用户名: 密码: 验证码:
脉压雷达信号的识别和估计算法研究及其实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲压缩雷达是一种低截获概率(LPI)雷达,对现代反辐射导弹(ARM)导引头和其他被动侦察接收机提出了新的挑战。论文具体以反辐射导弹导引头中脉冲压缩雷达信号的脉内特征分析与处理技术为主要研究内容,以脉压雷达信号中常见的信号形式,主要包括二相编码(BPSK)和四相编码(QPSK)信号、线性调频(LFM)和非线性调频(NLFM)雷达信号为主要研究对象,研究了脉压雷达信号的脉内调制方式识别,以及根据调制方式识别的结果实现有针对性的脉压雷达信号进一步处理,包括相位编码信号的参数估计,调频信号的检测和参数估计等,最后对脉压雷达信号处理的硬件实现进行了探索,为ARM导引头中脉压雷达信号的分选截获、匹配跟踪等提供必要的参数。
     论文首先给出了脉压雷达信号处理的系统框图,本文的研究内容和所做的工作均是围绕着这样的系统结构进行的。针对脉压雷达信号的脉内调制方式识别,首先分析了脉压雷达信号的脉内调制特征,提出了一种从粗到细的调制类型识别方法,它首先根据信号的频谱带宽特征将信号粗分为相位编码信号和调频信号两类,然后使用类内细分的方法实现了细分类,该方法计算简单,方便有效,具有很高的工程应用价值;然后在统计模式识别方面,提出了一种基于自适应相像系数的脉压雷达信号全分类方法,通过构造联合特征分布和建立判决准则,实现了脉压雷达信号的调制类型识别。这些方法都为后续根据调制类型识别结果选取有针对性、高效率的调制参数估计方法提供了必要的前提。
     在相位编码信号的参数估计方面,运用小波理论,首先针对含载频的信号,提出一种双尺度的小波变换法,利用粗细定位相结合的思想实现了对二相编码信号奇异点的精确定位,该方法尺度不易选取且低信噪比性能不佳;进一步针对去载频的相位编码信号,提出了一种基于乘积性多尺度小波变换的MPSK信号码速率估计算法,可以在较低信噪比提取突变点,采用FFT算法来估计码速率,使低信噪比性能进一步提高,且尺度的选取变得简便和有章可循。最后提出了一种基于时域累加瞬时自相关的PSK信号参数估计算法,通过累加后的时域波形便可提取突变点,对变换的结果做FFT,同样可以估计信号的码速率,该算法简单实用,同时也具有很优越的估计性能,在后续的硬件平台中得到了应用。
     针对多项式相位信号(PPS)的检测问题,首先提出了一种基于重排小波-Radon变换的多分量LFM信号检测算法,该方法有效提高了时频分布图的聚集性,同时也起到了抑制噪声干扰的作用,辨识效果明显提高。针对WVD变换在检测多分量LFM信号和NLFM信号时的不足,讨论了基于PWVD和LWVD的NLFM信号检测算法,提出了一种基于乘积性谱图-WVD(PSWVD)变换的多分量PPS信号的检测方法,该方法综合了谱图和WVD变换的优势,在去除WVD变换交叉项的同时保持了良好的频率聚集性和优良的低信噪比性能。针对PPS的参数估计,重点讨论了基于三次相位函数(CPF)的PPS信号参数估计算法,提出了一种基于加权平均三次相位函数的多分量LFM信号参数估计算法及其快速实现算法。推导了三次相位函数的FFT快速算法,进一步采用了舍入最近采样点的方法改进算法,使其可以应用于实际的离散采样系统。
     最后对脉压雷达信号处理的硬件实现做了一些探索。使用四片300MHz的浮点ADSP-TS101S芯片搭建了雷达信号硬件处理平台,基于频谱特征实现了信号类型的识别,基于时域累加瞬时自相关法实现了BPSK信号的参数估计算法,基于CPF法实现了LFM和NLFM雷达信号参数估计算法。并且成功进行了宽带数字信道化接收机与参数识别分机的联合测试。
Pulse compression radar with low probability of intercept brings a new challenge to the modern ARM seeker and other passive surveillance receivers. In present study, the intra-pulse modulation feature analysis and processing of pulse compression radar signals in ARM seeker were carried out, taking BPSK and QPSK signals, LFM and NLFM signals as main objects. And the recognition of modulation types and their corresponding further processing were studied, including the parameter estimation for PSK signals, detection and parameter estimation for frequency modulation signals. Additionally, some hardware experiments were done for the processing of pulse compression radar signals, which supplied necessary parameters for sorting, intercepting, matching and tracking of pulse compression radar signals in ARM seeker.
