用户名: 密码: 验证码:
视网膜神经节细胞放电活动非线性分析及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉信号的初级处理发生在视网膜。视觉刺激被光感受器细胞转换成电信号,经由视网膜神经回路传递至视网膜神经节细胞,然后通过视神经进一步向视觉中枢传递。作为视网膜的输出神经元,神经节细胞发放的动作电位序列编码了视觉刺激所携带的信息。因此,对视网膜神经节细胞放电活动的研究有助于了解视网膜的信息处理和编码机制。此类研究的意义不仅在于对生物系统的了解,同时也为人工视觉的开发和利用提供生物学上的依据。
     使用自然刺激对探索视网膜如何对自然环境下的视觉信息进行处理和编码极为重要。然而自然刺激的统计特性非常复杂,神经系统本身还是一个复杂的非线性系统,这就使得视网膜神经节细胞在自然刺激下的放电活动往往表现出非周期的、不规则的形式。在分析视网膜神经节细胞这种非周期的、不规则的放电活动时,首先应该判断其中是否包含确定性,从而为下一步的数据分析工作奠定基础。论文第一部分在单细胞层面上采用关联维数法和非线性预测法对视网膜神经节细胞在自然电影刺激和棋盘格刺激下的放电活动序列进行了分析。分析结果包含三部分的内容。第一,视网膜神经节细胞不规则的、非周期的放电活动包含着内在的确定性,因此我们可以采用确定性模型对神经节细胞的放电活动进行研究。第二,对视网膜神经节细胞放电活动时间间隔序列的差分有利于确定性的检测。第三,在检测时间序列是否包含确定性时,非线性预测法比关联维数法有效。
     实验发现,一些小鸡视网膜神经节细胞在重复性全域闪光刺激下的放电活动呈现出一种独特的时间结构特征—双峰响应。目前,这种双峰响应的产生机制还不清楚。论文第二部分在视网膜层面上通过建立视网膜模型的方法对双峰响应的产生机制问题进行了研究。模型分析结果表明,受到慢瞬时给光/撤光型无长突细胞抑制的快瞬时给光/撤光型无长突细胞对持续型神经节细胞产生抑制作用,使得神经节细胞持续型响应中特定时间段内的放电活动受到抑制,从而形成双峰响应。分析结果提示,无长突细胞对神经节细胞放电活动的调制作用使得神经节细胞的放电活动表现出了丰富的时间结构特征。
     高斯差模型描述了视网膜神经节细胞经典的同心圆式中心—外周拮抗的感受野结构特征。后来的研究发现,视网膜神经节细胞经典感受野之外还存在着一个范围很大的去抑制区,这个区域能够削弱经典感受野内外周区对中心区的抑制性作用。去抑制模型解释了这种去抑制作用内在的产生机制。论文第三部分通过建立视觉系统模型的方法对这两种感受野模型的编码质量问题进行了研究。视觉系统模型包含一个视网膜模块和一个中枢视觉系统模块,视网膜模块由一组空时滤波器组成,每个空时滤波器模拟一个视网膜神经节细胞。计算结果表明,当视网膜模块中的空时滤波器采用去抑制模型实现时,中枢视觉系统模块能够从视网膜模块所产生的动作电位序列中提取出更多的信息,亦即去抑制模型的编码质量较高。由此可见,经典感受野之外的去抑制区对于视网膜神经节细胞的信息编码具有重要意义。这为图像处理技术的发展以及人工视觉的开发和利用提供了参考。
The initial visual information processing occurs in the retina. Photoreceptors convert the visual stimuli into electrical signals. These signals are propagated through the retinal circuit to the ganglion cells and then to the central visual system. As the output neurons of the retina, ganglion cells fire action potential trains which encode the visual information carried by the visual stimuli. Therefore, study on the firing activities of retinal ganglion cells helps to understand the information processing and encoding mechanism of the retina. This not only contributes to the understanding of the biology system, but also provides biology bases for the development and application of the artificial vision.
