用户名: 密码: 验证码:
西南河谷典型古冰水堆积体工程特性及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西南一些大江大河的河谷地带广泛分布一套形成于第四纪更新世冰水堆积体,这些冰水堆积体大多规模巨大,体积动辄数百万m3,甚至数千万m3。在漫长的形成演化历史过程中,受沉积环境变化影响,这些冰水堆积体大多具有复杂的沉积和结构特征。本世纪以来,随着上述地区各类大型基础建设的陆续上马,上述大型冰水堆积常常构成了人类工程建设的地质背景条件,成为制约人类工程建设活动一个重要因素,因此针对该类古冰水堆积体的工程特性以及工程中面临的突出问题展开专门深入研究显得尤为迫切。
     本文通过对西南河谷地区数个冰水堆积体的沉积特征、颗粒组成、结构特征的详细调查和分析,在大量试验及相关工程资料收集的基础上对西南河谷典型古冰水堆积体的渗流特性、强度特性以及变形特性等进行了较为深入的分析和研究,最后结合三个古冰水堆积体,对其主要工程问题及其处理措施进行了深入分
     析和探索,取得了以下主要成果:
     (1)揭示了在冰水堆积体漫长形成演化历史工程中,受气候环境条件变化的影响,古冰水堆积体大多具有复杂的沉积特征和结构特征。具体表现为:沉积特征的宏观分层性和单层沉积特点差异性,古冰水堆积体主要以巨颗粒、粗颗粒为主局部富集细颗粒物质,不同沉积层水动力沉积环境存在较大差别,以粗颗粒为主的沉积层大多具有一定分选、磨圆和沉积韵律性,而以巨颗粒为主的沉积层大多分选磨圆差;结构上古冰水堆积体表现明显的二元性、粗颗粒巨颗粒之间嵌合紧密、普遍具有泥质胶结局部具钙质胶结的结构特征,即以粗颗粒、巨颗粒为骨架,细颗粒物质填充其间,构成骨架的粗颗粒、巨颗粒嵌合紧密,往往具有一定程度的泥质胶结,当含钙质成分较多时往往还具有较好的钙质胶结特点。
     (2)初步建立了从物质来源、沉积特点、结构特征等几个方面入手的古冰水堆积体野外辨别方法。即首先从物质来源、运移通道上判断是否存在冰水堆积的可能,然后根据其是否存在宏观成层性、水流作用形成的沉积韵律特点,构成堆积体主体的粗颗粒、巨颗粒物质结构上是否表现出二元性、嵌合性以及胶结特点等综合判断是否属冰水成因堆积体。
     (3)根据大量测年结果以及冰水堆积体与河流相覆盖层、古风化残积粘土层的接触关系,探讨了其沉积特点与古气候特点、冰川融水动力条件、古地形地貌之间的关系,认为在晚更新世末次间冰期和中更新世倒数第二次冰期间冰阶期间至少出现两次较大规模气温升高、冰川消融地质事件,并且揭示了形成于晚更新世的冰水堆积体多存在侵占河道,掩埋河流相覆盖层的现象;同时在间冰期期间古气候曾出现多次反复,导致冰川消融多次间断,堆积体接受风化剥蚀,从而在堆积体内形成古风化残积粘土层。
     (4)根据大量试验成果,得出了西南河谷地带古冰水堆积体大多具有渗透能力弱、抗渗能力强的渗流特点,揭示了在水力梯度较小时,冰水堆积体渗流规律基本满足达西定律,当水力梯度较大时,渗流速度与水力梯度表现出较为明显的非线性关系,此时渗流本构关系可描述为v = KJ0.7,并初步建立了古冰水堆积体渗透系数估算方法和公式ucK = 0.5e2CC。
     (5)在大量物理力学试验基础上揭示了冰水堆积体大多具有结构密实、高密度、孔隙体积小的特点,属典型的高承载力、低压缩性土。冰水堆积体大多具有较好的抗剪强度,天然状态下,内聚力可达150~400KPa,摩擦角约35°~39°;饱水条件下内聚力也保持在60~100Kpa,内摩擦角约30°~37°;且C值对水的敏感要比φ强烈的多,一般饱水条件下会导致内聚力降低一半左右,而φ值的变化几乎不超过1~3°。揭示了不同的应力条件对冰水堆积体的强度特性存在明显的影响,具体表现为在低应力环境下强度包络线满足莫尔-库仑定律,而在较高应力条件下,冰水堆积体的强度包络线表现出明显非线性特点。
     (6)通过对三个典型古冰水堆积体的稳定性研究,认为古冰水堆积体与一般松散堆积体的最主要区别之一在于其具有复杂的沉积和结构特征,构成冰水堆积体的物质不仅有高强度的碎块石土,还有强度较低的各种软弱层带,若上述软弱层带与堆积体临空条件下没有构成有利组合,堆积体大多具有较好的稳定性,一旦受某些因素影响,改变了堆积体的临空条件,且与软弱层带构成有利组合,就可能诱发堆积体沿软弱层带失稳破坏。因此工程上面临这类古冰水堆积体时应准确把握其沉积和结构特征,切不可草率地将其当作均质介质。
In southwest China, a set of outwash congeries forming at the the Pleistocene Epoch of Quaternary widely spread in the valley terrace with large rivers. Many of them are huge, often with the volume of millions m3, or even tens of millions m3. Influenced by the changes of sediment environment, the outwash congeries have formed into complicated sediment properties and structures during the long history of evolution. In this century, with the successive commencement of infrastructure projects in the valley areas, the outwash congeries, as a geological background of engineering construction, become an important condition for engineering construction. Therefore, it is rather necessary to make an intensive study of the engineering properties of the ancient outwash congeries and the prospective problems which might be encountered in the engineering practice.