     This study was shown around the block diagram of processing system of pulse compression radar signals. For the recognition of modulation types, the intra-pulse modulation feature of signals was analyzed, and a recognition method from the rough to the detailed was proposed. It firstly classified signals roughly into PSK signals and FM signals according to the feature of spectrum band, and then got the detailed classification in each group. The method is easy for computation and valid for performance, which is very valuable in engineering application. Besides, as to statistical pattern recognition, a full recognition algorithm based on adaptive resemblance coefficient was proposed, which realized the modulation type recognition by constructing joint feature distribution and setting up a decision rule. These methods provided the necessary prerequisite for later choosing corresponding and efficient algorithms of parameter estimation.
     On the parameter estimation of PSK signals, using wavelet theory, a double-scale wavelet transform was proposed for signals with carrier frequency which could locate singularities precisely by combining rough location and accurate location. However, this method is difficult to choose scales and has poor performance of lower SNR. Thus, an estimation algorithm of symbol rate for MPSK signals without carrier frequency was put forward based on product multi-scale wavelet transform, which could extract singularities and estimate symbol rate by FFT transform in lower SNR, and it was easier and rule-based to choose scales. Finally, a parameter estimation method based on instantaneous autocorrelation with time-domain addition was proposed, which could extract singularities through the cumulative time-domain waveform and could also estimate symbol rate by FFT transform. It is easy and practical, and has good estimation performance, which is applied in the following hardware platform.
     On the detection of PPS, a method of wavelet reassignment and Radon transform was proposed to detect multi-component LFM signals, which improves the aggregation of time-frequency distribution effectively, inhibits noise and enhances the detection performance obviously. Due to the disadvantage of WVD transform in the detection of multi-component LFM signals and NLFM signals, the detection methods of PWVD and LWVD transform were discussed, and a detection method called Product Spectrogram-WVD(PSWVD) transform for multi-component PPS was proposed. This new detection method integrated the superiors of spectrogram and WVD, which removed cross-terms of WVD and held good frequency aggregation and anti-noise performance. On the parameter estimation of PPS, the CPF method was mainly discussed. And an estimation algorithm and its fast implementation were proposed for multi-component LFM signals based on weighted mean CPF. In order to be used in practical discrete sampling system, CPF's FFT algorithm was deduced and improved by rounding the nearest sampling point.
     Additionally, the hardware implementation of processing of pulse compression radar signals was put into practice. On the hardware platform of processing of radar signals constructed by 4 chips of 300MHz ADSP-TS101S, the recognition of modulation types was realized according to the feature of spectrum and band, the parameter estimation of BPSK signal was achieved by instantaneous autocorrelation with time-domain addition, and the parameter estimation of LFM and NLFM signals was implemented based on CPF. Joint test between the wideband digital channelized receiver and the parameter estimation hardware platform was done successfully.
引文
[1]胡来招.雷达侦察接收机[M].北京:国防工业出版社,2000.
    [2]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999:1-8页.
    [3]Schleher D C. Electronic warfare in the information age[M]. Norwood:Artech house,1999.
    [4]Schroer R. Electronic warfare[J]. IEEE Aerospace Electronic Systems Magazine,2003,18(7):49-54P.
    [5]Schleher D C. Low probability of intercept radar[C]. Proc.IEEE International Radar Conference,1985:346-349P.
