用户名: 密码: 验证码:
基于重力和环境特征的水下导航定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性导航系统可以满足需要长期执行水下潜航任务的潜艇及其它水下航行器对导航系统自主性和隐蔽性方面的要求,但是其精确性却不尽人意,需要其它辅助导航系统来校正其众所周知的随时间不断增长的定位误差。海洋地球物理导航方法由于具有定位精度高、无需浮出水面等优点,恰好可以弥补惯性导航系统在定位精度方面的不足,是潜艇等水下航行器理想的水下辅助导航定位手段。本论文即着重研究基于重力和环境特征的水下地球物理导航定位方法。
     鉴于我国现阶段尚没有实测重力梯度数据的客观情况,利用直角矩形棱柱法由海洋地形图构造了重力梯度图,并根据两片真实海域的地形图生成了相应的梯度图,作为重力梯度匹配算法研究和测试的基础。针对大部分现有重力匹配算法在惯导位置误差较大情况下不可用的缺点,在深入研究概率神经网络原理基础上,利用神经网络在分类问题上的优势,提出基于概率神经网络的重力梯度匹配算法,并讨论了不同梯度分量组合作为网络输入对算法匹配成功概率的影响,以解决惯导系统的大位置误差校正问题。仿真试验证明该梯度匹配算法无需惯导信息即可有效降低导航系统的位置误差,可用于潜器位置误差较大的情况下。
     从重力仪测量原理入手,深入分析了在正常重力计算过程中较大的惯导位置误差会为匹配导航系统引入数值上无法忽略的观测误差的机理,提出将重力仪测量和重力异常数据库均转化为重力后再进行匹配的策略,从根本上消除了这种观测误差带来的不利影响。充分利用惯导系统短时高精度的特点,提出另一种在惯导位置误差较大情况下适用的基于价值函数最优化的等值线匹配算法,在先验重力图上通过搜索、跟踪和决策过程寻找与惯导航迹形状最相似的航迹作为匹配航迹。在模拟重力图和真实重力图上进行的仿真试验均表明,在正常海况和中等精度惯导情况下,等值线匹配算法即可获得较高的定位精度,适用于惯导大位置误差的水下校正。
     为进一步实现对惯导系统的速度、姿态误差的校正,在重力匹配导航系统提供的位置校正信息基础上,以惯导系统误差模型为系统方程,重力匹配算法提供的位置与惯导输出位置之间的差值为观测量,构建了重力/惯性组合导航系统,通过卡尔曼滤波实现对惯导位置、速度和姿态误差的精确估计。分析惯导位置航向误差与陀螺漂移之间的关系,以重力匹配算法得到的匹配位置为位置重调值,应用三次定位校正法对陀螺常值漂移进行估计,并通过仿真试验证明了利用重力辅助导航结果对陀螺漂移估计的可行性和有效性。
     在那些尚未测绘的或重力变化过于平缓的海区,重力辅助导航系统将无法工作,此时可采用基于海洋环境特征的同步构图定位算法作为重力辅助导航的替代方法,用于降低导航误差的增长速度。论文对同步构图定位算法的基本原理进行了深入研究,并针对水下载体的非线性系统模型,讨论了系统的预测、观测和状态扩充过程,利用扩展卡尔曼滤波技术对算法进行了实现。区域探索和航渡两组仿真试验的结果均证明,基于扩展卡尔曼滤波的同步构图定位算法可以有效减缓潜艇等水下航行器的误差增长速度,提高导航系统的定位精度。针对现有数据关联方法在计算复杂度和关联稳定性方面的不足,提出了一种改进数据关联方法,并利用仿真试验证明了该算法可在较小的计算复杂度下获得良好的关联效果,可作为同步构图定位算法的在线数据关联方法使用。
Inertial navigation system (INS) can meet the requirements of autonomous and covert navigation system for submarines and other underwater vehicles over long periods in blue water without exposure, however, the precision of INS is not satisfactory due to its well-known errors which increase with time. As a result, other aiding navigation systems are needed to correct such errors. Due to the characteristics of high precision and no need to surface, the marine geophysical navigation could make up for the aforementioned INS deficiencies in positioning precision, thus is the ideal underwater aiding navigation means for submarines and other underwater vehicles. Therefore, the dissertation will focus on the study of underwater geophysical navigation methods based on gravity and environmental features.
