用户名: 密码: 验证码:
桥上无缝道岔区纵连式无砟轨道受力特性与结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着京津城际客运专线的成功铺设和开通运营,我国将有更多的高速客运专线采用预制板纵连式无砟轨道方案。由于高速铁路对线路平纵面要求很高,因此桥隧所占线路延长的比例很大,不可避免地要在桥上无缝道岔区采用纵连板式无砟轨道。本文在充分吸收总结国内外相关研究的基础上,通过理论分析和试验研究,建立了桥上岔区纵连无砟轨道的计算模型与方法,对桥上岔区内的无缝道岔、无砟轨道、桥梁及相关传力结构的受力与变形规律进行较为系统和全面的计算分析,对无砟轨道的主体结构与传力结构进行了较为系统的力学计算、结构设计与优化。主要研究工作与成果如下:
     (1)分析了桥上岔区无砟轨道的岔梁相互作用关系。
     对比分析了三种典型桥上岔区无砟轨道结构(雷达型桥上岔区无砟轨道、城市轨道交通中桥上岔区无砟轨道和博格长桥岔区无砟轨道),认为博格纵连式桥上岔区无砟轨道具有明显优势。重点研究了桥上岔区博格纵连式无砟轨道的结构特点、各组成部分功能,以及无缝道岔、纵连式无砟轨道与桥梁的相互作用关系、岔桥传力方式等。
     (2)建立了桥上岔区纵连无砟轨道的计算模型与方法。
     基于无缝道岔—纵连板式无砟轨道—桥梁间的纵向相互作用关系和受力特点,针对武广客专雷大桥建立了桥上岔区纵连无砟轨道的“岔(无缝道岔)—板(组合道床板)—梁(桥梁)—墩(桥墩)”一体化计算模型,利用非线性有限元法对模型求解,编制相应计算软件。通过遂渝线新北碚嘉陵江大桥纵连板式轨道的现场测试与理论计算结果的对比,初步验证了计算理论的正确性;对采用类似计算理论和纵连结构的桥上岔区纵连无砟轨道,认为本文所建计算模型与方法是合理可行的。
     (3)分析了温度影响下桥上岔区纵连无砟轨道的受力与变形规律。
     在武广客专雷大桥客专无砟350km/h18号可动心轨道岔岔区无砟轨道设计中,针对道床板纵向伸缩刚度、滑动层摩擦系数、固结机构、温度变化幅度等,计算分析了无缝道岔、无砟轨道、桥梁各部分在温度影响下的受力与位移,主要包括基本轨伸缩附加力及伸缩位移、道岔传力部件的受力及尖轨心轨位移、道床板附加力及位移、桥梁墩台水平力、固结机构和端刺等传力结构的纵向力等,得到了温度影响下桥上岔区纵连无砟轨道的受力与变形规律。
     (4)分析了制动力和偶然荷载作用下桥上岔区纵连无砟轨道的受力与变形特点。
     针对武广客专雷大桥上岔区无砟轨道,计算分析了制动力和断轨或断板等偶然荷载的作用位置、道床板纵向伸缩刚度、滑动层摩擦系数和固结机构等对道岔、无砟轨道、桥梁及传力结构受力与变形的影响特点,并研究了各相关结构的安全性。
     (5)评价了武广线雷大桥岔区纵连无砟轨道的总体设计情况,进行了相关部件的力学计算、结构设计与优化。
     根据桥上岔区无砟轨道的结构特点,研究确定了武广客专雷大桥合理的岔桥相互位置、桥梁支座布置形式及摩擦板的长度值,提出了桥上岔区纵连无砟轨道结构设计的建议,可供实际工程设计中参考应用。对桥上岔区纵连无砟轨道中轨道板、底座板、滑动层等主体结构及硬泡沫塑料板、端刺等传力结构进行了较为详细的受力计算和检算;对滑动层的摩擦系数、耐久性及硬泡沫塑料板的耐久性,借助本人在德国学习期间所得到的相应测试资料进行了研究;对梁缝处结构、固结机构的设置方式及滑动层使用材质等方面提出相关优化措施。
With the successful construction and operation of Beijing-Tianjin intercity railway line, Longitudinal Continuously Prefabricated Ballastless Track (LCPBT) system will be more and more applied on high-speed railway and Passenger Dedicated Lines (PDLs). Due to the high requirements of railway line plane and profile, bridges and tunnels will have a great proportion on PDLs which results in the inevitable application of LCPBT system in the seamless turnout area on bridges. Based on the comprehensive research of relative fields at home and abroad, a calculation model and method for LCPBT in turnout area on bridge was built by means of the theoretical analysis and experimental study in this thesis. The systematical analysis on forces and distortion of seamless turnout, ballast-less track, bridges and other force-transferring structures were carried out.The research work and main conclusion are divided as follows:
     (1) Analysis of interaction between seamless turnout and bridges for LCPBT in turnout area on bridge.