    [6]Guosui Liu, Hong Gu, Weimin Su, etc. The analysis and design of modern low probability of intercept radar[C]. CIE International Conference on Radar, 2001:120-124P.
    [7]Stove, A.G., Hume, A.L., Baker, C.J., Low probability of intercept radar strategies[J].Radar, Sonar and Navigation, IEE Proceedings,2004,151(5): 249-260P.
    [8]司锡才,赵建民.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工程大学出版社,1996:1-24页.
    [9]吴欣.海湾战争中的电子战剖析[J].系统工程与电子技术,1991(4):76-84页.
    [10]张锡熊.低截获概率雷达的发展[J].现代雷达,2003,25(12):1-4页.
    [11]J. R. Forest. Techniques for low probability of intercept radar[M]. MAT, 1983:496-500P.
    [12]G. Schrick, R.G. Wiley. Interception of LPI radar signals[C]. IEEE International Radar Conference,1990:108-111 P.
    [13]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001(5):117-125页.
    [14]赵健民.宽带(2-18GHz)导引头关键技术研究[M].中国船舶工业总公司.1996:1-30页,65-90页.
    [15]P E Pace. Detecting and classifying low probability of intercept radar[M]. Norwood, MA:Artech House,2004:80-100P.
    [16]张雅婷.低截获概率雷达概述[J].火控雷达技术,1998,27(2):63-67页.
    [17]陈振邦.低截获概率雷达技术研究[J].舰船电子对抗,1997(4):7-11页.
    [18]穆世强.雷达信号脉内细微特征分析[J].电子对抗技术,1991(2):28-36页.
    [19]韩国成,吴顺君.雷达信号脉内调制特征的时频分析[J].航天电子对抗,2004(3):34-37页.
    [20]张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报,2004,23(6):477-480页.
    [21]Davies C L, Hollands H. Automatic processing for ESM[J]. IEE Proceedings, PartF:Radar&Signal Process,1982,129(3):146-171P.
    [22]余农,潘联安.雷达告警系统的信号识别[J].航天电子对抗,1991(2):22-26页.
    [23]Roe J. A review application of artifical intelligence techniques to navel ESM signal processing[C]. Proceedings of IEE Colloquium on the Applications of artifical intelligence techniques to Signal Processing,1989,5/1-5/5P.
    [24]Roe A L. Artificial neural networks for ESM emitter identification-an initial study[C]. Proceedings of IEE Colloquium on Neural Networks for Systems: Principles and Applications,1991,4/1-4/3 P.
    [25]Roe J. Pudner A. The real-time implementation of emitter identification for ESM[C]. Proceedings of IEE Colloquium on Signal Processing in Electronic Warfare,1994,7/1-7/6P.
    [26]Perdriau B. Modulation domain offers a new view of radar performance [J]. MSN 1990(5):27-43P.
    [27]阎向东,张庆荣,林向平.脉压信号的脉内调制特征提取[J].电子对抗,1991(4):23-31页.
    [28]李杨,李国通,杨根庆.通信信号数字调制方式自动识别算法研究[J].电子与信息学报,2005,27(2):197-201页.
    [29]Azzouz E, Nandia. Algorithms of automatic modulation recognition of communication signals[J]. IEEE Trans. Comm.,1998,46(4):431-436P.
    [30]Hsue Z S, Soliman S S. Automatic modulation classification using zero crossing[J]. Radar and Signal Processing, IEE Proceedings F,1990,137(6): 459-464P.
    [31]Chugg K M, Chu-Sieng, Polydoros A. Combined likelihood power estimation and multiple hypothesis modulation classification[C]. Signals, Systems and Computers, Conference, Record of the Twenty-NinthAsilomar. 1996,1.2:1137-1141P
    [32]邓振淼,刘渝,杨姗姗.多相码雷达信号调制方式识别[J].数据采集与处理,2008,23(3):265-269页.
    [33]Zhao J, Tao L. A MPSK modulation classification method based on the maximum likehood criterion[C]. ICSP'04 Proceedings,2004:1805-1808P.
