用户名: 密码: 验证码:
舰船结构在爆炸作用下的非线性响应及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船在服役期间不可避免的遭受武器的攻击,减小舰船的损伤程度,提高舰船的生命力,是从事舰船设计、建造和使用人员非常关心的问题。因此,对爆炸作用下船体的局部破坏进行研究,计算破损船体的剩余强度和倾覆概率,分析破损船体结构的可靠性具有重要的意义。
     接触爆炸载荷作用下薄钢板的破坏是一个极其复杂的非线性过程,而其初始破口对板的整个破损过程产生重要的影响,因此临界破坏的研究对于结构的抗爆和武器战斗部的设计具有现实意义。应用塑性动力响应波动解及动态断裂理论,从理论上推导了薄钢板在爆炸冲击载荷作用下产生初始环向裂纹即发生临界破坏时的装药量,并得出板的临界位移理论表达式。在此基础上利用能量原理推导了破口半径计算公式。通过算例与试验进行比较,结果基本吻合,表明该理论能很好的解决接触爆炸载荷作用下薄板的破坏问题,为工程实际提供参考。
     从数值仿真和试验两方面对接触爆炸载荷作用下舰船防护结构的破坏进行了研究。采用试验的方法对舰船多层防护结构在接触爆炸载荷作用下的破坏情况进行研究。借助于有限元程序LS-DYNA中的ALE算法,提出多层舱室、多种介质的多耦合面在爆炸载荷作用下的动态响应仿真计算方法,对相同条件下的模型进行了数值分析,分析了不同装药量下钢板破口形状、大小和压力峰值,两者结果相比基本一致,表明数值仿真能很好的模拟试验。
     针对液舱在防护结构中的重要性,采用数值方法对三层板壳结构在水下接触爆炸荷载作用下的非线性动态响应过程进行数值仿真,研究液舱的影响。分别对三层空舱和两层空舱、一层液舱及改变液舱中水位的情况进行比较,分析了钢板的破口半径及各层板上单元有效应力、压力、位移等动态参数。仿真结果表明液舱的设置可以提高多层板壳结构的抗爆抗冲击性能,并且适当减少液舱中的水,不会影响其抵抗爆炸载荷的能力。
     由于爆炸载荷的瞬时性、破坏性及船体加筋板壳结构的复杂性,爆炸作用下结构的可靠性分析一直是研究难点。本文采用蒙特卡罗模拟得到一定数量的样本,借助于有限元程序LS-DYNA并利用这些样本对爆炸载荷作用下的多层板壳结构进行数值模拟得到结构的响应,通过拟合得到其概率分布,进而求得防护结构破坏概率,对水下爆炸载荷作用下多层板壳结构的可靠性进行了初步探索。
     破损舰船的剩余极限强度是船体生命力分析的一个重要指标。考虑各种影响因素下,各种强度单元受拉和受压时的力学特性,以理论公式表示各种强度单元的平均应力-应变曲线。基于逐步破坏法原理,运用Fortran语言编制船体梁总纵极限强度的计算程序,对Dowling 2和Reckling 23的数值结果验证了计算程序的合理性和计算精度。基于船体结构的总纵极限强度失效模式,采用重要抽样法,建立船体结构总纵极限强度可靠性分析方法。实船条件下对不同破口位置和横倾角的剩余极限强度和可靠性进行分析。
     考虑舰船结构处于短时的作战环境之中,将风扰动与波浪扰动模型化为随机过程,水下攻击武器的爆炸载荷视为突加的不规则确定性作用,计及结构大幅横摇运动的非线性效应,建立了结构横摇运动的随机微分方程;以标准随机平均法为基础,推导出随机风浪中舰船单自由度横摇运动时横摇角的瞬态概率密度函数,并应用脉冲响应法确定了舰船在突加倾侧力矩作用下的横摇时间历程,最后对以上两种情况下的横摇响应进行合理的组合,利用最大熵法拟合组合响应的瞬态概率密度,通过上穿率分析得到随机风浪中船体结构的倾覆概率,并基于现有的倾覆准则给出随机风浪及爆炸载荷联合作用下舰船的倾覆概率。
The ship was inevitable to be attecked by the arms in service. The way about reducing the damage and enhancing the life of ship were payed more attention to by the people concerned. So, it was very important to research the local destroy of ship under explosions, residual intensity and capsizing probability of damaged ship, the reliability assessment of damaged ship.