     The LCPBT used in turnout area on bridges showed a significant advantage from the structural contrast with the two other representative ballastless turnout systems on bridges which are respectively Rheda ballastless turnout system and the urban railway track system. Then its structural characteristics, mechanical function of every part were mainly studied. Furthermore, the interaction among seamless turnout, ballasteless track, bridge beam and their force transferring mode werel researched in detail in the thesis.
     (2) Establishing the computing model and method of LCPBT in turnout area on bridge.
     Based on the longitudinal interaction relation and force characteristics of seamless turnout-ballastless track-bridge, an integral finite element model of turnout (crossover)-track slab-bridge-pier for LeiDa Bridge turnout on Wuhan-Guangzhou PDL was established. A computing program was developed using the non-linear finite element method, which can solve the complex structure. A compare between site tests and theoretical calculating results was made for the new Beibei-Jialingjiang Bridge on Suining-Chongqing test line, which primarily shows correctness of calculating theory in this thesis. Therefore, the calculating model and method for LCPBT in turnout area on bridges was considered to be reasonable that uses the similar theory with LCPBT on Beibei-Jialingjiang Bridge.
     (3) Analysis the longitudinal force and deformation rule of LCPBT in turnout area on bridge under temperature's influence.
     Taking a ballastless,350km/h, No.18 seamless turnout with movable frog on LeiDa bridge on Wuhan-Guangzhou PDL for research target, forces and distortions of turnouts, slab track, and bridges were calculated with change of some important parameters, such as extensional stiffness of track slab, friction coefficient of the slip membrane, the fixing of anchor point and rail temperature differences. The calculation items include additional forces and displacement for stock rail and slab, forces of turnout force-transfering parts, displacement of switch tongue and noise rail as well as forces of piers, anchor point, fixation point. Consequently, the longitudinal stress and deformation regularities of LCPBT in turnout area on bridges were concluded under temperature's influence.
     (4) Analysis the longitudinal force and deformation rule of LCPBT in turnout area on bridge under braking force and occasional force.
     The ballastless,350km/h, No.18 seamless turnout on LeiDa bridge on Wuhan-Guangzhou PDL was still taken for research target in order to analyse the force-transmission mechamism among turnouts, ballastless track and bridges under braking force or rail/slab breaking force. The influencing factors were analysed, such as position of train braking or rail/slab breaking, extensional stiffness of track slab, friction coefficient of the slip membrane, the fixing of anchor point. In addition, the security of structures was researched to some extent.
     (5) Estimating the design concept of LCPBT design in turnout area on LeiDa bridge, and performing mechanical calculation, structural design as well as optimization of some components.
     According to the structural characteristics of LCPBT system, some design values were researchful confirmed, including reasonable mutual location between turnout and bridge, arrangement form of bridge bearing as well as length of rub plate. Some structural design advices were put forward which might be helpful in industrial design. Force check-calculations were carried out for prefabricated slab, subbase place, slip membrane, foam plate and fixation point. Based on the author's study chance in Germany, the indoor test results of friction coefficient and durability of the slip membrane as well as durability of foam plate were researched, and some structural optimization measures were put forward, for instance, installation mode of beam crevice, anchor point and material of slip membrane.