     This paper, after intensive investigation and analysis on sediment properties, particle assocaiation,and structure properties of several outwash congeries in the southwestern valley, conducts an intensive analysis and study on seepage properties, strength properties, and deformation properties of the typical outwash congeries, on the basis of a large number of experiments and the collection of the relevant data. Besides, illustrated with three examples of the ancient outwash congeries, three main types of problems in the engineering geology and the treatment measures are deeply analyzed and discussed. The main results are as follows: (1) During the long history of evolution and as a result of climate changes, the sediment properties and structure properties of ancient outwash congeries are usually complicated, featuring with the macroscopic stratification of the sediment properties and the diversity of the sediment properties in single-layer structures, to be specific. The ancient outwash congeries mainly consist of giant particles, coarse particles, and partially concentrating fine-grained materials. As the difference existing in hydrodynamically sedimentary environments among sedimentary stratums, those who mainly consist of coarse particles are often featured with the rhythmicity of separation, roundness, and deposition; while those mainly consisting of giant particles are relatively inferior in separation and roundness. Structurally, the ancient outwash congeries are distinctly binary, with closely interlocking of giant particles and coarse particles. It is usually characterized with the structure properties of mainly argillaceous binding and partially calcareous binding. That is, the solid matrix is made by giant particles and coarse particles, congested by fine-grained materials. Thus, the giant particles and coarse particles are closely interlocked, often featured with argillaceous binding to some extent; when calcium is high, they usually show some superior calcareous binding characteristics.
     (2)The way of determining ancient outwash congeries has been established in terms of sediment sources, sediment properties, and structure properties. Firstly, we should estimate the feasibility that the congeries forming with outwash deposits by Material source and movement pathway, then, we can Confirm wethere it is an outwash congeries or not, by wethere it with the macroscopic stratification of the sediment properties, wethere it having the rhythmic sedimentation characters, and wethere it having binary and Cementation characters in structure.
     (3)According to a large amount of dating data and the contact relation of the outwash congeries with the fluvial cover and the palaeo-weathered residual clay, the relationship between the sediment properties and palaeoclimate features, glacier melt hydrodynamics and palaeotopography are discussed. It is deemed that in the last interglacial of Late Pleistocene and in the Interstadial of last second glacial stage of Middle Pleistocene there were at least two times of large-scaled geological events with temperature elevation and glaciers ablation. It is also revealed that the channel is often occupied and the fluvial cover is often buried by the outwash congeries forming at Late Pleistocene. Meanwhile, during the interglacial period, paleoclimate repeated many times, resulting in several times interruptions of glaciers ablation, weathering and degradation of congeries, and the formation of palaeo-weathered residual clay inside the congeries.