     The damage of thin steel plate subjected to contact explosions was a very complex nonlinear process. The initial crevasse had influence upon the whole damage process, so the critical damage study was significant on the anti-explosion of ship structure and design of projectile. In virtue of the wave solution of plastic dynamic response of plate and the dynamic fracture theory, the critical blasting charge was derived theoretically when onset of initial circumferential crack namely critical damage happened in thin plate subjected to explosions. And the theoretical expression of critical deformation of plate was also obtained. Also the method was carried out for calculation the crevasse radius by the energy theory. The theoretical calculated results through an example were compared with the experiment in the published literature and numerical simulation results, they were almost coincided. It could be seen that the method of this paper could perfectly solve the dynamic fracture of thin plate under contact explosions, which provides references for engineering.
     The destruction of ship defensive structure subjected to underwater contact explosions was studied with the methods of numerical simulation and experiment research. The multi-layer defensive structure under explosions was studied through experiments. Then, adopting the ALE method in LS-DYNA, the numerical method of multi-coupled surfaces was presented, which could be used to solve the problem of multi-cabin and multi-medium under explosions. The research was also done in the same condition using the numerical method, then the shape and size of crevasse and the peak value of pressure were obtained, which were consistent with the result of experiment on the whole. It was indicated the numerical simulation could do research perfectly.
     Considering the importance of liquid cabin in defensive structure, the antiexplosion capacity of the muliti-player grillage structure was studied using the numerical method, especially the influence of liquid cabin. Then, the simulation of the dynamical response process of the multilayer defensive structure subjected to underwater contact explosions was conducted. The deformation of the model of three layers vacant cabin and two layers vacant cabin, one layer liquid cabin and the changed water level in liquid cabin was analyzed and compared with each other. The crevasse radius of plate as well as effective stress, the pressure and deformation were described. It was revealed that liquid cabin could improve the antiexplosion capacity of multilayer plate-shell structure, and reduction of the water of liquid cabin properly could not affect the antiexplosion capacity of ship defensive structure.
     Because of the instantaneity and destructive of explosions, complexity of stiffened plate structure of ship, the reliability investigation of structure subjected to explosions was the difficult problem. Based on Monte Carlo method, the samples of random variables were obtained, then the simulations of multilayer plate-shell structure subjected to underwater contact explosions were done by LS-DYNA, and the maximum stress of each plate was obtained. The probability distributing was reached by fitting, then the destroy probability of each plate and system were gained based on the intensity rule and the basic theory of reliability.
     Residual ultimate strength of damaged ship was the important index of evaluating the life of ship. By studying each kind of element's behaviour in tension and compression, considering some influencing factors, the average stress-strain curve theoreticaliy was described. Then a program of ship hull girder ultimate strength was conducted with Fortran, according to the progressive collapse theory. The numerical results of Dowling 2 and Reckling 23 showed the validity of the proposed method. Adopting importance sampling method, a reliability analysis method was presented for ship hull structure based on the hull longitudinal ultimate strength failure. The effects of location of break and heel angle on residual bearing capacity in real ship were analyzed.
     Considering that the ship structure was under the short-time war environment, the wind and wave excitation were modelled as random processes and underwater explosive loading as irregular but determinate load. The stochastic differential equation of ship structure was founded, the nonlinear effect of structure rolling with large amplitude was also taken into account. Based on the standard stochastic averaging method, the transient probability density function of rolling angle of the ship under radom wind and wave excition was deduced, whose rolling motion was modeled as a single-degree-of-freedom. Then, applying the impulse response method, the response history of rolling angle of the ship subjected to occasionally explosions heeling moment was derived. Finally, the response of stochastic wind and wave moment and the response of explosion-induced moments were combined rationally, the transient probability density function of the combined roll angle was obtained by using the maximum entropy method, the capsizing probability of ship subjected to radom wind and wave was reached by outcrosing rate method, and the capsizing probability of ship under combined loads was also analyzed based on the rules about capsizing.
