用户名: 密码: 验证码:
直接甲醇燃料电池阳极催化剂的制备及电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳载体是聚合物膜燃料电池催化剂的关键材料之一。目前,通常的碳载体有碳黑和碳纳米管(CNTs)等,因制备过程中产生的无定型碳颗粒不利于载体的电化学稳定,继而使用混合酸纯化碳载体,在此过程中碳表面产生了-COOH等缺陷官能团,使得催化剂颗粒主要以这些缺陷为中心沉积,导致催化剂的团聚现象;同时,碳黑存在大量的微孔(<2.5nm),使得部分催化剂颗粒沉积其中而起不到催化作用,导致催化剂的利用率降低。聚吡咯(PPy)作为超级电容器的优良材料,引入到催化层中后改善了碳的孔径分布,修补表面缺陷,改善碳表面的惰性,有利于金属在碳表面的均匀沉积,提高催化剂的利用率,同时有助于提高催化层的电容值。
     本文采用原位化学氧化聚合,将碳材料与PPy均匀地复合。探讨了PPy-C复合材料的形貌、颗粒尺寸、比表面积和孔径分布、电子电导率和质子传递能力以及作为催化剂载体的可行性。
     以制备的PPy-C为载体,采用化学还原的方法分别制备了具有较高电化学活性的Pt/PPy-XC72、PtM/PPy-C(M=Co、Fe)甲醇氧化阳极催化剂。同时采用置换法,制备了新颖的核壳结构催化剂Co@PtRu/MWCNTs。
     采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、循环伏安(CV)、线性扫描(Linear sweep scan)等手段对合成的Pt基催化剂的颗粒粒径、形貌、电化学活性和稳定性、甲醇氧化动力学机理等进行了探讨,采用过氧化处理对部分催化剂进行了研究。取得了如下的创新性研究成果:
     以分子量较大的萘磺酸作为吡咯聚合的质子酸,将萘磺酸根包裹于PPy的网状结构内部,使PPy-C的电导率提高并改善了金属在碳表面的分散性。
     采用一步法制备了PtFe/PPy-XC72催化剂。以三价铁作为吡咯氧化聚合时的氧化剂和PtFe合金相的组分之一。除具有较高的甲醇电催化氧化活性外,还减少了洗涤、过滤等烦琐的操作工艺。
     通过硼氢化钠/水合肼双还原剂制备钴核,并利用Co + PtCl_6~(2+) + Ru~(3+)→Co~(2+) + PtRu的合成路线,制备了新颖的核壳结构催化剂Co@PtRu /MWCNTs。在含有柠檬酸钠的缓冲体系中,使Pt和Ru的还原电位达到比较相近的水平,有利于Pt和Ru同时还原出来形成较好的PtRu合金相。电化学测试结果表明,这种核壳结构催化剂具有较大的电化学比表面积和对甲醇良好的电催化活性。
Carbon support is one of important component of catalyst of polymer membrane fuel cell (PMFCs). Carbon black and carbon nanotube, as the most common support of catalyst, have many amorphous carbon particles existing in the crude carbon, which are easy to be oxidized and affect the stability of catalyst. They have to be removed by mixed acid. While mixed acid with strong oxidizing ability will destroy the surface of carbon and produce some of functional group, such as–COOH, which cause the metal particles grow on these defect sites and agglomerate seriously. Moreover, there are large amount of micropores (<2.5 nm) existing in carbon black, metal particles codeposited in these micropores will not play any electrocatalysis and cause the low utilization of catalysts. As a good electrode material of super capacitor, PPy can change the distribution of carbon pore diameter, cover the defects of carbon, and thereby improve the inert surface of carbon,the ultilization of catalyst and the capacity of catalyst layer.
     In this paper, in situ chemical polymerization method was used to synthesize PPy-C composites. The morphology, particle size, specific surface and pore distribution, electron and proton conductivity and capacity were researched.
     Using the prepared PPy-C as supports, high electroactivity anode catalysts (Pt/PPy-XC72, PtM/PPy-C (M=Co, Fe)) of methanol oxidation were prepared. Moreover, by means of the replacement method, a novel core-shell structured Co@PtRu/MWCNT composite was obtained.