     Since there are no measured gravity gradient data in our country nowadays, the right rectangular prism method is used to construct the gravity gradient map from marine terrain map, and two gradient maps are generated from actual marine terrain maps to be used as the study and test basis of gradient matching algorithm. Since most of current gravity matching algorithms failed in the event of large INS position error, based on the further study of the principle of probabilistic neural network (PNN), a PNN based gravity gradient matching algorithm is proposed to correct large INS position errors by taking advantages of fine classification ability of PNN. When taking different combinations of gradient components as network input, the influence on the probabilities of successful matchings is also discussed. Simulation results show that the presented gradient matching algorithm can effectively reduce the positioning errors of navigation system without the help of other INS information, and can be used in the event of large positioning errors.
     From the viewpoint of gravimeter measure principle, the truth that large positioning error will lead to quite large observation error for matching navigation system during the normal gravity computation process is further analyzed, and a strategy of changing both the gravimeter measurement and gravity anomaly into gravity for matching process is carried out to eliminate such observation error. By taking advantage of short-term high precision characteristics of INS, a contour matching algorithm adaptive to large positioning error is proposed, which takes the trajectory most similar to INS indicated one as the matching trajectory. Simulations performed on synthetic gravity map and actual gravity map show that, the contour matching algorithm can achieve a pretty high precision even under operating sea condition and with a moderate-grade INS, thereby adapting to underwater correction of large INS positioning error.
     Furthermore, to realize the correction of velocity and attitude errors for INS, a gravity/INS integrated navigation system is constructed on the basis of position reset information provided by gravity matching navigation system. The integrated system takes INS error model as the state equation and the positional difference between matching algorithm and INS as observation, and achieves a precise estimation of position, velocity and attitude errors of INS by the use of Kalman filter. The relationship between INS position, heading errors and gyro drift is analyzed, and the triple location correction method is applied to estimate the constant drifts of gyro. The feasibility and validity for estimating gyro drifts are proved via simulation experiments using the results of gravity aided navigation.
     When underwater vehicles cruise in some area without any gravity data or with a featureless gravity field, gravity aided navigation system will not work. At this time, the simultaneous localization and mapping (SLAM) algorithm based on marine environmental features can substitute for gravity aided navigation system to reduce the increasing rate of navigation errors. The basic principle of SLAM is studied, and the systemic prediction, observation and state augmentation process are discussed according to the nonlinear model of underwater vehicles, and the algorithm is implemented with Extended Kalman Filter techniques. The simulated