引文
[1]Cole R H. Underwater explosions. USA:Princeton University Press,1948
    [2]Wang A J. The permanent deffection of a plastic plate under blast loading. J Appl mech.1995,22:375-376P
    [3]Wang A J, Hopkins H G. On the plastic deformation of built-in circular plates under implasive load. J Mech Phys solids.1954,3:22-37P
    [4]Cox A D. Dynamic plastic deformations of simply-supported square plates. J Mech Phys Solids.1959,7:229-241P
    [5]Wierzbicki T, Florence A L. A theoretical and experimental investigation of impulsively loading clamped circular viscoplastic plates. Int J Solid Structures.1970,6:553-568P
    [6]Jones H. Finite deflection of a simply annular plate loaded dynamically. Int J Solid Structures.1968,4:593-603P
    [7]Jones H. A theoretical study of the dynamic plastic behavior of beams and plates with finite deflections. Int J Solid Structures.1970,7:1007-1029P
    [8]Jones H. Plastic behavior on ship structures. Trans SNAME.1976,84: 115-145P
    [9]Yangdahl C K. Influence of pulse shape on final plastic deformation of circular plate. Int J Solid Structures.1971,7:1124-1141P
    [10]Yangdahl C K. Interaction between pulse shape strain hardening in dynamic plastic response. Int J Impact Engng.1988,7(1):55-70P
    [11]Stoffel M, Schmidt R, Weichert D. Shock wave-loaded plates. Int J Solids and Structures.2001(38):7569-7680P
    [12]Mihailescu-Suliciu M, Wierzbicki T. Wave solution for an impulsively loaded rigid-plastic circular membrane. Arch Mech.2002,54(5-6):737-59P
    [13]Louca L A, Pan Y G, Harding J E. Response of stiffened and unstiffened plates subjected to blast loading. Engineering Structure.1998,20(12): 1079-1086P
    [14]Taya M, Mura T. Dynamic plastic behavior of structure under impact loading investigated by the extended Hamilton's principle. Int J Solid Struct.1974, 10:197-209P
    [15]Rajendran R, Narasimhan K. Damage prediction of clamped circular plates subjected to contact underwater explosion. International Journal of Impact Engineering.2001,25:373-386P
    [16]Taylor G I. The pressure and Impulse of submarineExplosion Waves on Plates, Undenvater Explosion Resealch, VOI.I, office of Naval Research, 1950:1155-1173P
    [17]H G Snay, E A Christian. The response of air-backed plates to high-amplitude underwater shockwaves. NAVORD Report 2462,1952
    [18]Schechter R S, Bort R L. The response of two fluid-coupled plates to an incident pressure pulse. Naval Research Laboratory Memorandum Report 4647,1981
    [19]吴成,金俨,李华新.固支方板对水中爆炸作用的动态相应研究.高压物理学报.2003,17(4):275-282页
    [20]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损.中国造船.1995,(4):55-61页
    [21]唐文勇,陈铁云.加筋板结构的塑性动力响应分析.上海交通大学学报.1996,30(8):73-80页
    [22]方斌,朱锡,张振华.水下爆炸冲击波载荷作用下船底板架的塑性动力响应.哈尔滨工程大学学报.2008,29(4):326-331页
    [23]刘土光,胡要武,郑际嘉.固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析:爆炸与冲击.1994,14(1):55-65页
    [24]何建,肖玉凤,陈振勇等.空爆载荷作用下固支矩形钢板的塑性极限变形.哈尔滨工业大学学报.2007,,39(2):310-313页
    [25]朱锡,冯刚,张振华.爆炸载荷作用下固支方板的应变场及破坏分析.船舶力学.2005,9(2):83-89页
    [26]刘建湖.舰船非接触水下爆炸动力学的理论和应用.中国船舶科学研究中心博士论文.2002
    [27]侯海量,朱锡,古美邦.爆炸载荷作用下加筋板的失效模式分析及结构优化设计.爆炸与冲击.2007,27(1):26-33页
    [28]周睿,冯顺山,吴成.条形装药接触爆炸对金属靶板作用的断裂效应.北京理工大学学报.2001,21(4):405-409页