     Scanning electron microscope (SEM), transmission clectron mircroscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy - dispersive spectrometry (EDS), cyclic voltammetry (CV) and linear sweep scan technology (LSS) were used to evaluate morphology, electrochemical activity and stability of catalysts. Over-oxidation treantment technology was used to search the effect of high vlotage to the performance of catalysts. The dynamic mechanism of methanol oxidation was discussed. The main innovative achievements include:
     Naphthalene sulfuric acid (NSA) was used as the proton acid of pyrrole polymerization. The NSA anions were encapsulated into the net structured PPy, improving the conductivity of PPy-C and metal dispersion on carbon.
     By one-step route, a novel PtFe/PPy-XC72 catalyst was synthesized with Fe3+ ions as oxidant agent and one component of the PtFe alloy. Besides high methanol oxidation activity by this synthesis route, the trivial processes, such as washing and filtering of PPy-C, were omitted.
     With sodium borohydride/hydrate hydrazine as reducing agent to prepare cobalt core, and by the synthesis route: Co + PtCl6~(2+) + Ru~(3+)→Co~(2+) + PtRu, a novel core-shell structured Co@PtRu/MWCNT composite was obtained. With sodium nitrate as buffering agent, the reduction potentials of Pt and Ru were controlled to the near same value, thus Pt and Ru were reduced together and PtRu alloy was formed. Electrochemical test shows that this novel catalyst has large electrochemical specific surface and high methanol oxidation activity.
引文
[1]赵新生,孙公权,王素力,等. DMFC阳极催化层离子电阻的测定和优化[J].电源技术, 2004, 28(12): 771-774.
    [2]刘建国,衣宝廉.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术, 2001, 25(5): 363-366.
    [3] Vigier F, Coutanceau C, Perrard A, et al. Development of anode catalyst for a direct ethanol fuel cell [J]. Journal of Applied Electrochemistry, 2004, 34(4): 439-446.
    [4] Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review [J]. Journal of Electroanalytical Chemistry, 1999, 461(1-2): 14-31.
    [5] Tripkovi A V, Popovi K D, Grgur B N, et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions [J]. Electrochimica Acta, 2002, 47(22-23): 3707-3714.
    [6] Ishikawa Y, Liao M S, Cabrera C R. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M = Ru, Sn): A theoretical study [J]. Surface Science, 2000, 463(1): 66-80.
    [7] Surampudi S. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane [P]. USP:5 599 638,1997202204:
    [8] Hockaday R G. Fuel cell [P]. USP:4 673 624, 1987206216:
    [9] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catalysis Today, 1997, 38(4): 445-457.
    [10] Lamy C, Rousseau S, Belgsir E M, et al. Recent progress in the direct ethanol fuel cell: Development of new platinum-tin electrocatalysts [J]. Electrochimica Acta, 2004, 49(22-23 SPEC. ISS.): 3901-3908.
    [11] Thomas S C, Ren X, Gottesfeld S, et al. Direct methanol fuel cells: Progress in cell performance and cathode research [J]. Electrochimica Acta, 2002, 47(22-23): 3741-3748.
    [12]李建玲,毛宗强.直接甲醇燃料电池研究现状及主要问题[J].电池, 2001, 31(1): 36-39.
    [13]周卫江,周振华,李文震,等.直接甲醇燃料电池阳极催化剂研究进展[J].化学通报, 2003, 66(4): 228-234.
    [14]唐志诚,吕功煊.直接甲醇燃料电池阳极电催化剂[J].化学进展, 2007, 19(9): 1301-1312.
    [15]索春光,赵晓光,张鹏,等.直接甲醇燃料电池阳极抗Co催化剂的研究进展[J].贵金属, 2008, 29(3): 66-70.
    [16]孙景玉,张校刚.直接甲醇燃料电池阳极催化剂PtRu/MWCNTs的水热合成及其电催化行为[J].化学研究与应用, 2007, 19(9): 965-969.