引文
[1]朱颖.致力于打造具有中国自主知识产权的高速铁路——遂渝线无砟轨道综合试验段总体设计[J].中国勘察设计.2007(10):58-61
    [2]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2004
    [3]He H W, Hou W W. Development of Ballastless Track Technology on China Railway [J]. RTR,2006, Special:18-22
    [4]田家升.秦沈客运专线无砟轨道应用情况的比较和分析[J].石家庄铁道学院学报.2004(5)增刊:114-117
    [5]曾华亮.连续梁桥上无缝道岔温度力与变形影响因素分析[J].铁道工程学报.2007(10):32-35
    [6]Esveld C. Low-maintenance ballastless track structures [J]. Rail Engineering International,1997,26(3):13-16
    [7]何华武.无碴轨道技术[M].北京:中国铁道出版社,2005
    [8]何华武.中国铁路发展与科技创新[J].铁道工程学报.2007(7):1-11
    [9]西南交通大学.高墩桥上无缝线路试验研究总报告[R].1989.11
    [10]蒋金洲.大跨度连续钢桁梁桥焊接长钢轨伸缩力和挠曲力的计算.北京:铁道部科学研究院硕士学位论文,1993
    [11]何华武.快速发展的中国高速铁路[J].中国铁路.2006(7):23-32
    [12]Leykauf G. Feste Fahrbahn Entwicklungen im Ausland[J]. Edition(ETR) Feste Fahrbahn.1997:56-63
    [13]佐佐博明.日本新干线轨道及其维修[J].中国铁路,1999(12):42-46
    [14]Leykauf G., Lechner B., Stahl W. Trends in the use of slab track/ballastless tracks [J]. Railway Technical Review,2006(46), special:10-17
    [15]Bachmann H. State-of-the-art:Ballastless Track Systems [J]. Railway Technical Review,2006(special):27-31
    [16]Esveld C. Recent Developments in Slab Track [J]. European Railway Review,2003(2),81-85
    [17]UIC Infrastructure Commission Civil Engineering Support Group. Feasibility study "ballastless track" [R].2002
    [18]王其昌,韩启孟.板式轨道设计与施工[M].成都:西南交通大学出版社,2002
    [19]Ando K, Sunaga M, Aoki H, et al. Development of Slab Tracks for Hokuriku Shinkansen Line[J]. Quarterly Report of RTRI,2001,41(01):35-41
    [20]羽贺修.北越北线の高速化と新轨道构造等[J].新线路,1991,45(1):34-39
    [21]Ando K. Present status on slab track and environmental countermeasure [J]. Quarterly Reports of RTRI,1996,37(4):204-209
    [22]Ando K. Miura S.,Watanabe K.:Twenty years'experience on slab track [J]. Quarterly Reports of RTRI,1994,35(1):7-14
    [23]Miyamoto H.:30 Jahre Tokaido-Shinkansen. Eisenbahningenieur [J].1995, 46(2):66-71
    [24]Eisenmann J, Leykauf G. Verkehrsflachen aus Beton[M]. Betonkalender, 2007:227-239
    [25]Eisenmann J, Leykauf G. Feste Fahrbahn fur Schienenbahnen[M]. Betonkalender,2000:10-15
    [26]Rohlmann J.,HeiB J., New Standard for Turnouts and Rail Expansion Joints for Traffic-Installation in a High-speed Track in Taiwan[J]. Railway Technical Review,2006(46), special:52-59
    [27]Freudenstein S. Rheda2000-The ballastless track system for high-speed rail traffic of Rail.One [J], Railway Track Review,2006,46(Special):47-51
    [28]Kristein A, Wendrich J. The Settlement Free Slab of the High Speed Line in the Netherlands [C]. IABSE Symposium, Antwerp, Belgium,2003, August
    [29]Ger Maas, Tanja Margarete Rickes. Productivity in Rail Construction Lessons Learned From the Development of the RHEDA 2000 Track Construction System [C]. ISARC2006:246-251
    [30]Jakob Kunz. Dependable System for High Speeds [J].Hilti Magazine,2005, Fall/Winter:20-23
    [31]Detandt H,Urban M.Slabs under Railway Tracks Founded on Piles for the Passage of Compressible Valleys by High-speed Trains [C].IABSE Symposium, Antwerp, Belgium,2003, August
    [32]MEIER S. Durchgehend bewehrte Betondecke[D]. Dissertation. Munich, Germany:Technical University of Munich,2005.