    [34]Azzouz E E, Nandi A K. Automatic identification of digital modulation types[J]. Signal Processing,1995,47(1):55-59P.
    [35]Chan Y T, Gadbois L G. Identification of the modulation type of a signal[J]. Signal Processing.1989,16(2):149-154P.
    [36]Mammone R H, Rothaker R J. Podilchuk C I. Estimation of carrier frequency, modulation type and bit rate of an unknown modulated signal[J]. ICC, Seattle, WA,1987:1006-1012P.
    [37]Ho K C, Prokopiw W, Chan Y T. Modulation identification by the wavelet transform[J]. MILCOM, San Diego, CA,1995,2:886-890P.
    [38]Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform[J]. IEE Proceeding-Radar, Sonar, Navigation,2000, 147(4):169-176P.
    [39]Gini F, Giannakis G B. Frequency offset and symbol timing recovery in flatfading channels:a cyclostationary approach[J]. IEEE Trans. on Communications,1998,46(3):400-410P.
    [40]Mazet L, Loubaton Ph. Cycle correlation based symbol rate estimation[C]. The 33rd Asilomar Conference on Signals, System & Computers,1999: 1008-1012P.
    [41]Hsue S Z, Soliman SS. Automatic modulation classification using zero crossing[J]. IEE Proceedings F, Radar and Signal Processing,1990,137(6): 459-464P.
    [42]Louis C, Schier P. Automatic modulation recognition with a hierarchical neural network[C]. MILCOM, Long Branch, NJ,1994,3:713-717P.
    [43]胡建伟.小波在电子侦察中的应用[D].西安电子科技大学博士学位论文,2005.
    [44]骆聘等.自组织神经网络实现无限数字信号识别[J].无线通信技术,2000:9-13页
    [45]戴威,王有政,王京.基于AR模型的调制盲识别方法[J].电子学报.,2001,29(12):1890-1892页.
    [46]Donoho D L, Huo Xiaoming. Large-sample modulation classification using Hellinger representation[C]. IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications,1997:133-136P.
    [47]Nandi A K, Azzouz E E. Modulation recognition using artificial neural networks[J]. Signal Processing,1997,56(2):165-175P.
    [48]Hill P C J, Orzeszko G R. Performance comparison of neural network and statistical discriminant processing techniques for automatic modulation recognition[J]. SPIE,1991,1469:329-340P.
    [49]Park K Y. Performance evaluation of energy detectors[J]. IEEE Trans. AES, 1978,14(2):237-241P.
    [50]Chung C D, Polydoros A. Detection and hop-rate estimation of random FH signals via autocorrelation technique[C]. IEEE MILCOM'91,1991,1: 345-349P.
    [51]隋丹,葛临东,屈丹.一种新的基于能量检测的突发信号存在性检测算法[J].信号处理,2008,24(4):614-617页.
    [52]尉宇,孙德宝,郑继刚.基于FrFT优化窗的STFT及非线性调频信号瞬 时频率估计[J].宇航学报,2005,26(2):217-222页.
    [53]Kwok H K, Jones D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Trans. Signal Processing, 2000,48(10):2964-2972P.
    [54]章步云,刘爱芳,朱晓华等.基于Radon-STFT的多分量线性调频信号检测和参数估计[J].探测与控制学报,2003,25(3):30-33页.
    [55]Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J. Opt. Soc. Am,1986,3:1277-1238P.
    [56]Boashash B, Whitehouse H J. Seismic applications of the Wigner-Ville distribution[C]. Proc. IEEE Int. Conf. System and Circuits,1986:34-37P.
    [57]Kay S, Boudreaux-Bartels G F. On the optimality of the Wigner-Ville distribution for detection[C]. Proc. ICASSP'85,1985:1017-1020P.
    [58]Franz H. Interference terms in the Wigner distribution[C]. ICASSP'84,1984: 363-367P.
    [59]Flandrin P. Some features of time-frequency representation of multi-component signals[C]. Proc. IEEE ICASSP'84,1984:41-44P.