    [17] Oka T, Mizuseki H, Kawazoe Y. Activation barriers of CO oxidation on Pt-M (M = Ru, Sn) alloys [J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70(6): 495-499.
    [18] Oka T, Mizuseki H, Kawazoe Y. CO oxidation process on Pt-M(111) alloys (M = Ru, Sn): An ab initio study [J]. Materials Transactions, 2007, 48(7): 1907-1912.
    [19] Zhou W J, Song S Q, Li W Z, et al. Direct ethanol fuel cells based on PtSn anodes: The effect of Sn content on the fuel cell performance [J]. Journal of Power Sources, 2005, 140(1): 50-58.
    [20] Xu J B, Zhao T S, Liang Z X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells [J]. Journal of Power Sources, 2008, 185(2): 857-861.
    [21] Smotkin E S. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes [J]. Journal of Physical Chemistry B, 2000, 104(15): 3518-3531.
    [22] Breiter M W. Reactivity and surface composition. Anodic methanol oxidation on platinum-gold alloys [J]. Journal of Physical Chemistry, 1965, 69(10): 3377-3383.
    [23] Passalacqua E, Lufrano F, Squadrito G, et al. CO tolerance of Pt-W electrocatalysts for polymer electrolyte fuel cells [J]. Journal of New Materials for Electrochemical Systems, 2000, 3(2): 131-135.
    [24] Watanabe M, Zhu Y, Igarashi H, et al. Mechanism of CO Tolerance at Pt-Alloy Anode Catalysts for Polymer Electrolyte Fuel Cells [J]. Electrochemistry, 2000, 68(4): 244-251.
    [25]刘长鹏,杨辉.碳载Pt-TiO2复合催化剂对甲醇氧化的电催化性能[J].高等学校化学学报, 2002, 23(7): 1367-1370.
    [26] Shukla A K, Ravikumar M K, AricòS, et al. Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte [J]. Journal of Applied Electrochemistry, 1995, 25(6): 528-532.
    [27] Lima A, Coutanceau C, Léger J M, et al. Investigation of ternary catalysts for methanol electrooxidation [J]. Journal of Applied Electrochemistry, 2001, 31(4): 379-386.
    [28] Lima A, Hahn F, Léger J M. Oxidation of methanol on Pt, Pt-Ru, and Pt-Ru-Moelectrocatalysts dispersed in polyaniline: An in situ infrared reflectance spectroscopy study [J]. Russian Journal of Electrochemistry, 2004, 40(3): 326-336.
    [29] Chu D, Jiang R. Novel electrocatalysts for direct methanol fuel cells [J]. Solid State Ionics, 2002, 148(3-4): 591-599.
    [30] He C, Kunz H R, Fenton J M. Electro-oxidation of hydrogen with carbon monoxide on Pt/Ru-based ternary catalysts [J]. Journal of the Electrochemical Society, 2003, 150(8): A1017-A1024.
    [31] Kokoh K B, Hahn F, Belgsir E M, et al. Electrocatalytic oxidation of acetaldehyde on Pt alloy electrodes [J]. Electrochimica Acta, 2004, 49(13): 2077-2083.
    [32]文纲要,张颖.甲醇阳极电氧化催化剂的研究[J].电化学, 1998, 4(1): 73-78.
    [33] Jusys Z, Schmidt T J, Dubau L, et al. Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization [J]. Journal of Power Sources, 2002, 105(2): 297-304.
    [34] AricòA S, CretìP, Giordano N, et al. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode [J]. Journal of Applied Electrochemistry, 1996, 26(9): 959-967.
    [35] Mani P, Srivastava R, Strasser P. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes [J]. Journal of Physical Chemistry C, 2008, 112(7): 2770-2778.
    [36] Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J]. Nature Materials, 2008, 7(4): 333-338.
    [37] Chen Y, Yang F, Dai Y, et al. Ni@Pt core-shell nanoparticles: Synthesis, structural and electrochemical properties [J]. Journal of Physical Chemistry C, 2008, 112(5): 1645-1649.
    [38] Maye M M, Luo J, Chan W B, et al. Characterizations of core-shell nanoparticle catalysts for methanol electrooxidation; proceedings of the Materials Research Society Symposium - Proceedings, F, 2003 [C].