    [33]LAY S. Lateral seperation cracks in concrete track slab [J], European Railway Review,2005,(02):45-52
    [34]Moelter T M. Closed and Open Joints at Bridges on High Speed Lines [C]. IABSE Symposium, Antwerp, Belgium,2003, August
    [35]Enoekl V., Nubel K.. On the Track with Zublin [J]. Railway Technical Review,2006, special:43-46
    [36]王先龙,李兵选.旭普林无碴轨道技术引进与国产化道路初探[J].铁道标准设计,2006(增刊):38-40
    [37]辛学忠.德国铁路无碴轨道技术分析及建议[J].铁道标准设计,2005(2):1-6
    [38]Bogl S. Slab Track System-FF Bogl[J]. Railway Technical Review,2006 (special):32-35
    [39]Antlauf W. Feste Fahrbahn Bogl:Einsatz bei der Neubaustrecke Nurnberg-Ingolstadt [J]. Der Eisenbahningenieur,2004,55(9):64-67
    [40]Garstenauer K. Die Gestaltung des Infrastruktur-Benutzungsentgelts der OBB [J]. Der Eisenbahningenieur,2004,53(12):851-855
    [41]Schilder R. Ballastless track application in existing tunnels-experience gained on Austrian Federal Railways [J]. Rail Engineering International, 1993,22(04):7-10
    [42]Ando K, HORIIKE T,MOMOYA Y, EMOTO M.Performance Tests and Basic Design on Solid-Bed Track on Asphalt Pavement[J].RTRI Report,2000, 14(4):19-24
    [43]SNCF I/SYSTRA. Beijing-Shanghai High-Speed Railway Consulting Services on the Engineering Design [R], Consulting Report,2005.3
    [44]Esveld C.Slab Track:A Competitive Solution [J]. Rail International, Schienen der Welt,1999, June
    [45]Daniels L E. Embedded Track Design and Performance [C].9th National Light Rail Transit Conference,2003, Portland, American.