experiment results acquired in straight sailing pattern and local searching pattern prove that, EKF based SLAM algorithm can efficiently slow down the error increase and improve the positioning precision for submarines and other underwater vehicles. Since current data association methods have some deficiencies in computational complexity and association stability, a modified data association method is put forward. Simulation experiment results show that the presented method could achieve a satisfactory association result with a small computational complexity, thus suitable to on-line data association for underwater SLAM implementations.
引文
[1]田蔚风,金志华,杨艳娟,等.21世纪前期我国潜艇导航技术发展一静电陀螺导航仪方案和信息融合技术应用的探讨.惯性技术发展动态发展方向研讨会文集.宜昌,2003:8-15页
    [2]J. A. Lowrey Ⅲ, J. C. Shellenbarger. Passive navigation using inertial navigation sensors and maps. Naval engineers journal.1997,109(3): 245-249P
    [3]武凤德,张宗询.无源重力导航技术发展水平及趋势.惯性技术发展动态发展方向研讨会文集.宜昌,2003:16-22页
    [4]金翔龙.海洋地球物理技术的发展.东华理工学院学报.2004,27(1):6-13页
    [5]谢世富.漫话导航(二)-神奇的无线电导航.电子世界.2001,4:61-63页
    [6]谢世富.跨世纪的无线电导航系统述评.电子科技导报.1994,4:19-21页
    [7]阳凡林,康志忠,独知行,等.海洋导航定位技术及其应用与展望.海洋测绘.2006,26(1):71-74页
    [8]彭富清,霍立业.海洋地球物理导航.地球物理学进展.2007,22(3):759-764页
    [9]严卫生,徐德民,李俊,张福斌.自主水下航行器导航技术.火力与指挥控制.2004,29(6):11-15页
    [10]John J. Leonard, Andrew A. Bennett, Christopher M. Smith, et al. Autonomous underwater vehicle navigation. MIT marine robotics laboratory technical memorandum.1998
    [11]李俊,徐德民,宋宝维,严卫生.自主式水下潜器导航技术发展现状与展望.中国造船.2004,45(3):70-77页
    [12]Mark A. Gerber. Gravity gradiometer-something new in inertial navigation. Astronoutics & Aeronautics.1978,5:18-26P
    [13]A. B. Chatfield, M. M. Bennett, T. Chen. Effect of gravity model inaccuracy on navigation performance. AIAA journal.1975,13(11):1494-1501P
    [14]S. A. Levine, A. Gelb. Effect of deflections of the vertical on the performance of a terrestrial inertial navigation system. J. Spacecraft.1969, 6(9):978-984P
    [15]Uri Bernstein, Richard I. Hess. The effects of vertical defelections on aircraft inertial navigation systems. AIAA journal.1976,14(10):1377-1381P
    [16]Carl Grubin. Accuracy improvement in a gravity gradiometer-aided cruise inertial navigatioin subjected to deflections of the vertical. AIAA guidance and control conference. Boston,1975:1090
    [17]Raymond A. Nash, Stanley K. Jordan. Statistical geodesty-an engineering perspective. Proceedings of the IEEE.1978,66(5):532-550P
    [18]Warren G. Heller, Stanley K. Jordan. Error analysis of two new gradiometer-aided inertial navigation system. J. Spacecraft and rockets. 1976,13(6):340-347P
    [19]Stephen Vajda, Alan Zorn. Survey of existing and emerging technologies for strategic submarine navigation. IEEE position, location and navigation sysposium. Palm Springs,1998:309-315P
    [20]Marvin B. May. Fleet ballistic missile navigation 2. ION newsletter.2006, 16(1):13,17P
    [21]刘承香.水下潜器的地形匹配辅助定位技术研究.哈尔滨工程大学博士学位论文.2003
    [22]Albert Jircitano, John White, Daniel Dosch. Gravity based navigation of AUV's. Proceedings of the symposium on autonomous underwater vehicle technology. Washington,1990:177-180 P
    [23]Clive A. Affleck, Albert Jircitano. Passive gravity gradiometer navigation system. IEEE position, location and navigation sysposium. Las Vegas, 1990:60-66 P
    [24]Albert J, Dosch H, Daniel E. Gravity aided inertial navigation system (GAINS). Proceedings of 47th annual meeting on navigation and exploration. Willamsburg,1991:221-229P
