,12(2):219~225.
    [128]康志成,李焯芬等.中国泥石流[M].北京:科学出版社,2004.
    [129]范建容,田兵伟,程根伟等.基于多源遥感数据的5·12汶川地震诱发堰塞体信息提取[J].山地学报,2008, 26(3):257~262.
    [130]陈文凯,何少林,张景发等.利用遥感技术提取震害信息方法的研究进展[J].西北地震学报,2008,30(1): 89~93.
    [131]柳稼航,单新建,尹京苑.遥感图像区域结构和纹理统计特性相结合的城市震害房屋自动识别[J].地震学报,2004,26(6):623~633.
    [132]明冬萍,骆剑承,周成虎等.高分辨率遥感影像信息提取及块状基元特征提取研究[J].数据采集与处理,2005 ,20 (1) :34~39.
    [133]尹作霞,杜培军.面向对象的高光谱遥感影像分类方法研究[J].遥感应用,2007(4):29~32.
    [134]黎小东.面向对象的高空间分辨率遥感影像城市建筑物震害信息提取图像分割[D],成都:成都理工大学,2009.
    [135] Baatz,M.and Sch?pe,A.Multiresolution segmentation– an optimization approach for high quality multi-scale image segmentation[C], In: Strobl, J., Blaschke, T. and Griesebner, G.(eds.),Angewandte Geographische Informationsverarbeitung XII, Wichmann-Verlag,Heidelberg.2000:12~23
    [136] Benz, U.“Definiens Imaging GmbH: Object-Oriented Classification and Feature Detection”,IEEE Geosciences and Remote Sensing Society Newsletter,2001(9):16~20.
    [137] Thuy Vu,Masashi Matsuoka,Fumio Yamazaki.2005.Preliminary results in development of an object-based image analysis method for earthquake damage assessment[A]//3rd International Workshop on Remote Sensing for Post-Disaster Response[C].Chiba,Japan:1~8.
    [138] Definients Imaging GmbH. eCognition User Guide [Z]. 2003, Germany.
    [139]陈秋晓,骆剑承,周成虎等.基于多特征的遥感影像分类方法[J].遥感学报,2004,8(3):239~245
    [140]张敏,杨武年,黄瑾等.汶川地震区航空影像地质灾害自动识别技术[J].地理与地理信息科学,2008,24(6):42~45.
    [141]明冬萍,骆剑承,沈占锋,等.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18~20.
    [142]李利伟,刘吉平,尹作为.基于数学形态学的高分辨率遥感影像道路提取[J].遥感信息, 2005(5):9~11.
    [143]于烨,陆建华,郑君里.一种新的彩色图像边缘检测算法[J].清华大学学报(自然科学版),2005,45(10):1339~1343.
    [144]王伟,赵春晖,孙圣和.一种适于图像细节保持的全方位多级组合滤波器[J].机器人,1998,2(20):128~132.
    [145]张同刚,岑敏仪,秦军等.多时相DEM匹配探测泥石流地表变形的新方法[J].水土保持通报,2006,26(3):96~99.
    [146]胡宝荣.基于遥感与GIS技术的汶川县地震前后生态环境质量评价[D],成都:成都理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700