    [29]王廷斌,俞茂宏,肖耘等.冲击荷载作用下简支圆板的塑性动力响应统一解.爆炸与冲击.2003,23(5):405-414页
    [30]朱锡,白雪飞,张振华.空中接触爆炸作用下船体板架塑性动力响应及破口研究.中国造船.2004,45(2):43-49页
    [31]张振华,朱锡.刚塑性板在柱状炸药接触爆炸作用下的花瓣开裂研究.船舶力学.2004,8(5):113-119页
    [32]谌勇,唐平,汪玉等.刚塑性圆板受水下爆炸时的动力响应.爆炸与冲击.2005,25(1):90-96页
    [33]Rentz T R. Experimental investigation into the dynamic response of a stifened flat plate loaded impulsively by an underwater shockwave. A D-A151321,1984
    [34]Jacinto A C, Ambrosini R D, Danesi R F. Experimemtal and computational analysis of plates under air blast loading. International Journal of Impact Engineering.2001,25:927-947P
    [35]Nurick G N, Radford A M. Deformation and tearing of clamped circular plates subjected to localised central blast loads. Recent developments in computational and applied mechanics. A volume in honour of John B. Martin,1997:276-301P
    [36]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口试验研究.海军工程大学学报.2001,13(5):41-47页
    [37]朱锡,白雪飞,黄若波等.船体板架在水下接触爆炸作用下的破口试验.中国造船.2003,44(1):46-52页
    [38]Houlstonhe R, Slater J E, Pegg N, etl. On analysis of structural response of ship panels subjected to air blast loading. Comp Struct.1995,21:273-289P
    [39]Houlstonhe R. Finite strip analysis of plates and stiffened subjected to air-blast loads. Comp Struct.1989,32(3):647-659P
    [40]牟金磊,朱锡,张振华等.水下爆炸载荷作用下加筋板变形及开裂试验研究.振动与冲击.2008,27(1):57-60页
    [41]张婧,施兴华,王善等.水下接触爆炸载荷作用下舰船防护结构的仿真和实验研究.船舶力学.2008,12(4):649-656页
    [42]Langan J R. Investigation into the comparisons of the underwater shock effects on a stiffened flat plate to the predictive nature of a computer model.1985, AD-A155-612P
    [43]Ramajeyathilagam K. Non-linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering. 2000,24 (10):999-1015P
    [44]Chisum J E, Shin Y S. Multimaterial eulerian and coupled lagrangian-eulerian finite element analysis of underwater shock. AD-A298 206,1995
    [45]Rudrapatna N S, Vaziri R, Olson M D. Deformation and failure of blast-loaded stiffened plates. International Journal of Impact Engineering.2000,24:457-474P
    [46]何建,王善,,唐平.单层板壳冲击爆炸响应仿真分析.哈尔滨工程大学学报.2006,27(3):382-385页,
    [47]张馨,王善,陈振勇等.水下接触爆炸作用下加筋板的动态响应分析.系 统仿真学报·2007,19(2):257-260页
    [48]袁卫锋,吴连元.壳体结构受水下爆炸的危害距离讨论.福州大学学报(自然科学版).1994,22(4):85-89页
    [49]李玉节,张效慈,吴有生等.水下爆炸气泡激起的船体鞭状运动.中国造船.2001,42(3):1-7页
    [50]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船.2001,42(2):48-55页
    [51]Niessen E. Structural design for enhanced survivability of ship's Hull. Advanced Marine Structures-2, edited by Smith C S & Dow R S, Elesvier Applied Science Press,1991,352-372P
    [52]Reid W D. Response of surface ships to underwater explosions.1996, AD-A326738
    [53]Keil A H. The Response of ships to underwater explosions. SNAME.1961, 69:366-410P
    [54]Bosman B. Shock trials trojka drone, Measurements Shot 1,2 and 3.1996, AD-A321541
    [55]彭兴宁.船舶结构对水下非接触爆炸的响应.舰船力学情报.1994,(3):26页
    [56]Fowler J M. Recent Trends in Ship Shock. AD-A183943.1987
    [57]吴有生,赵本立.护卫舰的倾覆与舱室结构的变形.我国核试验技术总结汇编.国防科学技术委员会,1977
    [58]高秋新.爆炸引起的船体振荡.舰船力学情报.1992,(9):41页
    [59]李珙华.×××舰弹性船模的三维水弹性理论分析及试验结果比较.中国船舶科学研究中心科技报告.1994
    [60]张绮蓉,马锦华.水下非接触爆炸对舰船总纵强度与局部强度影响的分析.“028G艇实船度验资料”.中华人民共和国国家标准GJB2329-95,舰船抗核加固总要求
    [61]陈继康,岳茂裕.舰艇接触爆炸冲击环境和近舰水下爆炸破口模型试验.舰船论证参考.93(2):1-8页