    [46]Markine V L, de Man A P, Jovanovic S, Esveld C. Optimum Design of Embedded Rail Structure for High-Speed Lines[C]. Proceedings of the 3rd International Conference on Railway Engineering, Edinburgh,2002, July
    [47]Penny Ch. Balfour Beatty embedded track system [C]. Proceedings of Rail-Tech Europe 2003 Conference,2003, Jaarbeurs Utrecht, Netherland
    [48]V.L.Markine, C.Esveld, A.W.M.Kok, A.P.de Man.Optimization of a High-Speed Railway Track Using Multipoint Approximation Method [J]. American Institute of Aeronautics and Austronautics:1-5
    [49]Markine V L, de Man A P, Jovanovic S, Esveld C. Multicriteria Optimisation of Railway Track for High-Speed Lines [C]. Proceedings of the 2nd ASMO UK/ISSMO Conference on Engineering Design Optimization, Swansea, UK, 2000
    [50]Glieden T., Ihle E. and Romanski W. Kontinuierlich elastisch gelagertes Schienensystem gleitend eingebettet fur Feste Fahrbahn[J]. Edition(ETR) Feste Fahrbahn.1997:90-91
    [51]Gyula Kormos. Longitudinal Behaviour of Rail Embedded in Elastic Material [J]. Periodica Polytechnia Ser. Civ. Eng.2002,46(1):115-124
    [52]Okuda H, Wakui H, Tanabe M. Impact Response Analysis of the Floating Ladder Track with Rail Irregularities of the Weld [J]. Transactions of the Japan Society for Computational Engineering and Science,2001,20010009
    [53]KIYOSHIASANUMA. Ladder Track Structure and Performance[J]. Railway Technology Avalanche,2004(6):35
    [54]Okuda H, Sogabe M, Matsumoto N, et al. Mechanical Properties and Running Performance on Floating Ladder Tracks [J]. RTRI Report,1998, 12(9):7-14
    [55]Freudenstein S, Silbermann T. Renewal of the Brandleite Tunnel with Getrac Ballastless Track System on Asphalt [J]. Railway Technical Review,2007, special:57-61
    [56]Freudenstein S. Innovative Losungen fur die Feste Fahrbahn GETRAC auf Asphalt [J]. Der Eisenbahningenieur,2005,56(08):28-32
    [57]任娟娟,Freudenstein Stephan,杨荣山,刘学毅.德国GETRAC型无砟轨道结构特点和应用[J].中国铁路(Chinese Railways),2008(02):68-71
    [58]赵国堂.高速铁路无碴轨道结构[M].北京:中国铁道出版社,2006
    [59]Leykauf G, Lechner B. Design of Ballastless Track Structures using Sleeper Panels Fixed on Concrete or Asphalt Pavements [C]. World Congress on Railway Research (WCRR),2001, November, Koln, German
    [60]European Asphalt Pavement Association. Asphalt in Railway Tracks[R]. 2003, Oct. Netherlands, Breukelen
    [61]Cope D L. Concrete Support for Railway Track:Precast and in Situ Slabs[C]. Proceedings of the Institution of Civil Engineers (London),1982,72(8): 375-392
    [62]朱高明.国内外无砟轨道的研究与应用综述[J].铁道工程学报,2008,118(07):28-30
    [63]姚明初,邵立新.铁路新型轨下基础[M].北京:中国铁道出版社,1986:57-91
    [64]赵坪锐.客运专线无碴轨道设计理论与方法研究[D].成都,西南交通大学博士论文,2008
    [65]徐锡江.大跨桥上纵连板式轨道纵向力计算研究[D].成都:西南交通大学硕士学位论文,2007
    [66]江成,林之珉.高速铁路无碴轨道结构的试验研究[J].中国铁路,2000(7):22-24
    [67]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005,9:96-98
    [68]徐伟建,王智勇.抗冻性CA砂浆性能研究[J].铁道建筑,2003(12):66-67
    [69]Ren J J, Lechner B.:The experimental Slab-Track Section of China's new Suining-Chongqing Railway Line [J]. European Rail Technology Review (RTR),2008(03):47-54
    [70]Ren J J, Lechner B. Feste Fahrbahn-Versuchsstrecke Suining-Chongqing in China[J]. Der Eisenbahn Ingenieur (EI).2008 (07):39-45
    [71]中铁二院工程集团有限责任公司.遂渝线无碴轨道综合试验段工程无碴轨道总结报告[R].成都,2007:20-80
    [72]铁道科学研究院,成都铁路局,铁道第二勘察设计院.遂渝线无碴轨道试验段综合试验总报告[R].北京,2008:15-44
    [73]姚力,翟婉明,罗震.遂渝线路基上板式无碴轨道结构设计研究[J].铁道工程学报,2006(5):51-54
    [74]田春香,颜华,赵坪锐,王平.无碴轨道道岔区轨下基础受力分析[J].铁道工程学报,2006(5).48-50
    [75]刘名君,颜华,田春香.大跨梁、简支T梁铺设无碴轨道的可行性[J].铁道工程学报,2006(9):36-40
    [76]王平,刘学毅.无缝道岔计算理论与设计方法[M].成都:西南交通大学出版社,2007
    [77]于春华.我国铁路道岔的发展[J].铁道知识.2005(04):16-17
    [78]三浦重,柳川秀明,王贵棠.最近日本无缝线路的技术开发[J].铁道建筑,1993(03):31-33
    [79]郭福安.国外高速铁路的道岔设计[J].中国铁路,2006(2):48-50
    [80]Gus Welty. What's new in trunouts. Railway Age.1989,190(04)
    [81]Cedomir Ilic. Modeling the Switch Nose Frog of Turnout [J]. Architecture and Civil Engineer [J].1997,1(04):533-539.