    [25]Albert Jircitano, Daniel E. Dosch. Gravity aided inertial navigation system. US patent:5339684.1991.12.10
    [26]杨晔译.重力辅助惯性导航系统(GAINS).舰船导航.2002,4:1-14页
    [27]陈俊勇.重力卫星和测高卫星五年来的进展.测绘科学.2005,30(5):9-10页
    [28]宁津生.卫星重力探测技术与地球重力场研究.大地测量与地球动力学.2002,22(1):1-5页
    [29]焦孟梅,张景发,姜文亮,等.卫星重力发展及应用.地壳构造与地壳应力文集.2007
    [30]David M.Gleason. Passive airborne navigation and terrain avoidance using gravity gradiometry. Journal of guidance, control and dynamics. 1995,18(6):1450-1458 P
    [31]John Moryl, Hugh Rice, Stanley Shinners. The universal gravity module for enhanced submarine navigation. Proceedings of the 1998 IEEE position, location and navigation sysposium. Palm Springs,1996: 324-331P
    [32]Hugh Rice, Louis Mendelsohn, Robert Aarons, et al. Next generation marine precision navigation system. IEEE 2000 position, location and navigation symposium. San Diego,2000:200-206P
    [33]Hugh Rice, Steven Kelmenson, Louis Mendelsohn. Geophysical navigation technologies and applications. IEEE position, location and navigation symposium. Monterey,2004:618-624P
    [34]Behzad Kamgar Parsi, Behrooz Kamgar Parsi. Vehicle localization on gravity maps. Proceedings of the SPIE-the international society for optical engineering.1999,3693(4):182-191P
    [35]Behzad Kamgar Parsi, Behrooz Kamgar Parsi. Registration algorithm for geophysical maps. Proceedings of the 1997 oceans conference Part 1. Halifax,1997:974-980P
    [36]Garner C. Bishop. Gravitational field maps and navigational errors. IEEE Journal of Oceanic Engineering.2002,27(3):726-737P
    [37]Christopher Jekeli. Precision free-inertial navigation with gravity compensation by an onboard gradiometer. Journal of guidance, control, and dynamics.2006,29(3):704-713P
    [38]Justin A. Richeson, Darryll J. Pines. GPS denied inertial navigation using gravity gradiometry. AIAA guidance, navigation and control conference and exhibit. Hilton Head,2007:6791
    [39]边少锋,纪兵.重力梯度仪的发展及其应用.地球物理学进展.2006,21(2):660-664页
    [40]蔡体菁,周百令.重力梯度仪的现状和前景.中国惯性技术学报.1999,7(1):39-42页
    [41]曾华霖.重力梯度测量的现状与复兴.物探与化探.1999,23(1):1-6页
    [42]任永毅,陈锦杜,石旭生.动基座重力梯度仪技术及其应用.导航与控制.2002,1(2):13-18页
    [43]D. Difrancesco. Advances and challenges in the development and deployment of gravity gradiometer systems. EGM 2007 international workshop.2007
    [44]程力.重力辅助惯性导航系统匹配方法研究.东南大学博士学位论文.2007
    [45]何英.基于MATLAB的重力辅助惯性导航可视化仿真系统设计与实现.东南大学硕士学位论文.2006
    [46]郝玉红.重力计辅助惯性导航系统的可观测性.惯导与仪表.1996,3:26-32页
    [47]Y. G. Prokhorov. Observability of gravimeter-aided inertial navigation system. Journal of guidance, control, and dynamics.1995,18(6):1416-1419P
    [48]王树甫,秦红磊,谢荣生,等.一种成形滤波器的新构造方法研究.哈尔滨工程大学学报.2000,21(5):15-17页
    [49]王树甫,孙枫,郝燕玲,等.旋转加速度计重力梯度仪标度因子调整方法及误差补偿研究.中国惯性技术学报.2000,8(4):31-34,45页
    [50]张京娟,刘繁明,郝燕玲.重力场的克立格估值研究.哈尔滨工程大学学报.2003,24(3):249-252页
    [51]袁书明,孙枫,刘光军,等.重力图形匹配技术在水下导航中的应用.中国惯性技术学报.2004,12(2):13-17页
    [52]刘繁明,孙枫,成怡.基于ICCP算法及其推广的重力定位.中国惯性技术学报.2004,12(5):36-39页
    [53]刘繁明,成怡.重力/惯性匹配导航系统的仿真研究.中国惯性技术学报.2005,13(3):22-25,29页
    [54]Juan Li, Xinqian Bian, Xiaocheng Shi, et. al. Simulation system of gravity aided navigation for autonomous underwater vehicle. Proceedings of the 2007 IEEE international conference on mechatronics and automation. Harbin:China,2007:238-242P
    [55]郝燕玲,成怡,刘繁明,等.融合多类型海洋重力数据算法仿真研究.系统仿真学报.2007,19(21):4897-4900页
    [56]秦政,边信黔,施小成,等.水下运载体重力辅助惯性导航系统仿真平台.武汉大学学报(信息科学版).2008,33(7):755-758页