    [62]程素秋,樊宝顺,薛飞.水下非接触爆炸作用下舱段模型的动态响应.爆炸与冲击.2008,28(4):360-366页
    [63]Gong S W. Transient response of floating composite ship section subjected to underwater shock. Composite Structures.1999,46:65-71P
    [64]Sang G L. Fluid mesh modeling on surface ship shock response under underwater explosion. Practical Design of Ships and Other Floating Structures.2001
    [65]Dyka C T. Damage in marine composites caused by shock loading. Composites Science and Technology,1998,58:1433-1442P
    [66]Curtis D M, Hill G D, Hirt E F. A study of the Effect of Wave Curvature on Hull Whipping Response Due to UNDEX Loading Using DYNA3D/ USA. Proceedings of the 70th Shock and Vibration Symposium, CD-publish, Record 32,1999
    [67]Santiago L D. Fluid-Interaction and Cavitation Effects on a Surface Ship Model Due to an Underwater Explosion. AD-A320 830,1996
    [68]严波,彭兴宁,潘建强.舱室爆炸载荷作用下舷侧防护结构的响应研究.船舶力学.2009,13(1):107-114页
    [69]金咸定,王德禹,方哲翔.舰船整船结构在水下爆炸载荷下动力响应的数值模拟.首届船舶与海洋工程结构力学学术讨论会文集,1999
    [70]张振华,朱锡,冯刚等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法.中国造船.2003,44(4):36-42页
    [71]姚熊亮,张阿漫,许维军等.基于ABAQUS软件的舰船水下爆炸研究.哈尔滨工程大学学报.2006,27(1):37-41页
    [72]陈永念,尹群,胡海岩.水中爆炸冲击波载荷作用下舰船结构动态响应的数值模拟.爆炸与冲击.2004,24(3):201-206页
    [73]姚熊亮,侯健,王玉红.水下爆炸冲击载荷作用时船舶冲击环境仿真.中国造船.2003,44(1):71-74页
    [74]姚熊亮,许维军,梁德利.水下爆炸时舰船冲击环境与冲击因子的关系.哈尔滨工程大学学报.2004,25(1):6-12页
    [75]Timoshenko S P. History of strength of materials. McGraw-Hill Book Co.. New York
    [76]Vasta J. Lessons learnt from full-scale ship structural test. Trans SNAME.1958,66:165-243P
    [77]Caldwell J B. Ultimate longitudinal strength. Trans RINA.1965,107: 411-430P
    [78]Faulkner D. A review of effective plating for use in the analysis of stiffened plating in bending and compression. J Ship Research.1975,19:1-17P
    [79]Nishihara S. Analysis of Ultimate strength of stiffened rectangular plate(4th report)-On the ultimate bending moment of ship hull girders. J of the Soc of Naval Arch of Japan.1983,154:367-375P
    [80]Endo H, Tanaka Y, Aoki G, et al. Longitudinal strength of the fore body of ships suffering from slamming. J Soc of Naval Arch of Japan.1988,163: 322-333 P
    [81]Mansour A E, Yang J M, Thayamballi A. An experimental investigation of ship hull ultimate strength. Trans SNAME.1990,98:411-439P
    [82]Smith C S. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull. Proc of International Symp on Practical Design in Shipbuilding. Tokyo.1977:73-79P
    [83]Yao T, Nikolov P I. Progressive collapse analysis of a ship's hull under longitudinal bending. J. of the Soc. of Naval Arch. of Japan.1991,170: 449-461P
    [84]Gordo J M, Soares C G. Approximate methods to evaluate the hull girder collapse strength. Marine Structures.1996,9(3-4):449-470P
    [85]胡毓仁,孙久龙.船体结构中受压矩形板计及残余应力影响的平均应力-平均应变曲线.上海交通大学学报.2000,34(1):99-103页
    [86]胡毓仁,陈伯真,孙久龙.纵向受压加筋板架有侧向压力时加强筋的扭转屈曲.上海交通大学学报.2000,34(12):1717-1732页
    [87]Rahman M K, Chowdhury M. Estimation of ultimate longitudinal bending moment of ships and box girders. Journal of Ship Research.1996,40(3): 244-257P
    [88]Yao T, Fujikubo M, Khedmati M R. Progressive collapse analysis of a ship's hull girder under longitudinal bending considering local pressure loads. J Society of Naval Architects of Japan.2000,188:507-515P