    [82]Fausto P. G. M., Felix S. A digital filter-based approach to the remote condition monitoring of railway turnouts. Reliability Engineering and System Safety.2007,92(6):830-840
    [83]杨卫平.法国高速铁路道岔技术特性[J].中国铁路,2006(8):40-41
    [84]Dietze H.,Hohne H. Neuer Standard fur Weichen im Hochgeschwindigkeits-verkehr[J]. Edition(ETR) Feste Fahrbahn.1997:108-109
    [85]何华武,王平,郭福安等.250km/h客运专线道岔国产化研究报告[R].北京:铁道部,2006.
    [86]杨荣山.桥上无缝道岔纵向力计算理论及试验研究[D].成都:西南交通大学博士论文,2008
    [87]刘大为.秦沈线38号道岔卡阻原因分析及对策,铁路通讯信号[J],
    2005,41(8):21-22
    [88]铁道科学研究院铁道建筑研究所.胶济线18号客运专线道岔动态测试报告[R].铁道部科技发展计划项目研究报告,2006
    [89]铁道科学研究院.遂渝无砟轨道试验段综合实车试验—岔区无砟轨道结构和可动心轨道岔动力性能试验报告[R].北京:铁道部,2007.
    [90]西南交通大学.350km/h客运专线无砟轨道道岔研制—道岔结构检算与仿真分析研究[R].2007.5
    [91]Bachmann H., Pieringer A., Duda H. Rheda 2000 on the Taiwan High-Speed Rail[C]. The Fifth Exhibition and Conference for Railway Professionals in the Asia Pacific region.2004.5
    [92]李笑男.城市轨道交通直线尖轨道岔无缝化研究[D].北京:北京交通大学硕士论文.2007
    [93]铁道部科技司.京沪高速铁路桥上无砟轨道无缝道岔及桥梁结构设计研究[R].2008
    [94]曾志平.高速铁路桥上无缝道岔伸缩力及列车-道岔-桥梁系统空间振动研究[D].长沙:中南大学博士论文,2006
    [95]齐春雨.无砟和有碴轨道上无缝道岔位移变化的分析对比[J].铁道建筑,2006(6):74-76
    [96]王平,杨荣山,刘学毅.无缝道岔铺设于长大连续梁桥上时的受力与变形分析[J].交通工程与信息学报,2004,2(3):16-21
    [97]铁道科学研究院.京沪高速铁路高架桥车站无缝线路设计原则(暂行)[Z].北京:铁道科学研究院,2004.