    [39] Nilekar A U, Alayoglu S, Eichhorn B, et al. Ru@Pt core-shell nanocatalysts for enhanced Co-tolerant catalytic hydrogen activation; proceedings of the 2007 AICHE Annual Meeting, F, 2007 [C].
    [40] Subramanian V R, Seebauer E G, Masel R I. Semiconductor-metal core-shell nanocomposites as catalysts for methanol fuel cells; proceedings of the AICHE Annual Meeting, Conference Proceedings, F, 2005 [C].
    [41] Wang S, Kristian N, Jiang S, et al. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst [J].Nanotechnology, 2009, 20(2):
    [42] Wei Z D, Feng Y C, Li L, et al. Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells [J]. Journal of Power Sources, 2008, 180(1): 84-91.
    [43] Yang L, Chen J, Zhong X, et al. Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295(1-3): 21-26.
    [44]徐洪峰,卢璐,朱少敏,等.石墨纳米纤维用作质子交换膜燃料电池催化剂载体[J].催化学报, 2008, 29(6): 542-546.
    [45]张宁,朱红,康晓红,等.碳纳米材料在质子交换膜燃料电池催化剂载体中的应用[J].科技信息:学术版, 2006: 124-124.
    [46]柯刚,浣石,刘晓国.碳纳米管的有机化学修饰研究进展[J].科技导报(北京), 2007, 25(21): 76-80.
    [47]尹诗斌,木士春,潘牧,等.低温燃料电池用催化剂载体的研究[J].电池工业, 2007, 12(4): 281-284.
    [48] Ding J, Chan K Y, Ren J, et al. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions [J]. Electrochimica Acta, 2005, 50(15): 3131-3141.
    [49] Park S M, Jung D H, Kim S K, et al. The effect of vapor-grown carbon fiber as an additive to the catalyst layer on the performance of a direct methanol fuel cell [J]. Electrochimica Acta, 2009, 54(11): 3066-3072.
    [50] Walln?fer E, Perchthaler M, Hacker V, et al. Optimisation of carbon nanofiber based electrodes for polymer electrolyte membrane fuel cells prepared by a sedimentation method [J]. Journal of Power Sources, 2009, 188(1): 192-198.
    [51] Baglio V, AricòA S, Stassi A, et al. Investigation of Pt-Fe catalysts for oxygen reduction in low temperature direct methanol fuel cells [J]. Journal of Power Sources, 2006, 159(2): 900-904.
    [52] Chen M, Chen C M, Yu H W, et al. Rapidly dispersion and loading of Pt nanoparticles on CNTs for DMFC electrodes; proceedings of the 2008 2nd IEEE International Nanoelectronics Conference, INEC 2008, F, 2008 [C].
    [53] Dipti S S, Chung U C, Chung W S. Characteristics of the carbon nanotubes supported Pt-Ni and Ni electrocatalysts for DMFC [J]. Metals and Materials International, 2007, 13(3): 257-260.
    [54] Hsieh C T, Lin J Y. Fabrication of bimetallic Pt-M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells [J].Journal of Power Sources, 2009, 188(2): 347-352.
    [55] Jha N, Leela Mohana Reddy A, Shaijumon M M, et al. Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell [J]. International Journal of Hydrogen Energy, 2008, 33(1): 427-433.
    [56] Reshetenko T V, Kim H T, Kweon H J. Modification of cathode structure by introduction of CNT for air-breathing DMFC [J]. Electrochimica Acta, 2008, 53(7): 3043-3049.
    [57] Wu G, Xu B Q. Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes [J]. Journal of Power Sources, 2007, 174(1): 148-158.
    [58] Wu G, Li D, Dai C, et al. Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation [J]. Langmuir, 2008, 24(7): 3566-3575.
    [59] Ye F, Chen S, Dong X, et al. Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells [J]. Journal of Natural Gas Chemistry, 2007, 16(2): 162-166.
    [60] Arbizzani C, Biso M, Manferrari E, et al. Methanol oxidation by pEDOT-pSS/PtRu in DMFC [J]. Journal of Power Sources, 2008, 178(2): 584-590.