    [60]Choi H and Williams J. Improved time-frequency representation of multicomponent signals using exponential kernels[J]. IEEE Trans.ASSP., 1989,37(6).
    [61]王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999.
    [62]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [63]Cohen L. Time-frequency distributions-Areview[J]. Proc. of the IEEE,1989, 77:941-981P.
    [64]Cohen L. Generalized phase-space distribution functions[J]. J.Math.Phys, 1966,7:781-786P.
    [65]Stankovic L. A method for time-frequency analysis[J]. IEEE Trans. SP,1994, 42(1):225-229P.
    [66]Boashash B, O'shea P. Polynomial wigner-ville distributions and their relationship to time-varying higher order spectra[J]. IEEE trans. Signal Processing,1994,42:216-220P.
    [67]Stankovic L. A multitime definition of the Wigner higher order distribution: L-Wigner distributions[C]. IEEE Signal Processing Letters,1994,1(7): 106-109P.
    [68]Stankovic L. A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-wigner distributions[J]. IEEE Trans. SP,1995,43(5):1262-1268P.
    [69]Ristic B, Boualem. Relationship between the polynomial and the higher Wigner-Ville distribution[C]. IEEE Signal Processing Letters,1995,2(12): 227-229P.
    [70]Stankovic L. L-class of time-frequency distributions[C]. IEEE Signal Processing Letters,1996,3(1):22-25P.
    [71]Stankovic L. A time-frequency distribution concentrated along the instantaneous frequency[C]. IEEE Signal Processing Letters,1996,3(3): 89-92P.
    [72]Stankovic L. S-class time-frequency distribution[J]. IEEE Proc. Vision. Image and Signal Processing,1997,114(2):57-64P.
    [73]Nathalie D, Bernard E, Phillippe G, etc. Asymptotic wavelet and Gabor analysis:extraction of instantaneous frequencies[J]. IEEE Trans. on Information Theory,1992,38(2):644-664.
    [74]唐向宏,龚腰寰.小波变换在雷达信号处理中的应用[J].电子科技大学学报,1995,24(8):192-198页.
    [75]张磊,潘泉,张洪才等.一种子波域滤波算法的实现[J].电子学报,1999,27(2):19-21P.
    [76]金燕,黄振,陆建华.基于FRFT的线性调频信号多径信号分离算法[J].清华大学学报,2008,48(10):1617-1620页.
    [77]Ozaktas H M, Arikan O, Kurtay M A, etc. Digital computation of the fractional Fourier transform[J]. IEEE, Trans. Signal Processing,1996,44(9): 2141-2149P.
    [78]Gardner W A. Measurement of spectral correlation[J]. IEEE Trans. ASSP, 1986,34(5):1111-1123P.
    [79]Gardner W A. Signal interception:A unifying theoretical framework for feather detection[J]. IEEE Trans. Communications,1988,36(8):897-906P.
    [80]Gardner W A, Spooner C M. Signal interception:Performance advantages of cycle-feature detectors[J]. IEEE Trans. Communications,1992,40(1): 149-159P.
    [81]Ueung G K, Gardner W A. Search-efficient methods of detection of cyclostationary signals[J]. IEEE Trans. Signal Processing,1996,44(5): 1214-1223P.
    [82]Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observation[J]. IEEE transaction on AES,1991,24(4):607-614P.
    [83]Peleg S, Porat B. Estimation and classification of polynomial phase signals[J]. IEEE Transaction on Information Theory,1991,37(3):422-430P.
    [84]Peleg S, Friedlander B. The discrete polynomial-phase transform[J]. IEEE Transaction on Signal Processing,1995,43(8):1901-1914P.
    [85]Peleg S, Friedlander B. Multicomponent signal analysis using polynomial-phase transform[J]. IEEE Trans., AES,1996,32(1).
    [86]Barbarossa S, Scaglione A, Giannakis G B. Product High-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Trans, on Signal Processing,1998,46:691-708P.