     (4)According to a large amount of experiments, it finds that the ancient outwash congeries in the southwestern valley are featured with inferior seepage abilities and strong anti-seepage abilities. Also, when hydraulic gradient is small, the seepage of outwash congeries basically meet Darcy criterion; and when hydraulic gradient is large, it shows a nonlinear relationship between permeability velocity and hydraulic gradient is indicated, thus the seepage constitutive can be described as v = KJ0.7, and the estimation methods and formulas of the leakage factor of ancient outwash congeries can be established asucK = 0.5e2CC.
     (5)It is shown from large physic experiments that the outwash congeries, characterized with compactness, high-density, and small gap, is a typical kind of soil with high capacity and low compression. Outwash congeries are often with preferable shearing strength. Naturally, the cohesion can reach to 150~400KPa, and friction angle can be about 35°~39°; when under the saturated condition, the cohesion can keep at 60~100Kpa, and internal friction angle can be about 30°~37°. Moreover, the value of C is much more sensitive to water than that ofφ. Generally, under the saturated condition, the cohesion may be reduced by half or so, but the change of the value ofφis almost within 1~3°. It is also shown that different stress conditions have distinct influence on the strength properties of outwash congeries. That means the strength envelope meets Mohr– Coulomb criterion under low stress; while the strength envelope is nonlinear under high stress.
     (6) The study on the three typical ancient outwash congeries’stability finds that one of the major distinctions between the ancient outwash congeries and the general loose deposits is that the ancient outwash congeries are featured with complicated sediment properties and structure properties. The materials forming outwash congeries are not only gravelly soils with high strength, but also weak zones with low strength. In most time, the stability of the congeries are good if the weak zones and the free faces of congeries are not combines favorably, but if the free face is changed by someway and combined favorably with weak zones, the congeries will slide along the weak zones possibly. Therefore, it is suggested that the sedimentary and structural features of the outwash congeries be studied carefully, and mistaken treatment of them as isotropic medium be avoided when it comes to the ancient outwash congeries in engineering.