    [57]熊正南,蔡开仕,武凤德,等.21世纪美国战略潜艇导航技术发展综述.舰船科学技术.2002,24(3):30-37页
    [58]翁海娜,杨功流,熊巍.潜艇导航技术的现状及发展方向研讨.惯性技术发展动态发展方向研讨会文集.宜昌,2003:23-26页
    [59]武凤德,翁炬.21世纪潜艇导航技术.中国惯性技术学会第五届学术年会论文集.桂林,2003:269-274页
    [60]黄凤荣,翁海娜,张桂敏.惯性/重力匹配组合导航系统与可视化仿真.中国惯性技术学报.2007,15(2):209-213页
    [61]Cai Tijing, G I Emeliantsev. Study on rate azimuth platform inertial navigation system. Journal of Southeast Universtiy (English edition).2005, 21(1):29-32P
    [62]汪凤林,蔡体菁.速率方位惯性平台/计程仪/重力匹配组合导航系统仿真研究.中国惯性技术学报.2005,13(5):24-28页
    [63]Cai Tijing. Novel gravity passive navigation system. Journal of Southeast Universtiy (English edition).2006,22(1):59-63P
    [64]程力,蔡体菁,夏冰.重力辅助惯性导航系统中的一种新的相关匹配方法.仪器仪表学报增刊.2006,27(6):2235-2236页
    [65]程力,蔡体菁.基于模式识别神经网络的重力匹配算法.东南大学学报(自然科学版).2007,37(5):839-843页
    [66]程力,蔡体菁.基于支持向量机的重力匹配算法.系统仿真学报.2008,20(21):5953-5956,5962页
    [67]汪凤林,蔡体菁,王东霞.惯性/重力匹配组合导航系统可观测性研究.安徽大学学报(自然科学版).2008,32(6):27-31页
    [68]Feizhou Zhang, Xiuwan Chen, Min Sun, et.al. Simulation study of underwater passive navigation system based on gravity gradient. Proceedings of 2004 IEEE international geoscience and remote sensing symposium.2004,3111-3113P
    [69]徐遵义,晏磊,宁书年,等.海洋重力辅助导航的研究现状与发展.地球物理学进展.2007,22(1):104-111页
    [70]许大欣.利用重力异常匹配技术实现潜艇导航.地球物理学报.2005,48(4):812-816页
    [71]戴全发,许大欣,蔡小波,等.重力异常匹配辅助导航解算模型的优化.大地测量与地球动力学.2007,27(4):31-34页
    [72]戴全发,许厚泽,许大欣,等.基于卫星测高数据的重力匹配导航仿真.武汉大学学报(信息科学版).2008,33(2):203-207页
    [73]王虎彪,王勇,许大欣,等.基于重力梯度的水下辅助导航仿真.中国地球物理学会第二十四届年会论文集.北京,2008:365页
    [74]郭有光,钟斌,边少锋.地球重力场确定与重力场匹配导航.海洋测绘.2003,23(5):61-64页
    [75]吴太旗,边少锋,蒋勃,等.重力场对惯性导航定位误差影响研究与 仿真.测绘科学技术学报.2006,23(5):341-344页
    [76]吴太旗,黄谟涛,边少锋,等.直线段的重力场匹配水下导航新方法.中国惯性技术学报.2007,15(2):202-205页
    [77]王志刚,边少锋.基于ICCP算法的重力辅助惯性导航.测绘学报.2008,37(2):147-151,157页
    [78]王志刚,边少锋.基于局部地球重力场模型的水下目标被动定位.武汉大学学报(信息科学版).2008,33(9):918-921页
    [79]吴太旗,黄谟涛,欧阳永忠,等.高精度海洋重力异常格网插值技术研究.测绘科学.2008,33(5):70-72页
    [80]施闻明,杨晓东,徐彬.基于模糊逻辑的组合导航系统重力图匹配算法.导航.2005,4:73-78页
    [81]施闻明,杨晓东.重力匹配导航中的重力图细分重构方法研究.导航.2006,2:83-88页
    [82]程晓东,刘锡敬.基于重力差值变化率的TERCOM重力匹配改正算法研究.导航.2008,1:43-46页
    [83]孙岚,吴晓平,刘雁春,等.UKF在惯性/重力组合导航中的应用.测绘科学技术学报.2007,24(5):371-373页
    [84]李姗姗,吴晓平.水下重力无源导航系统组合模式的研究与设计.中国测绘学会九届四次理事会暨2008年学术年会论文集.桂林,2008:208-215页
    [85]Yan Li, Cui Chenfeng. A new algorithm of gravity matching aided navigation.2nd international conference on space information technology. Wuhan:China,2007:675929
    [86]Li Yan, Hualing Wu. Research on the selection of suitable matching area in the gravity aided navigation. Geoinformatics 2007:Remotely sensed data and information. Nanjing:China,2007:67523U
    [87]Lin Wu, Jiaqi Gong, Hua Cheng, et. al. New method of underwater navigation based on gravity gradient. MIPPR 2007:Remotely sensing and GIS data processing and applications. Wuhan:China,2007:67901V
    [88]Ling Xiong, Jie Ma, Li Zhang, et. al. Submarine navigation based on gravity gradient-terrain matching. MIPPR 2007:Remotely sensing and GIS data processing and applications. Wuhan:China,2007:67904S
    [89]Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics. Proceedings of Conference on Uncertainty in Artificial Intelligence. Amsterdam:North-Holland,1988:435-461P
    [90]Stefan B. Williams, Paul Newman, Gamini Dissanayake, et. al. Autonomous underwater simultaneous localization and map building. Proceedings of the 2000 IEEE International Conference on Robotics & Automation. San Francisco,2000:1793-1798P