    [87]Barbarossa S, Porchia A, Scaglione A. Multiplicative multilag higher-order ambiguity function[C]. Proc. Int. Conf. Acoust, speech, signal processing, Atlanta, GA,1996,5:3022-3206P.
    [88]Barbarossa S, Petrone V. Analysis of polynomial-phase signals by an integrated generalized ambiguity function[J]. IEEE Trans. Signal Processing, 1997,44:316-327P.
    [89]O'shea P. A new technique for instantaneous frequency rate estimation[C]. IEEE Signal Processing Letters,2002,9(8):251-252P.
    [90]O'shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transaction on Signal Processing,2004,52(2):385-393P.
    [91]王民胜.时频分析在信号处理中的应用[D].西安:西安电子科技大学,1994.
    [92]Yang Shaoquan, Chen Weidong. Classification of MPSK signals using cumulant invariants[J]. Journal of Electronics,2002,19(1):100-103P.
    [93]张家树.混沌信号的非线性自适应预测技术及其应用研究[D].成都:电子科技大学,2001.
    [94]张洪涛.基于神经网络和滤波理论的信息融合算法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [95]邱剑锋,谢娟,汪继文等.Chirplet变换及其推广[J].合肥工业大学学报,2007,30(12):1575-1579页.
    [96]朱明,金炜东,普运伟等.基于Chirplet原子的雷达辐射源信号特征提取[J].红外与毫米波学报,2007,26(4):302-306页.
    [97]蒋润良.相位编码雷达信号处理及其应用研究[D].南京:南京理工大学,2003.
    [98]张群逸.雷达中的相位编码信号与处理[J].火控雷达技术,2005,34(12):30-32P.
    [99]张华.低信噪比下线性调频信号的检测与参量估计研究[D].成都:电子科技大学,2004.
    [100]刘庆云.确定性时变信号的分析与处理方法研究[D].西安:西北工业大学,2004.
    [101]池庆玺.脉压雷达脉内特征分析与处理技术研究[D].哈尔滨:哈尔滨工程大学,2007.
    [102]Zhang G X, Hu L Z, Jin W D. Resemblance coefficient based intrapulse feature extraction approach for radar emitter signals[J]. Chinese Journal of Electronics,2005,14(2):337-341P.
    [103]Rezeanu S C, Ziemer R E, Wicker M A. Joint maximum-likelihood parameter estimation for burst DS spread-spectrum transmission[J]. IEEE trans. Com,1997,45(2):227-238P.
    [104]金艳,姬红兵,罗军辉.一种基于循环统计量的直扩信号检测与参数估计方法[J].电子学报,2006,34(4):634-637页
    [105]张炜,杨虎,张尔扬.多进制相移键控信号的谱相关特性分析[J].电子与信息学报,2008,30(2):392-396页
    [106]孙梅,韩力.基于小波变换的移相键控信号符号速率估计[J].北京理工大学学报,2003,23(3):378-385页
    [107]邓振淼,刘渝.基于多尺度Haar小波变换的MPSK信号码速率盲估计[J].系统工程与电子技术,2008,30(1):36-40页
    [108]Xu Jun, Wang Fu-ping, Wang Zan-ji.The improvement of symbol rate estimation by the wavelet transform[C].2005 International Conference on Communications, Circuits and Systems, Piscataway:IEEE,2005,1(1): 100-103P.
    [109]张春杰,郜丽鹏,司锡才.瞬时相位法线性调频信号瞬时频率提取技术研究[J].弹箭与制导学报,2006,26(3):290-292页.
    [110]KAY S. A Fast and accurate single frequency estimation[J]. IEEE Trans Acoustics, Speech, and Signal Processing,1989,37(12):1987-1990 P.
    [111]Mallat S. A Wavelet Tour of Signal Processing[M].北京:机械工业出版社,2003,9.
    [112]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.
    [113]简涛,何友,苏峰,曲长文.奇异信号消噪中小波消失矩的选取[J].雷达科学与技术,2006:31-35页.
    [114]陈逢时.子波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1998.
    [115]张华娣,赵国庆.低信噪比的相位编码信号细微特征检测方法[J].现代雷达,2005:40-47页.