引文
[1]易朝路、崔之久、熊黑钢,中国第四纪冰期数值年表初步划分[J],第四纪研究,2005,25(5)
    [2]施雅风,中国第四纪冰期划分改进建议[J],冰川冻土,2002,24(6)
    [3]彭建兵,马润勇,卢全中等,青藏高原隆升的地质灾害效应[J],地球科学进展,2004,19(3)
    [4]李吉均,舒强,周尚哲等,中国第四纪冰川研究的回顾与展望[J],冰川冻土,2004,26(3)
    [5]郑本兴,云南玉龙雪山第四纪冰期与冰川演化模式[J],冰川冻土,2000,22(1)
    [6]郑本兴,贡嘎山东麓第四纪冰川作用与磨西台地成因探讨[J],冰川冻土,2001,23(3)
    [7]赵希涛,张永双,曲永新,郭长宝,玉龙山西麓更新世冰川作用及其与金沙江河谷发育的关系[J],第四纪研究,2007,27(1)
    [8]赵希涛,郑绵平,李道明,云南迪庆小中甸古湖的形成演化及其与石鼓古湖和金沙江河谷发育的关系[J],地质学报,2007,81(12)
    [9]张明,胡瑞林,金沙江下咱日堆积体的成因和稳定性初步分析[J],工程地质学报,2008,16(4)
    [10]张永双,赵希涛,澜沧江云南德钦古水一带第四纪堰塞湖的沉积特征及其环境意义[J],地质学报,2008,82(2)
    [11]涂国祥,黄润秋,邓辉,澜沧江某冰水堆积体演化过程及工程地质问题探讨[J],山地学报,2009,27(1)
    [12]王运生、黄润秋、段海澎、韦猛,中国西部末次冰期一次强烈的侵蚀事件[J],成都理工大学学报(自然科学版),2006.33(1)
    [13]张永双、郭长宝、石菊松、曲永新、赵希涛,玉龙雪山西麓冰碛(水)砾岩的工程地质特性研究[J],现代地质,2007.21(1)
    [14]钟建华、李浩、黄立功、温志峰、郭泽清、王海侨、李勇,柴西第四纪湖泊冰水沉积的发现及意义[J],沉积学报,2005.23(2)
    [15]谢春庆、邱延峻、王伟,冰碛层工程性质及地基处理方法的研究[J],岩土工程技术,2008.22(4)
    [16]张永双,曲永新,王献礼等,中国西南山区第四纪冰川堆积物工程地质分类探讨[J],工程地质学报,2009,17(5)
    [17]涂国祥,黄润秋,邓辉,典型冰水堆积体浪蚀作用下变形破坏机制研究[J],工程地质学报,2006,16(5)
    [18]屈智炯,刘双光,刘开明,冰碛土作高土石坝防渗体材料的试验研究[J],成都科技大学学报,1989,43(1)
    [19]范适生,冶勒盆地半胶结岩土层的物理性质[J],四川水利发电,1998,17(2)
    [20]范适生,冶勒盆地半胶结岩土层的力学性质[J],四川水利发电,1997,16(2)
    [21]金仁祥,某水库坝基渗透稳定性研究[J],岩土力学,2004,25(1)
    [22]于洪翔,许蕴宝,谢福志,旁多坝址冰水沉积层水文地质特征[J],东北水利水电,2007,25(275)
    [23]袁广祥,尚彦军,林达明,帕隆藏布流域堆积体边坡的工程地质特征及稳定性评价[J],工程地质学报,2009,17(2)
    [24]周家文,徐卫亚,孙怀昆,古水水电站工程区域堆积体边坡工程地质分析[J],工程地质学报,2009,17(4)
    [25]安彦勇,王保田,汪莹鹤,梨园水电站下咱日堆积体稳定性分析安[J],水利水电科技进展,2008,28(5)
    [26]张宇静,严明,张敏,金沙江溪洛渡水电站谷肩堆积体力学性质及稳定性[J],中国地质灾害与防治学报,2008,19(1)
    [27]杨建荣,大渡河双江口水电站近坝段冰水堆积体稳定性研究(D),西南交通大学,2005
    [28]王小峰,两家人堆积体三维地质特征及稳定性分析(D),河海大学,2007
    [29]丁秀美,西南地区复杂环境下典型堆积(填)体斜坡变形及稳定性研究(D),成都理工大学,2005
    [30]姚鑫,张永双,李宗亮等,四川泸定磨西台地第四纪冰水台地边坡地质灾害易发性研究[J],工程地质学报,2009,17(5)
    [31]国家电力公司成都勘测设计研究院[R],双江口电站可行性研究报告
    [32]国家电力公司成都勘测设计研究院,四川省大渡河长河坝水电站可行性研究报告[R],2006
    [33]国家电力公司成都勘测设计研究院,冶勒电站可行性研究报告[R],2004
    [34]张永双,赵希涛,澜沧江云南德钦古水一带第四纪堰塞湖的沉积特征及其环境意义[R],地质学报,2008,82(2)
    [35]陈鸿,大渡河中下游典型岸坡深部裂缝形成机制及工程效应研究(D),成都理工大学,2005
    [36]蒋复初,吴锡浩,肖华国等.四川沪定昔格达组时代及其新构造意义[J],地质学报,1999,73(1)
    [37]钱家欢,殷宗泽,土工原理与计算(第二版)[M],北京:中国水力水电出版社,1996
    [38]李广信,高等土力学[M],北京:清华大学出版社,2004
    [39]李仰波,大渡河双江口水电站近坝库岸业隆冰水堆积体稳定性研究(D),西南交通大学,2009
    [40]杨春璞,宣树学,西藏旁多水利枢纽坝基深厚覆盖层渗透稳定性研究[J],东北水利水电,2009,6
    [41]郭庆国,粗粒土的工程特性及应用[M],郑州:黄河水利出版社,1998
    [42]清华大学,水力学[M],北京:人民教育出版社,1961
    [43]李广信,高等土力学[M],北京:清华大学出版社,2004
    [44]钱家欢,殷宗泽,土工原理与计算(第二版)[M],北京:中国水力水电出版社,1996