    [61] Drillet J F, Dittmeyer R, Jüttner K, et al. New composite DMFC anode with PEDOTas a mixed conductor and catalyst support [J]. Fuel Cells, 2006, 6(6): 432-438.
    [62] Wu G, Li L, Li J H, et al. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films [J]. Journal of Power Sources, 2006, 155(2): 118-127.
    [63] Selvaraj V, Alagar M. Pt and Pt-Ru nanoparticles decorated polypyrrole/ multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation [J]. Electrochemistry Communications, 2007, 9(5): 1145-1153.
    [64] Lijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns [J]. Chemical Physics Letter, 1999, 309(3/4): 165-174.
    [65] Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells [J]. Electrochemistry Communications, 2007, 9(8): 1867-1872.
    [66] Smirnova A, Dong X, Hara H, et al. Novel carbon aerogel-supported catalysts for PEM fuel cell application [J]. International Journal of Hydrogen Energy, 2005, 30(2): 149-158.
    [67] Ren X, Zelenay P, Thomas S, et al. Recent advances in direct methanol fuel cells atLos Alamos National Laboratory [J]. Journal of Power Sources, 2000, 86(1): 111-116.
    [68] Srinivasan S, Enayetullah M A, Somasundaram S, et al. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, proceedings of the Proceedings of the 24th IEEE, Energy Conversion Engineering Conference, F, 1989 [C]
    [69] Srinivasan S, Ticianelli E A, Derouin C R, et al. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes [J]. Journal of Power Sources, 1988, 22(3-4): 359-375.
    [70]侯中军,俞红梅.高活性的PtRu/C抗CO催化剂[J].电源技术, 2002, 26(4): 269-272.
    [71] Kim J Y, Yang Z G, Chang C C, et al. A sol-gel-based approach to synthesize high-surface-area Pt-Ru catalysts as anodes for DMFCs [J]. Journal of the Electrochemical Society, 2003, 150(11): A1421-A1431.
    [72] Tsaprailis H, Birss V I. Sol-gel derived Pt-Ir mixed catalysts for DMFC applications [J]. Electrochemical and Solid-State Letters, 2004, 7(10): A348-A352.
    [73]陈胜洲,董新法,钟文健,等. MoOx、WOx对PtRu/C催化剂甲醇电氧化作用的影响[J].电源技术, 2004, 28(8): 498-500.
    [74] B?nnemann H, Brijoux W, Brinkmann R, et al. Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates [J]. Journal of Molecular Catalysis, 1994, 86(1-3): 129-177.
    [75] Gamez A, Richard D, Gallezot P, et al. Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer [J]. Electrochimica Acta, 1996, 41(2): 307-314.
    [76] Lasch K, J?rissen L, Garche J. Effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium [J]. Journal of Power Sources, 1999, 84(2): 225-230.
    [77]李莉,徐柏庆.制备方法对PtMo/C催化剂上CO电催化氧化性能的影响[J].物理化学学报, 2005, 21(10): 1132-1137.
    [78] He Z, Chen J, Liu D, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J]. Diamond and Related Materials, 2004, 13(10): 1764-1770.
    [79] Wei Z D, Li L L, Luo Y H, et al. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes [J]. Journal of Physical Chemistry B, 2006, 110(51): 26055-26061.
    [80] Witham C K, Chun W, Valdez T I, et al. Performance of direct methanol fuel cells with sputter-deposited anode catalyst layers [J]. Electrochemical and Solid-StateLetters, 2000, 3(11): 497-500.
    [81] Amine K, Mizuhata M, Oguro K, et al. Catalytic activity of platinum after exchange with surface active functional groups of carbon blacks [J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(24): 4451-4458.
    [82] Frelink T, Visscher W, van Veen J A R. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation [J]. Electrochimica Acta, 1994, 39(11-12): 1871-1875.
    [83] Ito T, Shirakawa H, Ikeda S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble ziegler-type catalyst solution [J]. Jourlnal of Polymer Science, Part A-1 Polymer Chemistry, 1974, 12(1): 11-20.