    [91]Ian Mahon, Stefan Williams. SLAM using natural features in an underwater environment. The 8th international conf. on control, Automation, Robotics and vision. Kunming,2004:2076-2081P
    [92]Ian Mahon, Stefan B.Williams, Oscar Pizarro, et. al. Efficient view-based SLAM using visual loop closures. IEEE transactions on Robotics.2008, 24(5):1002-1014P
    [93]John J. Leonard, Robert N. Carpenter, Hans Jacob S. Feder. Stochastic mapping using forward look sonar. Robotica.1999,19:69-74P
    [94]Ryan M. Eustice, Oscar Pizarro, Hanumant Singh. Visually augmented navigation for autonomous underwater vehicles. IEEE journal of oceanic engineering.2008,33(2):103-122P
    [95]David Ribas, Pare Ridao, Jose Neira, et. al. SLAM using an imaging sonar for partially structured underwater environments. Proceedings of the 2006 IEEE/RSL international conference on intelligent robots and systems. Beijing:China,2006:5040-5045P
    [96]David Ribas, Pare Ridao, Juan Domingo Tardos, et. al. Underwater SLAM in a marina environment. Proceedings of the 2007 IEEE/RSL international conference on intelligent robots and systems. San Diego:USA,2007: 1455-1460P
    [97]宁津生,刘经南,陈俊勇,等.现代大地测量理论与技术.武昌:武汉大学出版社.2006
    [98]黄谟涛,翟国君,管铮,等.海洋重力场测定及其应用.北京:测绘出版社.2005
    [99]Dransfield, M. H. Airborne gravity gradiometry. PhD thesis. University of Western Australia.1994
    [100]Li X, Chouteau M. Three-dimensional gravity modeling in all space. Surveys in Geophysics.1998,19(4):339-368P
    [101]Christopher Jekeli, Lizhi Zhu. Comparison of methods to model the gravitational gradients from topographic data bases. Geophysical journal international.2006,166(5):999-1014P
    [102]Lizhi Zhu. Gradient modeling with gravity and DEM. PhD thesis. The Ohio State University.2007
    [103]http://www.bellgeo.com
    [104]巍海坤.神经网络结构设计的理论与方法.北京:国防工业出版社.2005
    [105]蔡曲林.基于概率神经网络的模式识别.国防科学技术大学硕士论文.2005
    [106]飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社.2005
    [107]王玉爽,裴耀珠,吴诗辉,等.一种基于概率神经网络的目标识别方法.弹箭与制导学报.2006,26(2):644-646页
    [108]李朝锋,杨茂龙,许磊,等.概率神经网络与BP网络模型在遥感图像分类中的对比研究.国土资源遥感.2004,4:11-13,18页
    [109]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社.2005
    [110]Donald F. Specht. Probabilistic neural networks for classification, mapping, or associative memory. Proceedings of IEEE international conference on neural networks. San Diego,1988:525-532P
    [111]李雄伟,刘建业,康国华.TERCOM地形高程辅助导航系统发展及应用研究.中国惯性技术学报.2006,14(1):34-40页
    [112]黄德鸣,程禄.惯性导航系统.哈尔滨:哈尔滨工程大学.2003
    [113]正交试验设计法.上海:上海科学技术出版社.1979
    [114]王惠南.GPS导航原理与应用.北京:科学出版社.2003
    [115]熊芝兰.INS/GPS组合滤波方法研究.哈尔滨工程大学硕士学位论文.2005
    [116]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社.1998
    [117]R.Vazquez-Martin, P Nunnez, J.C.del Toro, et.al. Adaptive observation covariance for EKF-SLAM in indoor environments using laser data. IEEE Mediterranean Electrotechnical Conference. Spain,2006:445-448P
    [118]Tim Bailey. Mobile robot localization and mapping in extensive outdoor environments. PhD thesis. The University of Sydney.2002
    [119]Ioseba Tena Ruiz, Sebastien de Raucourt, Yvan Petillot, et al.Concurrent mapping and localization using sidescan sonar. IEEE journal of oceanic engineering.2004,29(2):442-456P
    [120]John J.Leonard, Hans Jacob S.Feder. A computational efficient method for large-scale concurrent mapping and localization. Proceedings of the 9th international symposium on robotics research. London,2000:169-176P
    [121]Jong-Hyuk Kim, Salah Sukkarieh. Airborne simultaneous localization and map building. Proceedings of the 2003 IEEE international conference on robotics and automation. Taipei,2003:406-411P