     Natural stimuli are important to explore the information processing and encoding mechanism of the retina under natural scenes. However, due to the complicated statistics of natural stimuli and the nonlinearity of neural system, the firing activities of retinal ganglion cells during response to natural stimuli are always aperiodic and irregular. Determinism detection in the aperiodic, irregular firing activities of retinal ganglion cells provides directions for future work. In the first part of this dissertation, the correlation dimension method and the nonlinear forecasting method were applied to analyze the firing activities of retinal ganglion cells during response to natural movie and checker-board flickering. Mainly three conclusions were drawn. Firstly, there exists determinism in the aperiodic, irregular firing activities of retinal ganglion cells. As a result, deterministic models should be employed to study the firing activities of retinal ganglion cells. Secondly, the difference operation of the inter-spike interval series makes it easier for determinism detection in the firing activities of retinal ganglion cells. Thirdly, the nonlinear forecasting method is more efficient than the correlation dimension method for determinism detection.
     In the experiment with repetitive light flashes, it was found that the firing activities of a subpopulation of chicken retinal ganglion cells show a particular temporal structure– dual-peak response. The generation mechanism of the dual-peak response remains unclear. In the second part of this dissertation, a retina model was developed to solve this question. Model results indicate that the dual-peak response results from an inhibitory input to a sustained ganglion cell from a fast transient ON/OFF amacrine cell inhibited by a slow transient ON/OFF amacrine cell, which inhibit the ganglion cell’s sustained response at a certain time window. These results imply that the firing activities of ganglion cells are regulated by the amacrine cells and thus demonstrate rich temporal structure.
     The difference of Gaussian model describes the classical antagonistic center-surround receptive field structure of retinal ganglion cells. However, it has been reported that there exists an extensive disinhibitory region beyond the classical receptive field and this disinhibitory region attenuates the surround inhibition in the classical receptive field. The disinhibition model explains the intrinsic mechanism of the disinhibition. In the last part of this dissertation, a visual system model was developed to study the encoding quality of the two receptive field models. The visual system model includes a retinal module and a central visual system module. The retina module consists of an ensemble of spatial-temporal filters and each filter simulates an individual ganglion cell. Model results indicate that the central visual system module decodes more information from the action potential trains generated by the retina module when the spatial-temporal filters are implemented by the disinhibition model. Therefore, a conclusion was drawn that the encoding quality of the disinhibition model excels the difference of Gaussian model. These results imply that the disinhibitory region beyond the classical receptive field is of great significance to the information encoding of retinal ganglion cells. This provides reference for the development of image processing and application of artificial vision.
引文
[1]徐科.神经生物学纲要.北京:科学出版社. 2000:209, 216-217.
    [2] Yang X.L. Characterization of receptors for glutamate and GABA in retinal neurons[J]. Progress in Neurobiology. 2004, 73(2):127-150.
    [3] Dowling J.E. and Boycott B.B. Organization of the primate retina: electron microscopy[J]. Proceedings of the Royal Society of London. Series B. Biological sciences. 1966, 166(2):80-111.
    [4] Kolb H. How the retina works [J]. American Scientist. 2003, 91(1):28-35.
    [5] M. F.贝尔等.神经科学—脑探索.第二版.王建军等译.北京:高等教育出版社. 2004:298-301.
    [6] Hannula D.E., Simons D.J. and Cohen N.J. Imaging implicit perception: promise and pitfalls[J]. Nature Reviews Neuroscience. 2005, 6(3):247-255.
    [7] Barlow H.B. Critical limiting factors in the design of the eye and visual cortex[J]. Proceedings of the Royal Society of London. Series B. Biological sciences. 1981, 212(1186):1-34.
    [8] J. G.尼克尔斯等.神经生物学—从神经元到脑.第四版.杨雄里等译.北京:科学出版社. 2001:464-465.
    [9] Barlow H.B. Summation and inhibition in the frog retina[J]. Journal of Physiology. 1953, 119:69-88.
    [10] Kuffler S.W. Discharge patterns and functional organization of mammalian retina[J]. Journal of Neurophysiology. 1953, 16(1):37-68.