    [89]Chen Y K, Kutt L M, Piaszczyk C M, et al. Ultimate strength of ship structures. Trans SNAME.1983,91:149-168P
    [90]Kutt L M, Piaszczyk C M, Chen Y K. Evaluation of longitudinal ultimate strength of various ship hull configurations. Trans SNAME.1985,93: 33-55P
    [91]Kobayashi M, Kuramoto Y, Mizuno H. Design study on longitudinal strength of a 164-cabin cruise ship in waves. Trans RINA.1990:153-161P
    [92]Ueda Y, Rashed SMH, Paik J K. Plate and stiffened plate units of the idealized structural unit method-under in-plane loading. J of the Soc of Naval Arch of Japan.1984,156:366-376P
    [93]Paik J K, Lee D H. Ultimate strength-based safety and reliability assessment of ship's hull girder. J Soc Naval Arch of Japan.1990,168:397-409P
    [94]Ueda Y, Rashed SMH. Advances in the application of ISUM to marine structures. Proc. Int.Conf. on Advances in Marine Structure-2. Dunfirmline, U.K.1991:628-649P
    [95]Abdel N Y. Strength of ship structures constructed with different grades of steel. Doctoral Thesis,Osaka University, Japan.1992
    [96]Paik J K, Mansour A E. A simple formulation for predicting the ultimate strength of ships. Journal of Marine Science and Technology.1995(1): 52-62P
    [97]Smith C S, Dow R S. Residual strength of damaged steel ships and offshore structures. Journal of constructional stell research.1981,1(4):58-73P
    [98]Yao T, et al. Analysis of the accident of the MV nakhodka. Part 2. Estimation of structural Strength. J of Marine Science and Techology.1998(3): 181-193P
    [99]Mastro M, Marino A. An assessment of the structural capability of damaged ships:the plastic approach in longitudinal unsymmetrical bending and the influence of bucking. International Shipbuilding Progress.1989,408(36): 355-365P
    [100]郭昌捷,唐翰灿,周炳焕.受损船体极限强度分析与可靠性评估.中国造船.1998,39(4):49-56页
    [101]刘玉秋,聂武,温保华.用迁移矩阵法求解武器命中后的舰船船体应力.中国造船.2001,42(1):33-38页
    [102]黄震球,陈奇树,骆子夜.船体梁的极限纵强度.华中理工大学学报.1996,24(7):1-5页
    [103]张国栋,李朝晖.船体破损后外载荷与船体极限弯矩.中国造船.1997,38(3):28-33页
    [104]祁恩荣,崔维成,彭兴宁等.破损船体非对称弯曲极限强度分析及可靠性评估.中国造船.2000,41(2):41-48页
    [105]Nayfeh A H, Khdeir A A. Nonlinear rolling of ships in regular beam seas. International Shipbuilding Progress.1986,33(379):40-49P
    [106]Nayfeh A H, Sanchez N E. Stability and complicated rolling, responses of ships in regular beam seas. International Shipbuilding Progress.1990, 37(412):331-353P
    [107]Virgin L N. The nonlinear rolling response of a vessel including chaos motions leading to capsize in regular sea. Applied Ocean Research.1987, 9(2):89-95P
    [108]Thompson J M T. Designing against capsize in beam seas:recent advances and new insight. Applied Mechanics Rev.1997,50:307-325P
    [109]沈栋,黄祥鹿.随机波浪作用下的船舶倾覆.船舶力学.1999,3(5):7-14页
    [110]纪刚,张纬康.船舶横摇的安全池研究.中国造船.2002,43(4):25-31页
    [111]李远林.风暴中船舶安全池破损问题.中国造船.2004,45(1):14-18页
    [112]Francescutto A. Stochastic modeling of nonlinear motions in the presence of narrow band excitation. In Proc. Int. Soc. of Offshore and Polar Engineers.1992:91-96P
    [113]Fang M C, Lee C K. On the dynamic stability of a ship advancing in longitudinal waves. International Shipbuilding Progress.1993,42(422): 177-197P