    [45]刘杰,土的渗透稳定性与渗流控制[M],北京:水利电力出版社,1992
    [46]综合勘察研究设计院,岩土工程勘察规范(GB50021-2001)[M],北京:中国建筑工业出版社,2001
    [47]建筑科学研究院,建筑地基基础设计规范(GB50007-2002)[M],北京:中国建筑工业出版社,2002
    [48]《工程地质手册》编委会,工程地质手册(第四版)[M],北京:中国建筑工业出版社,2007
    [49]段祥宝,谢罗峰,水位降落条件下非稳定渗流试验研究[J],长江科学院院报,2009,26(10)
    [50]吴琼,唐辉明,王亮清等,库水位升降联合降雨作用下库岸边坡中的浸润线研究[J],岩土力学,2009,30(10)
    [51]郑颖人,时卫民,孔位学,库水位下降时渗透力及地下水浸润线的计算[J],岩石力学与工程学报,2004,23(18)
    [52]孙冬梅,朱岳明,张明进,库水位下降时的岸坡非稳定渗流问题研究[J],岩土力学,2008,29(7)
    [53]程彬,卢靖,基于GeoStudio的边坡渗流场与应力场耦合分析[J],山西建筑,2010,36(3)
    [54]沈华中,洪卫,基于GeoStudio软件的堤坝安全评价[J],人民黄河,2008,30(11)
    [55]陆美霞,任德记,王刚,基于SEEP /W的吊江岩水电站闸坝渗流稳定分析[J],水利科技与经济,2010,16(2)
    [56]郑颖人,赵尚毅,宋雅坤,有限元强度折减法研究进展[J],后勤工程学院学报,2005,1
    [57]郑颖人,赵尚毅,用有限元强度折减法求滑(边)坡支挡结构的内力[J],岩石力学与工程学报,2004,23(20)
    [58]交通部第二公路勘察设计院,路基(第二版)[M],人民交通出版社,1996
    [59] Kurt H. Kjaer , Lina Sultana, Johannes Kruger,Architecture and sedimentation of outwash fans in front of the Myrdalsjfkull ice cap, Iceland[J],Sedimentary Geology,172 (2004)
    [60] Andrew J. Russell, Matthew J. Roberts , Helen Fay , Icelandic jo¨kulhlaup impacts: Implications for ice-sheet hydrology,sediment transfer and geomorphology[J],Geomorphology 75 (2006)
    [61] B.D. Smerdona,, K.J. Devito, C.A. Mendoza,Interaction of groundwater and shallow lakes on outwash sediments in the sub-humid Boreal Plains of Canada[J],Journal of Hydrology 314 (2005)
    [62] Larry N. Smith,Late Pleistocene stratigraphy and implications for deglaciation and subglacial processes of the Flathead Lobe of the Cordilleran Ice Sheet, Flathead Valley, Montana, USA[J],Sedimentary Geology 165 (2004)
    [63] D. P. Dethier, Fred Pessl,R.F. Keuler,Late Wisconsinan glaciomarine deposition and isostatic rebound,northern Puget Lowland, Washington[J],Geological Society of America Bulletin, November 1995
    [64] Jasper Knight,Morphology and palaeoenvironmental interpretation of deformed soft-sediment clasts: examples from within Late Pleistocene glacial outwash,Tempo Valley, Northern Ireland[J],Sedimentary Geology 128 (1999)
    [65] John B. Ritter,Jerry R. Miller,Yehouda Enzel,Stephen G. Wells,Reconciling the roles of tectonism and climate in Quaternary alluvial fan evolution[J],Geology,v. 23, no. 3,March 1995
    [66] George L. Bennett V,Gary S. Weissmann,Gregory S. Baker,David W. Hyndman,Regional-scale assessment of a sequence-bounding paleosol on fl uvial fans using ground-penetrating radar, eastern San Joaquin Valley, California[J],Geological Society of America Bulletin,v. 118; no. 5/6,May/June 2006