    [84] Pouget J P, Hsu C H, Mac Diarmid A G, et al. Structural investigation of metallic PAN-CSA and some of its derivatives [J]. Synthetic Metals, 1995, 69(1-3): 119-120.
    [85] Mac Diarmid A G, Wang H-L, Park J W, et al. Novel light-emitting diodes involving heterocyclic aromatic conjugated polymers; proceedings of the Proceedings of SPIE, The International Society for Optical Engineering, F, 1995 [C].
    [86] Jeyadev S, Schrieffer J R. Interchain polaron tunneling in trans-polyacetylene [J]. Physical Review B, 1984, 30(7): 3620-3624.
    [87] Zach P. Band structure and limiting behavior of linear polyanilines [J]. Journal of Polymer Science, Part A-2 Polymer Physic, 1972, 10(12): 2379-2390.
    [88] Breitenbach M, Heckner K H. Elektrochemische untersuchungen der bildung und eigenschaften von polyanilinfilmen auf platin- und kohleelektroden [J]. Journal of Electroanalytical Chemistry, 1973, 43(2): 267-286.
    [89] Tanaka K, Yoshizawa K, Takeuchi T, et al. Plasma polymerization of thiophene and 3-methylthiophene [J]. Synthetic Metals, 1990, 38(1): 107-116.
    [90]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社, 2001, 63-84.
    [91] Chiang J C, Mac Diarmid A G. 'Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime [J]. Synthetic Metals, 1986, 13(1-3): 193-205.
    [92]李永舫.导电聚吡咯的研究[J].高分子通报, 2005, 4: 51-57.
    [93] Stejskal J, Omastova M, Fedorova S, et al. Polyaniline and polypyrrole prepared in the presence of surfactants: A comparative conductivity study [J]. Polymer, 2003, 44(5): 1353-1358.
    [94] Wang L X, Li X G, Yang Y L. Preparation, properties and applications ofpolypyrroles [J]. Reactive and Functional Polymers, 2001, 47(2): 125-139.
    [95] Ren L, Zhang X, Wang L, et al. Conductivity and conducting mechanism of polypyrrole via chemical oxidative polymerization [J]. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2007, 28(9): 1396-1401.
    [96] Liu J, Wang X, Hu X, et al. Studies of influence of naphthalene mono/disulfonic acid dopant on thermal stability of polypyrrole [J]. Journal of Applied Polymer Science, 2008, 109(2): 997-1001.
    [97] Akinyeye R, Sekota M, Baker P, et al. Chemical synthesis and morphology of b-naphthalene sulfonic acid-doped polypyrrole micro/nanotubes [J]. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14(1): 49-55.
    [98]钱人元,李永舫.导电聚吡咯的研究[J].中国科学基金, 1996, 10(3): 212-214.
    [99] Kang H C, Geckeler K E. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive [J]. Polymer, 2000, 41(18): 6931-6934.
    [100] Ren X Z, Zhao Q, Liu J H, et al. Preparation and electrochemical behavior of polypyrrole/multiwalled carbon nanotube [J]. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2008, 24(10): 29-32.
    [101] Mokrane S, Makhloufi L, Alonso Vante N. Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials [J]. Journal of Solid State Electrochemistry, 2008, 12(5): 569-574.
    [102] Ju Y W, Choi G R, Jung H R, et al. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole [J]. Electrochimica Acta, 2008, 53(19): 5796-5803.
    [103] Bai H, Chen Q, Li C, et al. Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing [J]. Polymer, 2007, 48(14): 4015-4020.
    [104] Nakano H, Sugimura M, Tachibana Y, et al. Addition of capacitor property into polymer electrolyte fuel cell by using composite of conducting polymer and Pt-deposited carbon [J]. Electrochemistry, 2006, 74(5): 394-396.
    [105] Nakano H, Tachibana Y, Kuwabata S. Investigation of the effect of Pt location in catalyst layer on fuel cell performance using Pt-photodeposited polyaniline-Nafion composite film [J]. Electrochemistry, 2005, 73(12): 1021-1025.