    [114]Senjamovic I, Parunov J, Cipric G. Safety analysis of ship rolling in rough sea. Chaos solitons&Fractals.1997,8(4):659-680P
    [115]Roberts J B. A stochastic theory for nonlinear ship rolling in irregular seas. Journal of Ship Research.1982,26(4):229-245P
    [116]黄衍顺,王震,李红涛.船舶在横风横浪中的倾覆概率计算.天津大学学报.2001,34(5):651-654页
    [117]柳存根,姚震球,林杰人.矩函数在船舶非线性横摇稳定性判别中的应用.华东船舶工业学报.1996,10(4):7-13页
    [118]沈栋,黄祥鹿.随机波浪作用下船舶倾覆前持续时间的研究.中国造 船.2000,41(3):14-22页
    [119]Roberts J B, Vasta M. Markov modeling and stochastic identification for nonlinear ship rolling in random waves. Phil Trans R Sob Lond.2000, 358:1917-1941P
    [120]袁远,余音,金咸定.船舶在随机横浪中的奇异倾覆机理.、船舶力学.2004,8(1):44-50页
    [121]黄祥鹿,朱新颖.应用路径积分法解船舶倾覆概率问题.船舶力学.2001,5(4):7-16页
    [122]Wierzbicki T. Petaling of plates under explosive and impact loading. International Journal of Impact Engineering.1999,22:935-954P
    [123]Suliciu M M, Suliciu I, Wierzbicki T, etl. Transient response of an impulsively loaded plastic string on a plastic foundation. Quarterly of Applied Mathematics.1996,2:327-343P
    [124]Lee Y W, Wierzbicki T. Fracture prediction of thin plates under localized impulsive loading. Part II:discing and petalling. International Journal of Impact Engineering.2005,31:1277-1308P
    [125]Hopperstad O S, Borvik T, Langseth M, etl. On the influence of strain rate on the behavior of a structural steel. Part Ⅱ:Numerical study. Eur J Mech A/Solids,2001,20:685-712P
    [126]张庆明.爆轰物理学.北京:兵器工业出版社,2006
    [127]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用.北京:国防工业出版社,1979
    [128]恽寿荣,赵衡阳.爆炸力学.北京:国防工业出版社,2005
    [129]杨贵通.塑性动力学.北京:高等教育出版社,2000
    [130]Atkins A G, Mai Y W. Elastic and plastic-fracture.'Chichester:Ellis Horwood,1988
    [131]Atkins A G, Khan M A, Liu J H. Necking and radial cracking around perforations in thin sheets and normal incidence. International Journal of Impact Engineering.1998,21(7):521-539P
    [132]梅志远,朱锡,刘润泉.船用加筋板爆炸载荷下动态响应数值分析.爆炸与冲击.2004,24(1):80-84页
    [133]Hallquist J O. LS-DYNA3D theoretical manual. Livemore Software Technology Corporation,1991
    [134]Hallquist J O, Stillman D W. VEC/DYNA3D user's manual. Livemore Software Technology Corporation,1991
    [135]Hicks D L, Walsh R T. Numerical and computational analysis of the partial differential equations in hydro codes and wavecodes. Sandia National Laboratories report SAND-75-0448,1976
    [136]Benson D J. Computational methods in lagrangian and eulerian hydro codes. Computer Methods in Applied Mechanics and Engineering.1992, 99:235-294P
    [137]Souli M, Ouahsine A, Lewin L. Arbitrary Lagrange Euler formulation for Fluid-Structure Interaction problems. Computer Methods in Applied Mechanics and Engineering.2000,190:659-675P
    [138]白金泽.LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005
    [139]LS-DYNA Version 960 Keyword User Manual. Livermore Software Technology Corporation,2003
    [140]赵海鸥.LS-DYNA动力分析指南.北京:兵器工业出版社,2003
    [141]汤文辉,张若棋.物态方程理论及计算概论.长沙:国防科技大学出版社,1999
    [142]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1999
    [143]虞莲莲,曾正明.实用钢铁材料手册.北京:机械工业出版社,2003
    [144]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法.北京:科学出版社,2003