    [67] Stefan back, marc de batist, pavel kirillov, manfred r. Strecker,the frolikha fan: a large pleistocene glaciolacustrine outwash fan in northern lake baikal, siberia[J],journal of sedimentary research,vol. 68, no. 5, september, 1998
    [68] Aly i. El-kadi,validity of the generalized richards equation for the analysis of pumping test data for a coarse-material aquife[J]r,vadose zone j., vol. 4, february ,2005
    [69]苏珍,施雅风,郑本兴,贡嘎山第四纪冰川遗迹及冰期划分[J],地球科学进展,2002,17(5)
    [70]王小群,王兰生,崔杰,金沙江乌东德水电站岸坡槽谷堆积体成因分析[J],工程地质学报,2008,5
    [71]张泽,莫斯科州兹维宁格拉德地区冰碛一冰水沉积的性质与特征[J],冰川冻土,2008,30(4)
    [72]金仁祥,某水库坝基渗透稳定性研究[J],岩土力学,2004,25(1)
    [73]李吉均,周尚哲,潘保田,青藏高原东部第四纪冰川问题[J],第四纪研究,1991,3
    [74]类延斌,张虎才,尚华明,青藏高原年保玉则山末次冰期中期以来的湖泊演化与古冰川发育[J],第四纪研究,2008,28(1)
    [75]赵志中,乔彦松等,青藏高原中东部第四纪冰碛物暴露年龄的测定及意义[J],地学前缘(中国地质大学(北京);北京大学) [J],2006,13(5)
    [76]石月芝,吴正爱,西藏旁多水利枢纽坝基和坝壳砂砾石料的应力应变及剪胀特性研究[J],吉林水利,2007,8
    [77] R. Kramer Campen, Todd Sowers, Richard B. Alley, Evidence of microbial consortia metabolizing within a low-latitude mountain glacier[J],Geology,March 2003,v. 31,no. 3
    [78] Eric T. Karlstrom,Fabric and origin of multiple diamictons within the pre-Illinoian Kennedy Drift east of Waterton-Glacier International Peace Park, Alberta, Canada, and Montana, USA[J],GSA Bulletin, October 2000, v. 112, no. 10
    [79] T. S. PAULSEN, J. ENCARNACIO N , A. M. GRUNOW,Structure and timing of transpressional deformation in the Shackleton Glacier area, Ross orogen, Antarctica[J],Journal of the Geological Society, London, Vol. 161, 2004
    [80] Brian Anderson, Andrew Mackintosh, Temperature change is the major driver of late-glacial and Holocene glacier fluctuations in New Zealand[J], Geology, February 2006, v. 34, no. 2
    [81] Stefan back, Marc de batist, Pavel kirillov, The frolikha fan: a large pleistocene glaciolacustrine outwash fan in northern lake baikal, SIBERIA[J], journal of sedimentary research, vol. 68, no. 5, september, 1998
    [82]朱大岗,孟宪刚,邵兆刚,西藏阿伊拉日居山南麓第四纪冰川沉积物及其ESR年龄测定[J],冰川冻土,2005,27(2)
    [83]王运生,黄润秋,段海澎,中国西部末次冰期一次强烈的侵蚀事件,成都理工大学学报(自然科学版) [J],2006,33(1)
    [84]张嘎,张建民,粗颗粒土的应力应变特性及其数学描述研究[J],岩土力学,2004,25(10)
    [85]傅华,凌华,蔡正银,粗颗粒土颗粒破碎影响因素试验研究[J],河海大学学报(自然科学版) ,2009,37(1)
    [86]龚霞,何昌荣,刘黎,郝春华,粗颗粒土渗透特性的试验研究[J],水电站设计,2008,24(1)
    [87]刘萌成,高玉峰,刘汉龙,费康,粗粒料大三轴试验研究进展[J],岩土力学,2002,23(2)
    [88]李种,何昌荣,王深,赵红芬,粗粒料大型三轴试验的尺寸效应研究[J],岩土力学,2008,29(增刊)
    [89]秦红玉,刘汉龙,高玉峰,戴鹏飞,粗粒料强度和变形的大型三轴试验研究[J],岩土力学,2004,25(10)
    [90]吴琼,唐辉明,王亮清,林志红,库水位升降联合降雨作用下库岸边坡中的浸润线研究[J],岩土力学,2009,30(10)