    [11] http://webvision.med.utah.edu/GCPHYS1.HTM#ON%20and%20OFF20%Responses.
    [12] McIlwain J.T. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity[J]. Journal of Neurophysiology. 1964, 27:1154-1173.
    [13] McIlwain J.T. Some evidence concerning the physiological basis of the periphery effect in the cat's retina[J]. Experimental Brain Research. 1966, 1(3):265-271.
    [14] Ikeda H. and Wright M.J. The outer disinhibitory surround of the retinal ganglion cell receptive field[J]. Journal of Physiology. 1972, 226(2):511-544.
    [15] Li C.Y., Pei X., Zhow Y. and Von Mitzlaff H.C. Role of the extensive area outside the X-cell receptive field in brightness information transmission[J]. Vision Research. 1991, 31(9):1529-1540.
    [16] Li C.Y., Zhou Y.X., Pei X., Qiu F.T., Tang C.Q., et al. Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells[J]. Vision Research. 1992, 32(2):219-228.
    [17] Rust N.C. and Movshon J. In praise of artifice[J]. Nature Neuroscience. 2005, 8:1647-1650.
    [18] Felsen G. and Dan Y. A natural approach to studying vision[J]. Nature Neuroscience. 2005, 8:1643-1646.
    [19] Barlow H.B., Hill R.M. and Levick W.R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit[J]. The Journal of Physiology. 1964, 173:377-407.
    [20] Ringach D.L., Hawken M.J. and Shapley R. Dynamics of orientation tuning in macaque primary visual cortex[J]. Nature. 1997, 387(6630):281-284.
    [21] Bredfeldt C.E. and Ringach D.L. Dynamics of spatial frequency tuning in macaque V1[J]. Journal of Neuroscience. 2002, 22(5):1976-1984.
    [22] Felsen G., Shen Y.S., Yao H., Spor G., Li C., et al. Dynamic modification of cortical orientation tuning mediated by recurrent connections[J]. Neuron. 2002, 36(5):945-954.
    [23] Simoncelli E. and Olshausen B. Natural image statistics and neural representation[J]. Annual Review of Neuroscience. 2001, 5:1193-1216.
    [24] Touryan J. and Felsen G. Spatial structure of complex cell receptive fields measured with natural images[J]. Neuron. 2005, 45:781-791.
    [25] Felsen G., Touryan J., Han F. and Dan Y. Cortical sensitivity to visual features in natural scenes[J]. PLoS Biology. 2005, 3(10):1819-1828.
    [26] Dan Y., Atick J.J. and Reid R.C. Efficient coding of natural scenes in the lateral geniculate nucleus: Experimental test of a computational theory[J]. Journal of Neuroscience. 1996, 16(10):3351-3362.
    [27] Ringach D.L., Hawken M.J. and Shapley R. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences[J]. Journal of Vision. 2002, 2(1):12-24.
    [28] Prenger R., Wu M.C.-K., David S.V. and Gallant J.L. Nonlinear V1 responses to natural scenes revealed by neural network analysis[J]. Neural Networks. 2004, 17(5-6):663-679.
    [29] David S.V., Vinje W.E. and Gallant J.L. Natural stimulus statistics alter the receptive field structure of V1 neurons[J]. Journal of Neuroscience. 2004, 24(31):6991-7006.
    [30] Olshausen B.A. and Field D.J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research. 1997, 37:3311-3325.
    [31] Olshausen B.A. and Field D.J. Sparse coding of sensory inputs[J]. Current Opinion in Neurobiology. 2004, 14:481-489.
    [32] Lesica N.A. and Stanley G.B. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus[J]. Journal of Neuroscience. 2004, 24(47):10731-10740.
    [33]段玉斌.神经起步点放电峰峰间期的非线性动力学[博士论文].西安:第四军医大学. 2002.
    [34]刘秉正等.非线性动力学.北京:高等教育出版社. 2004:138-139,329-330.
    [35] Hayashi H., Nakao M. and Hirakawa K. Chaos in the self-sustained oscillation of an excitable biological membrane under sinusoidal stimulation[J]. Physics Letters A. 1982, 88(5):265-266.