    [106] Meacham J R, Jabbari F, Brouwer J, et al. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data [J]. Journal of Power Sources, 2006, 156(2): 472-479.
    [107] Jarvis L P, Atwater T B, Cygan P. Fuel cell /electrochemical capacitor hybrid forintermittent high power applications [J]. Journal of Power Sources, 1999, 79(1): 60-63.
    [108] Park H, Kim Y, Choi Y S, et al. Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC [J]. Journal of Power Sources, 2008, 178(2): 610-619.
    [109] Park K W, Ahn H J, Sung Y E. All-solid-state supercapacitor using a Nafion polymer membrane and its hybridization with a direct methanol fuel cell [J]. Journal of Power Sources, 2002, 109(2): 500-506.
    [110] Gao L, Jiang Z, Dougal R A. An actively controlled fuel cell/battery hybrid to meet pulsed power demands [J]. Journal of Power Sources, 2004, 130(1-2): 202-207.
    [111] Jones P B, Lakeman J B, Mepsted G O, et al. A hybrid power source for pulse power applications [J]. Journal of Power Sources, 1999, 80(1-2): 242-247.
    [112] Walker J A, Warren L F, Witucki E F. Chemical preparation of electrically conducting polypyrrole; proceedings of the American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, F, 1987 [C].
    [113] Wang C, Appleby A J. High-peak-power polymer electrolyte membrane fuel cells [J]. Journal of the Electrochemical Society, 2003, 150(4): A493-A498.
    [114] Wang Y, Zheng J P. A monolithic hybrid direct methanol fuel cell [J]. Electrochemical and Solid-State Letters, 2007, 10(1): B26-B30.
    [115] Wang Y, Zheng J P. Novel supercapacitor-fuel cell hybrid cell [J]. Rare Metals, 2006, 25(6 SUPPL. 1): 12-18.
    [116] Wang J, Xu Y, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films [J]. Composites Science and Technology, 2007, 67(14): 2981-2985.
    [117] Thounthong P, Ra?l S, Davat B. Analysis of supercapacitor as second source based on fuel cell power generation [J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 247-255.
    [118] Rolison D R, Hagans P L, Swider K E, et al. Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts: The Importance of Mixed Electron/Proton Conductivity [J]. Langmuir, 1999, 15(3): 774-779.
    [119] Vidakovi? T, Christov M, Sundmacher K. A method for rough estimation of the catalyst surface area in a fuel cell [J]. Journal of Applied Electrochemistry, 2009, 39(2): 213-225.
    [120]甘全全,徐洪峰,张茂峰.聚苯胺修饰Pt/C催化剂对质子交换膜燃料电池动态响应的促进作用[J].催化学报, 2007, 28(10): 900-904.
    [121] Arimoto S, Nakano H, Fujita T, et al. Electrocatalytic activity of Pt and Ruphotodeposited polyaniline electrodes for methanol oxidation [J]. Electrochemistry, 2007, 75(1): 39-44.
    [122]杨志伟,刘宝春,袁婕.单壁碳纳米管的纯化研究[J].广东化工, 2008, 35(5): 69-71.
    [123]钟俊,宋礼,买买提依明·阿巴斯,等.单壁碳纳米管的纯化过程研究[J].核技术, 2004, 27(12): 935-938.
    [124]巢亚军,原鲜霞,马紫峰.复合材料在超级电容器中的应用研究进展[J].稀有金属材料与工程, 2007, 36(6): 1110-1114.
    [125]郭秀春.导电聚合物的开发应用及其进展[J].化工进展, 1992, 2: 50-53.
    [126]钱人元,李永舫.导电聚吡咯[J].科学(上海), 1998, 50(3): 18-20.
    [127]冉奋,孔令斌,罗永春,等.化学氧化法合成超级电容器电极用聚吡咯及其工艺优化[J].兰州理工大学学报, 2007, 33(6): 27-32.
    [128]田颖,李浙齐,徐洪峰,等.不同电解质溶液对聚吡咯修饰膜性质的影响[J].物理化学学报, 2008, 24(4): 612-618.