    [145]陈虬,刘先斌.随机有限元法及其工程应用.成都:西南交通大学出版社,1993
    [146]周南,乔登江.脉冲束辐照材料动力学.北京:国防工业出版社,2002
    [147]贺国芳.可靠性数据收集与分析.北京:国防工业出版社,1995
    [148]何水清,王善.结构可靠性分析与设计.北京:国防工业出版社,1993
    [149]Hughes o F. Ship structural Design.1983
    [150]Hu Y, Chen B, Sun J. Tripping of thin-walled stiffeners in the axially compressed stiffened panel with lateral pressure. Thin-Walled Structures.2000,37(1):1-26P
    [151]Dowling P J, Moolani F M, Friez P A. The effect of shear lag on the ultimate strength of box girder. Proc Int Cong On Steel Plated Structures. London.1976,108-147P
    [152]孙久龙,胡毓仁.船体总纵极限弯矩计算的一种简化方及程序开发.船舶力学.2001,5(4):38-46页
    [153]Reckling K A. Behaviour of box girder under bending and shear. Proc ISSC. Paris.1997, Ⅱ.2.46-Ⅱ.2.49
    [154]何福志,马建军,万正权.船体结构总纵极限强度的简化逐步破坏分析方法.中国造船.2005,46(2):17-27页
    [155]Soares C G, Moan T. Statistical analysis of still water load effects in ship structure. SNAME Transactions.1988,96:129-156P
    [156]Moan T, Jiao G. Characteristic still-water load effects for production ships. Report MK/R 104/88, The Norwegian Institute of Technology, Trondheim, Norway,1988
    [157]DNV. Hull structural design ships with length 100 metres and above, Rules for classification of ships. Part 3 Chapter 1, Det norske Veritas, Norway, 1994
    [158]Cramer E H, Hansen P F. Stochastic modelling of long term wave induced responses of ship structures. Marine structures.1994,70:537-566P
    [159]Mansour A E, Thayamballi A. Probability based ship design:Loads and load combinations. Ship Structure Committee Report No.SSC-373,1994
    [160]Rice S O. Mathematical analysis of random noise. Bell System Tech J. 1944a,23:282-332P
    [161]ABS. Guide for assessing hull-girder strength. American Bureau of Shipping, USA.1995
    [162]ABS. Guide for dynamic based design and evaluation of bulk carrier structures. American Bureau of Shipping, Safehull Project.1995
    [163]Shinozuka M.Basic analysis of structural safety. J Struct Eng. ASCE, 1983,109(3):721-740P
    [164]Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Struct Safety.1993,12:255-276P
    [165]Haddara M R. A modified approach for the application of Fokker Planck Equation to nonlinear ship motions in random waves. International Ship building Progress.1974,21(242):86-95P
    [166]Roberts J B. Effect of parametric excitation on ship rolling motion in random waves. Journal of ship research.1982,26(4):246-253P
    [167]冯铁城.在冲击外力矩作用下的横摇运动.船舶工程.1983,4:8-10页
    [168]Cole P.水下爆炸.北京:国防工业出版社,1960
    [169]张挺.爆炸冲击波测量技术(电测法).北京:国防工业出版社,1984
    [170]汤忠谷,韩久瑞.海船风压试验研究.中国造船.1981,2:31-38页
    [171]张相庭.结构风压和风振计算.上海:同济大学出版社,1985
    [172]Davenport A G. The spectrum of horizontal gustiness near the ground in high winds. J Royal Meteorol Soc.1961,87:194-211P
    [173]Vadim L, Belenky. Probabilistic qualities of nonlinear stochastic
    rolling. Ocean Engng.1998,25(1):1-25P
    [174]李积德.船舶耐波性.哈尔滨:哈尔滨船舶工程学院出版社,1992
    [175]Haddara M R. On nonlinear rolling of ship s in random seas. ISP.1973, 20:230-231P
    [176]Naess A, Johnsen J M. Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probabilistic Engineeing mechanics.1993,8:91-106P
    [177]中国船级社.钢质海船入级规范.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700