    [36] Hayashi H., Ishizuka S. and Hirakawa K. Transition to chaos via intermittency in theonchidium pacemaker neuron[J]. Physics Letters A. 1983, 98(8-9):474-476.
    [37] Chay T.R. Chaos in a three-variable model of an excitable cell[J]. Physica D: Nonlinear Phenomena. 1985, 16:233-242.
    [38] Aihara K., Matsumoto G. and Ichikawa M. An alternating periodic-chaotic sequence observed in neural oscillators[J]. Physics Letters A. 1985, 111(5):251-255.
    [39] Xu J.X., Gong Y.F., Ren W., Hu S.J. and Wang F.Z. Propagation of periodic and chaotic action potential trains along nerve fibers[J]. Physica D: Nonlinear Phenomena. 1997, 100(1-2):212-224.
    [40] Gong Y.F., Xu J.X., Ren W., Hu S.J. and Wang F.Z. Determining the degree of chaos from analysis of ISI time series in the nervous system: A comparison between correlation dimension and nonlinear forecasting methods[J]. Biological Cybernetics. 1998, 78(2):159-165.
    [41] DeCharms R.C. and Zador A. Neural representation and the cortical code[J]. Annual Review of Neuroscience. 2000, 23:613-647.
    [42] Kreiman G. Neural coding: Computational and biophysical perspectives[J]. Physics of Life Reviews. 2004, 1(2):71-102.
    [43] Goldberg J.M. and Brown P.B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization[J]. Journal of Neurophysiology. 1969, 32(4):613-636.
    [44] Stein R.B. The information capacity of nerve cells using a frequency code[J]. Biophysical Journal. 1967, 7:797-826.
    [45] Thorpe S., Fize D. and Marlot C. Speed of processing in the human visual system[J]. Nature. 1996, 381(6582):520-522.
    [46] Thorpe S., Delorme A. and Van Rullen R. Spike-based strategies for rapid processing[J]. Neural Networks. 2001, 14:715-725.
    [47] Gautrais J. and Thorpe S. Rate coding versus temporal order coding: A theoretical approach[J]. BioSystems. 1998, 48(1-3):57-65.
    [48] Van Rullen R. and Thorpe S.J. Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex[J]. Neural Computation. 2001, 13(6):1255-1283.
    [49] Van Rullen R., Guyonneau R. and Thorpe S.J. Spike times make sense[J]. Trends in Neurosciences. 2005, 28(1):1-4.
    [50] Bair W. and Koch C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey[J]. Neural Computation. 1996, 8(6):1185-1202.
    [51] Bura?as G.T., Zador A.M., DeWeese M.R. and Albright T.D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex[J]. Neuron. 1998, 20(5):959-969.
    [52] Mechler F., Victor J.D., Purpura K.P. and Shapley R. Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli[J]. Journal of Neuroscience. 1998, 18(16):6583-6598.
    [53] McClurkin J.W., Optican L.M., Richmond B.J. and Gawne T.J. Concurrent processing and complexity of temporally encoded neuronal messages in visual perception[J]. Science. 1991, 253(5020):675-677.
    [54] Softky W.R. Simple codes versus efficient codes[J]. Current Opinion in Neurobiology. 1995, 5(2):239-250.
    [55] Shadlen M.N. and Newsome W.T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding[J]. Journal of Neuroscience. 1998, 18(10):3870-3896.
    [56] Softky W.R. and Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs[J]. Journal of Neuroscience. 1993, 13(1):334-350.
    [57] Mainen Z.F. and Sejnowski T.J. Reliability of spike timing in neocortical neurons[J]. Science. 1995, 268(5216):1503-1506.
    [58] K?nig P., Engel A.K. and Singer W. Integrator or coincidence detector? The role of the cortical neuron revisited[J]. Trends in Neurosciences. 1996, 19(4):130-137.
    [59]周艺.小鸡视网膜神经节细胞的双峰反应[博士论文].上海:上海交通大学. 2007.