    [122]M.W.M.Gamini D, Paul N, Hugh F D W. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation.2001,17(3):229-241P
    [123]Y. Bar-Shalom, X. R. Li, T. Kirubarajan. Estimation with applications to tracking and navigation. John Wiley and Sons.2001
    [124]Juan Nieto, Jose Guivant, Eduardo Nebot. Real time data association for FastSLAM. Proceeding of the 2003 IEEE international conference on robotics & automation. Taipei:China,2003:412-418P
    [125]G Q. Huang, A. B. Rad, Y. K. Wong, et. al. SLAM with MTT:theory and initial results. Proceedings of the 2004 IEEE conference on robotics, automation and mechatronics. Singapore,2004:834-839P
    [126]I. Tena Ruiz, Y. Petillot, D. M. Lane, et. al. Feature extraction and data association for AUV concurrent mapping and localization. Proceeding of the 2001 IEEE international conference on robotics & automation. Seoul: Korea,2001:2785-2790P
    [127]Jose Neira, Juan D. Tardos. Data association in stochastic mapping using the joint compatibility test. IEEE transactions on robotics and automation.2001,17(6):890-897P
    [128]Paul Michael Newman. On the structure and solution of the simultaneous localization and map building problem. PhD thesis. The University of Sydney.1999
    [129]James Blake Archibald. Two novel approaches to navigation using the earth's gravity and magnetic fields. PhD thesis. State University of New York.1993
    [130]Hugh Durrant-Whyte, Tim Bailey. Simultaneous localization and mapping (SLAM):Part I. IEEE robotics & automation magazine.2006,13 (2): 99-108P
    [131]Stefan Bernard Williams. Efficient solutions to autonomous mapping and navigation problems. PhD thesis. The University of Sydney.2001
    [132]方俊.重力测量与地球形状学(上册).北京:科学出版社.1965
    [133]赵建虎.现代海洋测绘(上册).武昌:武汉大学出版社.2007
    [134]Jonah DeWall, Marvin B. May, John Carvil, et. al. Ship augmented gravity enhancement (SAGE).2006 IEEE/ION position, location and navigation symposium. San Diego:USA,2006:36-43P
    [135]孔祥元,郭际明,刘宗泉.大地测量学基础.武昌:武汉大学出版社.2006
    [136]曾华霖.重力场与重力勘探.北京:地质出版社.2005
    [137]索洛金.重力测量学与重力勘探(下册).北京:地质出版社.1956
    [138]Hugh F. Rice, Vincent Benischek. Submrine navigation applications of atom interferometry.2008 IEEE/ION position, location and navigation symposium. Monterey: CA,2008:933-939P
    [139]冯浩,邓中亮.低速运动载体在参考地图上的定位研究.北京邮电大学学报.2005,28(3):52-54页
    [140]冯浩,晏磊,葛远声.水下运载体基于INS的重力数据实时修正.武汉大学学报(工学版).2004,37(3):135-138页
    [141]Murray S.Goldstein, John J. Brett. Precision gravity gradiometer/AUV system. Proceeding of the 1998 IEEE symposium on Autonomous underwater vehicle technology. Cambridge:USA,2003:167-174P
    [142]袁书明.海洋重力图形匹配技术研究.哈尔滨工程大学博士学位论文.2004
    [143]舒晴,周坚鑫,尹航.航空重力梯度仪研究现状及发展趋势.物探与化探.2007,31(6):485-488页
    [144]张昌达.航空重力测量和航空重力梯度测量问题.工程地球物理学报.2005,2(4):282-291页
    [145]Jeff Hollowell. Heli/SITAN:a terrain referenced navigation algorithm for helicopters. IEEE position, location and navigation symposium. Las Vegas: USA,1990:616-625P
    [146]罗雄彪,陈铁群,万英.方向基概率神经网络模式识别.机械工程学报.2005,41(12):228-233页
    [147]武凤德.重力辅助导航技术.全国飞机与船舶通信导航学术研讨会论文集(上).昆明,2000:31-36页
    [148]王玉爽,裴耀珠,吴诗辉,等.一种基于概率神经网络的目标识别方法.弹箭与制导学报.2006,26(2):644-646页
    [149]M. V. Moody, H. J. Paik. A superconducting gravity gradiometer for inertial navigation. Position, location and navigation symposium. Las Vegas:USA,2004:775-781P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700