    [98]曾华亮.连续梁桥上无缝道岔温度力与变形影响因素分析[J].铁道工程学报,2007,109(10):32-35
    [99]曾志平,陈秀方,赵国藩.温度荷载作用下大跨度桥梁与无砟道岔[J].铁道科学与工程学报,2007(4):11-16
    [100]孙大新,高亮,刘衍峰.桥上无砟轨道无缝道岔力学特性分析[J].北京交通大学学报,2007,31(1):89-92
    [101]李粮余.桥上无缝道岔无砟轨道基础选型研究[D].成都:西南交通大学硕士学位论文,2007
    [102]张世杰.无砟轨道桥上无缝道岔交叉渡线[D].成都:西南交通大学硕士学位论文,2008
    [103]光振熊,吴小萍.无砟轨道桥上交叉渡线受力及变形规律分析[J].铁道建筑技术,2008(5):4-9
    [104]陈小平,王平.客运专线桥上纵连板式无砟轨道制动附加力影响因素分析[J].铁道建筑,2008(9):87-90
    [105]Bachmann H., Mohr W. and Kowalski M. The Rheda 2000 ballastless track system [J]. European railway review,2003(1):44-50
    [106]Leykauf G. Prefabricated slabs and frames for non-ballasted track [J]. ZEV-Zeitschrift fur Eisenbahnwesen and Verkehrstechnik,1999,123 (6): 221-228
    [107]Eisenmann J. Eisenbahnoberbau fur Hochgeschwindigkeitsstrecken[J]. Eisenbahningenieur,2001,52(9)
    [108]Wilhelm Wessel. Feste Fahrbahn System Rheda DYWIDAG Monoblock-schwelle [G]. Das Projekt Neuaustrecke Koln-Rhein/Main,2002(7)
    [109]Duda Herbert. Know-how and Technology Transfer-Turnouts on Bridges [R], RHEDA 2000 Non-Ballasted Track System Information,2006.5
    [110]Bernhard Lichtberger. Track Compendium [M].Hamburg:Eurailpress,2005: 309-332
    [111]DB Netz AG. Requirements Catalog for the Construction of the Permanent Way (Anforderungskatalog zum Bau der Festen Fahrbahn)-4th Revised Edition[S],2002
    [112]DE-Consult. Engineering Design of CHI High Speed Railway DK+000-DK 1019+600 Consulting Service:Consulting Report (Final) [R],2005.3
    [113]Antlauf W. Gleistragplattensystem fur Hochgeschwindigkeitszuge[J]. TIEFBAU.2004(7):422-425
    [114]Weber H., Zachlehner A. Feste Fahrbahn Bogl-Erster Einbau in groBen Baulangen[J]. ETR,2004,53(1/2):21-29
    [115]Eisenmann J., Neumann U. Schotterloser Oberbau auf kurzen Brucken (Feste Fahrbahn) [R]. Mitteilungen des Priifamtes fur Bau von Landverkehrswegen der Technischen Universitat Munchen,1988(H.54)
    [116]Firma Max Bogl. Nachweis der Gleistragplatte nach HFF-Brucken (Alte Losung) [R]. Informationen der FF-Bogl,2006
    [117]Firma Max Bogl. Vortrag zur Plannung des Oberbaus auf Brucken(Neue Losung) [R]. Informationen der FF-Bogl,2006
    [118]Die Bahn. Richtlinie 804-Eisenbahnbrucken planen,bauen und instand halten (und sonstige Ingenieurbauwerke)[S]. Frankfurt.2003.6
    [119]王平.不同结构无缝道岔的纵向力传递机理[J].西南交通大学学报,2003(8):371-374
    [120]赵晓燕.无缝道岔计算方法的发展[J].金陵科技学院学报,2006,22(3):49-53
    [121]范俊杰.无缝道岔的受力与变形分析.北方交通大学学报,1993,17(1):
    107-111
    [122]耿建增,范俊杰,于胜利,陈岳源.用有限元法分析无缝道岔的受力与变形.北方交通大学学报,1996,20(5):550-553