    [60] Dong C.J. and Werblin F.S. Temporal contrast enhancement via GABAc feedback at bipolar terminals in the tiger salamander retina[J]. Journal of Neurophysiology. 1998, 79(4):2171-2180.
    [61] Vígh J., Bánv?lgyi T. and Wilhelm M. Amacrine cells of the anuran retina: Morphology, chemical neuroanatomy, and physiology[J]. Microscopy Research and Technique. 2000, 50(5):373-383.
    [62] Masland R.H. Neuronal diversity in the retina[J]. Current Opinion in Neurobiology. 2001, 11(4):431-436.
    [63] Field G.D. and Chichilnisky E.J., Information processing in the primate retina: Circuitry and coding[J]. Annual Review of Neuroscience. 2007, 30:1-30.
    [64] Hennig M.H., Funke K. and W?rg?tterl F. The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior[J]. Journal of Neuroscience. 2002, 22(19):8726-8738.
    [65] Teeters J., Jacobs A. and Werblin F. How neural interactions form neural responses in the salamander retina[J]. Journal of Computational Neuroscience. 1997, 4(1):5-27.
    [66] Thiel A., Greschner M. and Ammermuller J. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing[J]. Journal of Computational Neuroscience. 2006, 21(2):131-151.
    [67] Sakurai Y. How do cell assemblies encode information in the brain?[J]. Neuroscience and Biobehavioral Reviews. 1999, 23(6):785-796.
    [68] Hopfield J.J. Pattern recognition computation using action potential timing for stimulus representationccf[J]. Nature. 1995, 376(6535):33-36.
    [69] Doetsch G.S. Patterns in the brain: Neuronal population coding in the somatosensory system[J]. Physiology and Behavior. 2000, 69(1):187-201.
    [70] Kaas J.H., Nelson R.J. and Sur M. Multiple representations of the body within the primary somatosensory cortex of primates[J]. Science. 1979, 204(4392):521-523.
    [71] Goldman-Rakic P.S. Topography of cognition: parallel distributed networks in primate association cortex[J]. Annual Review of Neuroscience. 1988, 11:137-156.
    [72] Arieli A., Sterkin A., Grinvald A. and Aertsen A. Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses[J]. Science. 1996, 273(5283):1868-1871.
    [73] Deadwyler S.A. and Hampson R.E. The significance of neural ensemble codes during behavior and cognition[J]. Annual Review of Neuroscience. 1997, 20:217-244.
    [74] DeCharms R.C. Information coding in the cortex by independent or coordinated populations[J]. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(26):15166-15168.
    [75] Schwartz A.B. Direct cortical representation of drawing[J]. Science. 1994, 265(5171):540-542.
    [76] Schwartz A.B. Distributed motor processing in cerebral cortex[J]. Current Opinion in Neurobiology. 1994, 4(6):840-846.
    [77] Carr C.E. Processing of temporal information in the brain[J]. Annual Review of Neuroscience. 1993, 16:223-243.
    [78] Meister M., Lagnado L. and Baylor D.A. Concerted signaling by retinal ganglion cells[J]. Science. 1995, 270:1207-1210.
    [79] Neuenschwander S. and Singer W. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus[J]. Nature. 1996, 379(6567):728-733.
    [80] Chen A.H., Zhou Y., Gong H.Q. and Liang P.J. Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing[J]. Brain Research. 2004, 1017(1-2):13-20.
    [81] Schwartz G., Taylor S., Fisher C., Harris R. and Berry II M.J. Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal[J]. Neuron. 2007, 55(6):958-969.
    [82] Schnitzer M.J. and Meister M. Multineuronal firing patterns in the signal from eye to brain[J]. Neuron. 2003, 37(3):499-511.
    [83] Troy J.B. and Shou T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: Where we are after half a century of research[J]. Progress in Retinal and Eye Research. 2002, 21(3):263-302.
    [84] Meister M. and Berry II M.J. The neural code of the retina[J]. Neuron. 1999, 22(3):435-450.