    [91]孙冬梅,朱岳明,张明进,库水位下降时的岸坡非稳定渗流问题研究[J],岩土力学,2008,29(7)
    [92]郑颖人,时卫民,孔位学,库水位下降时渗透力及地下水浸润线的计算[J],岩石力学与工程学报,2004,23(18)
    [93]段祥宝,谢罗峰,水位降落条件下非稳定渗流试验研究[J],长江科学院院报,2009,26(10)
    [94]朱崇辉,刘俊民,王增红,无粘性粗粒土的渗透试验研究[J],人民长江,2005,36(11)
    [95]孙陶,无粘性粗粒土渗透系数的近似计算[J],四川水力发电,2003,22(2)
    [96]涂国祥,黄润秋,邓辉邓,某巨型冰水堆积体强度特性大型常规三轴试验[J],山地学报,2010,28(2)
    [97]涂国祥,邓辉,蔡国军等,某冰水堆积体层流-紊流过渡状态渗流特性试验研究,成都理工大学学报(自然科学版)[J],2010,37(1)
    [98]施雅风,姚檀栋,中低纬度MIS 3b ( 54~44 ka BP)冷期与冰川前进[J],冰川冻土,2002,24(1)
    [99]许哲平,陈建强,肖景义,云南昆明盆地中更新世晚期以来的孢粉记录及古气候演化[J],地质学报,2009,83(1)
    [100]刘东生,施雅风,王汝建,以气候变化为标志的中国第四纪地层对比表[J],第四纪研究,2000,20(2)
    [101]施雅风,郑本兴,姚檀栋,青藏高原末次冰期最盛时的冰川与环境[J],冰川冻土,1997,19(2)
    [102]施雅风,第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系[J],冰川冻土,1998,20(3)
    [103]施雅风,贾玉连,于革,40 - 30kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J],湖泊科学,2002,14(1)
    [104]蔡晓禹,凌天清,唐伯明,波浪对散体岸坡冲刷破坏的机理[J],重庆交通学院学报,2006,25(2)
    [105]孙永福,董立峰,蒲高军,宋玉鹏,风暴潮作用下黄河水下三角洲斜坡稳定性研究[J],工程地质学报,2006,14(5)
    [106]何秉顺,孙东亚,荷兰关于波浪爬高和越浪量的计算方法[J],水利水电技术,2007,38(2)
    [107]沈明荣,邓海荣,水下岩质边坡在波浪作用下的稳定性分析[J],工程地质学报,2006,14(5)
    [108]王广德,葛华,刘汉超,吉峰,重庆市万州区塌岸模式及影响因素分析[J],中国地质灾害与防治学报,2008,19(3)
    [109] BAO Tai,LIUXinrong,XUE Lingguang ,ZHU Keshan,A study on dynamic response of slopes under wave action using simulation tests[J],Journal of Chongqing University-Eng.Ed.,2003,2(1)
    [110] LIU Yuguang,YAN Xiao—Hai,SU Ming—Yang,Directional Spectrum of Wind Waves:PartⅡ一comparison and confirmation[J],Journal of Ocean University of Qingdao,2003,2(1)
    [111] LIU Yuguang,YAN Xiao—Hai,SU Ming—Yang,Directional Spectrum of Wind Waves:Part I一comparison and confirmation[J],Journal of Ocean University of Qingdao,2003,2(1)
    [112]雷泽宏,冶勒电站坝址覆盖层力学参数的选取[J],水电工程研究,1990,2
    [113]杜明祝,冶勒水电站深厚覆盖层坝基的勘察研究[J],四川水力发电,1999,18(3)
    [114]李振,李鹏,粗粒土直接剪切试验抗剪强度指标变化规律[J],防渗技术,2002,8(1)
    [115]李振,邢义川,干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J],岩土力学,2006,27(12)
    [116]林鲁生,蒋刚,白世伟,刘祖德,土体抗剪强度参数取值的统计分析方法[J],岩土力学,2003,24(2)
    [117]梁捷,用动测锤击数N63.5确定圆砾、卵石Es值的方法[J],广西工学院学报,2000,11(4)
    [118]李奇峰,梁收运,圆锥动力触探成果在碎石土勘察中的应用[J],中国科技论文在线,2008,3(7)
    [119]赵昭熔,曹化平,动力触探试验技术的研究与应用[J],铁道工程学报,2005,12(增刊)
    [120]赵诚,王世梅,长江三峡及其上游河流袭夺新认识[J],武汉水利电力大学(宜昌)学报,2000,22(3)
    [121]熊发挥,肖渊甫,张林,大渡河中游泸定—石棉段阶地特征及河谷发育史探讨[J],四川地质学报,2009,29(4)
    [122]吕大伟,冰水堆积物特性及其路用性状研究(D),东南大学,2009
    [123]刘新喜,库水位下降对滑坡稳定性的影响及工程应用研究(D),中国地质大学,2003
    [124]王书兵,川西中部晚更新世地层与环境(D),中国地质科学院,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700