    [123]范俊杰,谷爱军,陈岳源.无缝道岔的理论与试验研究.铁道学报,2000,22(2):55-59
    [124]蒋金洲,卢耀荣.超长无缝线路道岔区稳定性计算方法[J].铁道建筑,2001(8):22-25
    [125]马战国.道岔区钢轨纵向力及位移量的计算分析[D].北京:铁道部科学研究院硕士学位论文,1997
    [126]马战国,郝有生,王红.秦沈客运专线38号无缝道岔纵向力分析及试验研究[J].中国铁道科学,2002,23(2):71-74
    [127]唐先习.用二次松弛法进行铺设无缝道岔的可行性研究[J].甘肃科技,2005,21(2):151-153
    [128]许实儒,童本浩.无缝道岔温度力分布与变形分析[J].铁道学报,1994,16(1):73-79
    [129]刘衍峰,高亮.铁路无缝道岔计算理论的优化探讨[J].铁道标准设计,2005(4):65-68
    [130]李秋义,陈秀方.无缝道岔组合作用效应分析[J].铁道学报,2002,24(5):84-88
    [131]李秋义,陈秀方,向延念.广义变分原理在高速铁路无缝道岔结构分析中的应用[J].工程力学,2003,20(5):194-199
    [132]徐庆元.用有限元法分析无缝道岔的受力与变形[J].中国铁道科学,2003,24(6):36-40
    [133]曾志平.铁路无缝道岔计算方法的研究[D].长沙:中南大学硕士学位论文,2003
    [134]王平,黄时寿.可动心轨无缝道岔的非线性计算理论研究[J].中国铁道科学,2001,22(1):84-91
    [135]王平.无缝道岔群对钢轨位移和纵向力的影响研究[J].铁道学报,2002,24(4):74-78
    [136]王平,郭利康.线路爬行对无缝道岔受力与变形的影响分析[J].西南交通大学学报.2002,37(6):615-619
    [137]王平,刘学毅.无缝道岔受力与变形的影响因素分析[J].中国铁道科学,2003,24(2):58-66
    [138]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2004
    [139]赵经文,王宏钰.结构有限元分析[M].北京:科学出版社,2002
    [140]西南交通大学.跨区间无缝线路无缝道岔设计方法的优化研究报告[R]. 2003.3
    [141]Technische Universitat Munchen-Lehrstuhl und Prufamt fur Bau von Land-verkehrswegen. Bestimmung des Reibbeiwertes und Langzeitverhaltens der Gleitschicht der FF Bogl auf langen Brucken[R]. Bericht Nr.2338. Munich, Germany,2007:2-15
    [142]DIN-Fachbericht 101:Einwirkungen auf Brucken[S]. Beuth Verlag GmbH, Berlin,2003.3:70-132
    [143]DIN Deutsches Institut fur Normung e.V. DIN-1045 (Tragwerke aus Beton, Stahlbeton und Spannbeton)[S]. Berlin.2001.7
    [144]西南交通大学.北碚新嘉陵江桥梁端转角发泡材料板力学性能要求[R].遂渝线无砟轨道研究报告.2006.5
    [145]Technische Universitat Munchen-Lehrstuhl und Prufamt fur Bau von Landverkehrswegen. Prufstandsvesuche an einer Feste Fahrbahn System Bogl auf Brucken im Bereich der Einfeldtragerenden[R]. Bericht Nr.2257. Munich, Germany,2006:5-19
    [146]Firma Max Bogl. Bestimmung der Reibbeiwerte zwischen Bruckentrager und Profilbeton der Festen Fahrbahn Bogl auf Einfeldtragerketten unter Zwischenschalung verschiedener Materialien[R]. Germany,2005
    [147]西南交通大学.遂渝线新北碚嘉陵江大桥无碴轨道长期观测报告[R].成都:铁二院,2007
    [148]Firma Max Bogl. High speed Railway for Passenger Transport Wuhan-Guangzhou (The Lei Da Extra-long Bridge) [R].2008.10
    [149]Firma Max Bogl. Prufung des Verbundes zweischen der Fertigteilplatte und dem Bitumen-Zement-Unterguss [R].2003.8
    [150]Firma Max Bogl. OptimierungmaBnahmen fur die FF-Bogl auf Erdbau-werken, auf Brucken und im Tunnel [R].2008.4
    [151]西南交通大学.遂渝线新北碚嘉陵江大桥轨道静态测试试验报告[R].成都:西南交通大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700