    [85] Enroth-Cugell C. and Robson J.G. The contrast sensitivity of retinal ganglion cells of the cat[J]. The Journal of physiology. 1966, 187(3):517-552.
    [86] Victor J.D. The dynamics of the cat retinal X cell centre[J]. The Journal of Physiology. 1987, 386:219-246.
    [87]邱芳土,李朝义.同心圆感受野去抑制特性的数学模拟[J].生物物理学报. 1995, 11(2):214-220.
    [88] Eckmiller R. Learning retina implants with epiretinal contacts[J]. Ophthalmic Research. 1997, 29(5):281-289.
    [89] Eckmiller R., Hünermann R. and Becker M. Exploration of a dialog-based tunable retina encoder for retina implants[J]. Neurocomputing. 1999, 26-27:1005-1011.
    [90] Eckmiller R., Neumann D. and Baruth O. Tunable retina encoders for retina implants: Why and how[J]. Journal of Neural Engineering. 2005, 2(1):S91-S104.
    [91]陈爱华.小鸡视网膜神经节细胞电活动的时空编码特性研究[博士论文].上海:中国科学院上海生命科学研究院. 2005.
    [92]罗四维.视觉感知系统信息处理理论.北京:电子工业出版社. 2006:159-161.
    [93] Dong D.W. and Atick J.J. Statistics of natural time-varying images[J]. Network: Computation in Neural Systems. 1995, 6(3):345-358.
    [94] Packard N.H., Crutchfield J.P., Farmer J.D. and Shaw R.S. Geometry from a time series[J]. Physical Review Letters. 1980, 45(9):712-716.
    [95] Takens F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics. 1981, 898:366-381.
    [96] Stam C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field[J]. Clinical Neurophysiology. 2005, 116(10):2266-2301.
    [97] Grassberger P. and Procaccia I. Characterization of strange attractors[J]. Physical Review Letters. 1983, 50(5):346-349.
    [98] Sauer T. Reconstruction of dynamical systems from interspike intervals[J]. Physical Review Letters. 1994, 72(24):3811-3814.
    [99] Schiff S.J., So P., Chang T., Burke R.E. and Sauer T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble[J]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 1996, 54(6):6708-6724.
    [100] Theiler J., Eubank S., Longtin A., Galdrikian B. and Farmer J.D. Testing for nonlinearity in time series: the method of surrogate data[J]. Physica D: Nonlinear Phenomena. 1992, 58(1-4):77-94.
    [101]王鼎.非线性动力学方法在时间序列分析中的应用[博士论文].上海:复旦大学. 2005.
    [102] Berry II M.J. and Meister M. Refractoriness and neural precision[J]. Journal of Neuroscience. 1998, 18(6):2200-2211.
    [103] Hénon M. A two-dimensional mapping with a strange attractor[J]. Communications in Mathematical Physics. 1976, 50(1):69-77.
    [104]刘雪. GABA能通路对小鸡视网膜神经节细胞协同放电的影响[博士论文].上海:上海交通大学. 2008.
    [105] Lyu S. and Farid H. How realistic is photorealistic?[J]. IEEE Transactions on Signal Processing. 2005, 53(2):845-850.
    [106]崔霞,童学锋,宣国荣,黄聪.基于直方图频域矩的自然图像和计算机图形的鉴别.第七届全国信息隐藏暨多媒体安全学术大会会议论文集. 2007.
    [107]谢洪波.基于非线性与时频分析理论的表面肌电信号特征信息提取与分类研究[博士论文].上海:上海交通大学. 2006.
    [108]王光力.视网膜神经元活动多电极记录信号的处理[博士论文].上海:上海交通大学. 2007.
    [109] Rosenblum M.G., Pikovsky A.S. and Kurths J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters. 1996, 76(11):1804-1807.
    [110] Rulkov N.F., Sushchik M.M., Tsimring L.S. and Abarbanel H.D.I. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E. 1995, 51(2):980-994.
    [111] Pereda E., Quiroga R.Q. and Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals[J]. Progress in Neurobiology. 2005, 77(1-2):1-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700