    [116]Donoho D L. De-Noising by Soft Thresholding[J]. IEEE Transactions on Information Theory,1995,41:613-627P.
    [117]I.M.Johnstone, B.W.Silverman.Wavelet threshold estimators for data with correlated noise[J]. Journal of Royal Statistical Society Series B,1997, 59(2):319-351P.
    [118]Chan Y T, Piews J W, Ho K C. Symbol rate estimation by the wavelet transform[C]. Proc IEEE International Symp on Circuits and Systems. New York:IEEE,1997, Part 1:177-180P.
    [119]纪勇,徐佩霞.基于小波变换的数字信号符号率估计[J].电路与系统学 报,2003,8(1):12-15P.
    [120]朱晓.新型宽带数字接收机及脉冲压缩雷达信号参数估计算法研究[D].哈尔滨:哈尔滨工程大学,2008.
    [121]Wood J C, Barry D T. Radon transformation of time-frequency distribution for analysis of multi-component signals[J]. IEEE Trans. Signal Processing, 1994,42(11):3166-3177P.
    [122]Wang M S, Chan A K, Chui C K. Linear frequency-modulated signal detection using radon-ambiguity transform[J]. IEEE Trans. Signal Processing, 1998,46(3):571-586P.
    [123]徐春光,谢维信.自适应线性核时频信号分析[J].系统工程与电子技术,2000,22(6):22-24页.
    [124]Ozdemir A K, Arikan O. A high resolution time frequency representation with significantly reduced cross-terms[C]. Proc. IEEE ICASSP,2000,2: 693-696P.
    [125]孙泓波,顾红,苏卫民等.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报,2002,30(3):347-350页.
    [126]Boashash B, Sucic V. Resolution measure criteria for the objective assessment of the performance of quardratic time-frequency distributions [J]. IEEE Trans, on Signal Processing,2003,51(5):1253-1263P.
    [127]Boashash B, Sucic V. A resolution performance measure for quardratic time-frequency distributions[C]. Proc.10th IEEE Workshop Statist. Signal Array Process., Pocono Manor, PA,2000:584-588P.
    [128]Peleg S, Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase[J]. IEEE Transactions on Signal Processing, 1991,39(3):749-752P.
    [129]李英祥.低截获概率信号非平稳处理技术研究[D].成都:电子科技大学,2002.
    [130]张华.低信噪比下线性调频信号的检测与参量估计研究[D].成都:电子科技大学,2004.
    [131]李强,王其申.小波谱及其在线性调频信号检测中的作用[J].量子电子 学报,2005,22(5).
    [132]Auger F, Flandrin F. Improving the readability of time-frequency and time-scale representation by the reassignment method[J]. IEEE Trans On Signal Processing,1995,43(5):1068-1089P.
    [133]Oehlmann H, Brie D, Tomezak M, etc. A method for analyzing gearbox faults using time-frequency representations[J]. Mechanical Systems and Signal Processing,1997,11(4):529-545P.
    [134]Barkat B, Boashash B. Design of higher order polynomial Wigner-Ville distributions[J]. IEEE Transactions on Signal Processing,1999,47(9): 2608-2611 P.
    [135]张晓冬,吴乐南.多项式Wigner-Ville分布(PWVD)的系数设计[J].电路与系统学报,2003,8(4):119-122页.
    [136]郭汉伟,王岩,梁甸农.检测多项式相位信号的时频综合算法[J].系统工程与电子技术,2004,26(4):482-484页.
    [137]Baraniuk R G, Jones D L. A signal-dependent time-frequency representation: optimal kernel design[J]. IEEE Trans. on SP,1993,41(4):1589-1602P.
    [138]邹红.多分量线性调频信号的时频分析[D].西安:电子科技大学,2000.
    [139]周良臣.多项式相位信号的检测与参数估计研究[D].成都:电子科技大学,2006.
    [140]刘书明,苏涛,罗军辉.TigerSHARC DSP应用系统设计[M].北京:电子工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700