    [129]徐友龙,季锐.影响掺杂聚吡咯(PPy)导电性能的因素[J].电子元件与材料, 2000, 19(5): 17-19.
    [130]尹五生.聚吡咯导电材料合成方法的进展[J].功能材料, 1996, 27(2): 97-102.
    [131]周广宇,简淼夫.透明型白碳黑粉体比表面积的测定和计算[J].哈尔滨师范大学自然科学学报, 2006, 22(2): 65-67.
    [132]梁薇.微孔材料BET比表面积计算中相对压力应用范围的研究[J].工业催化, 2006, 14(11): 66-70.
    [133]任丽,朱嫦娥,王立新.聚吡咯及其复合材料导电稳定性的研究[J].功能材料, 2004:
    [134]郑玉斌,张善举.电聚合导电聚吡咯的合成研究[J].功能高分子学报, 1996, 9(4): 613-615.
    [135] Liu J, Wan M. Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method [J]. Journal of Materials Chemistry, 2001, 11(2): 404-407.
    [136] Jang J, Yoon H. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems [J]. Langmuir, 2005, 21(24): 11484-11489.
    [137] Cabri L, Feather C. Platinum-iron alloys: a nomenclature based on a study of natural and synthetic alloys [J]. Can Mineral, 1975, 13: 117-126.
    [138]姚营,汤皎宁,谷坤明,等.水合肼还原法制备钴纳米棒[J].中国材料科技与设备, 2006, 3(6): 49-50.
    [139]员江平.水合肼还原法制备超细镍粉[J].新疆有色金属, 2002, 25(2): 20-21.
    [140]汤皎平.水合肼还原法制备银纳米粒子[J].科学技术与工程, 2005, 5(16): 1187-1188.
    [141]兰尧中,刘进,李现强,等.水合肼还原法制备超细银粉的研究[J].贵金属, 2005, 26(4): 22-26.
    [142]李家明.水合联胺在贵金属回收中的应用[J].中国物资再生, 1997, 8: 18-19.
    [143]魏先文,朱国兴,王丁.液相法制备铁钴合金纳米线/棒[J].安徽师范大学学报:自然科学版, 2007, 30(3): 282-286.
    [144]寇朝霞,高歆,张毅,等.单晶钴颗粒的合成和磁性研究[J].化工时刊, 2006, 20(2): 1-3.
    [145]曾京辉,曾恒兴.钴基金属微粉的制备及其磁性能[J].信息记录材料, 2001, 2(2): 6-8.
    [146]梁芳,贺加欣,曹先仲,等.钴纳米颗粒的制备及其表征[J].稀有金属材料与工程, 2007, 36(A02): 760-762.
    [147]陈卫祥,俞贵艳,赵杰,等.微波合成PtRu/C纳米催化剂及其对甲醇电化学氧化性能[J].无机化学学报, 2004, 20(12): 1467-1470.
    [148]冶保献,万马红. Nafion修饰电极阴极溶出伏安法测定痕量钴[J].郑州大学学报:自然科学版, 1994, 26(1): 77-81.
    [149]周连君,郝秀荣.吸附溶出伏安法测定水中痕量钴[J].曲阜师范大学学报:自然科学版, 1997, 23(1): 81-84.
    [150]周享春,童长青,李惟熔.阳极溶出伏安法测定钴的研究[J].长江大学学报:自然科学版, 2005, 2(4): 119-121.
    [151]刘春林,张艾华.阴极溶出伏安法测定铁[J].理化检验:化学分册, 1990, 26(4): 245-246.
    [152] Hyun M S, Kim S K, Lee B, et al. Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method [J]. Catalysis Today, 2008, 132(1-4): 138-145.
    [153] Vogel W. Size contraction in Pt/C and PtRu/C commercial E-TEK electrocatalysts: An in situ X-ray diffraction study [J]. Journal of Physical Chemistry C, 2008, 112(35): 13475-13482.
    [154] Lu H, Rihko Struckmann L, Hanke Rauschenbach R, et al. Dynamic behavior of a PEM fuel cell during electrochemical CO oxidation on a PtRu anode [J]. Topics in Catalysis, 2008, 51(1-4): 89-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700