用户名: 密码: 验证码:
铀对烃源岩生烃演化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油、气、煤、铀多种能源矿产形成演化富集成藏(矿)过程中,有机-无机相互作用是普遍存在的,在有机质的强大吸附作用及其所提供的还原环境为铀矿的富集成矿起促进作用的同时,铀也改变了烃源岩的生烃演化进程。
     要就“铀对烃源岩生烃演化的影响”进行实验室模拟实验,所用烃源岩样品应该是低熟、并有源于其的工业油气藏的烃源岩。为尽量与实际地质事实相对应,所用的铀为砂岩型铀矿石,同时为简化实验中的影响因素,所用的铀还采用了碳酸铀酰溶液,以作对比研究。
     在烃源岩中加入铀(砂岩型铀矿石及碳酸铀酰溶液)的情况下进行生烃模拟实验。在对国内外烃源岩中铀含量的统计基础上,选择在烃源岩中所加的铀含量为50ppm(以碳酸铀酰溶液形式加入,无其它杂质,所以其含量取统计结果中的近似平均值)及100ppm、250ppm(以铀矿石的形式加入,考虑到铀矿石的复杂性及对铀作用的“稀释”作用,其含量取统计结果中的近似最大值)。实验采用高压釜反应器。
     实验结果表明,铀可以促进烃类生成过程中外来氢源中H的加入,使不饱和烃向饱和烃转化;促进长链烃的断裂,使高碳数的烃发生裂解,促进低分子量烃类的产生,从而使CH4的含量提高,生成的烃类的干气化程度增加;同时烃源岩生成更多的H2,进一步促进了模拟实验中烃源岩的烃气产率,为总气量的增加做出贡献。
     铀可以促进烃源岩液态烃的提前生成,并在低温阶段使液态烃大幅提高,促进烃源岩总烃的产量(物质的量或体积)。
     铀可以降低烃源岩饱和烃产量,增加芳烃产量,降低了族组分的饱/芳比,使烃源岩模拟实验产物中族组分表现出更加与低熟油相似的特征,意味着铀的存在利于低熟烃源岩早期生成低熟油气,铀的存在有利于低熟油气的形成。
     铀可以改变实验产物中饱和烃气相色谱特征参数,说明铀的存在可以使烃源岩的演化程度发生变化,促使低熟烃源岩的生烃门限降低,提前生成烃类;同时在高温阶段阻止有机质过度成熟,使其保持在较低的成熟度水平,利于所生成烃的保存。铀应该为低熟油、气生成的促进因素之一。
     这种提前生成的少量油气可以使所在储层变为亲油性,为后期大规模生成的油气运移成藏提供有利的条件,使得即使是致密的储层,也能形成大规模的工业油气藏。
     Ⅰ型与Ⅱ型及Ⅲ型的差别主要是因为:(1)铀矿石复杂,其中有的因素对铀的作用(在不同温度条件下)会有抵消作用;(2)Ⅰ型样品相对于Ⅱ型及Ⅲ型来说本来就具有相对较富的H,所以外源氢对其生烃的影响会有不同。
Organic-inorganic interaction is ubiquitous in the process of formation, evolution, concentration and accumulation of various energy resources of oil, gas, coal and uranium. Uranium also alter the process of hydrocarbon generation and evolution of hydrocarbon source rocks while that organic matter accelerate concentration and mineralization of uranium by the strong adsorption and reduction environment from the organic matter.
     Hydrocarbon source rocks used in the hydrocarbon-generating simulation experiment is immature hydrocarbon source rocks, and there is commercial hydrocarbon reservoir formed by the hydrocarbon from the immature hydrocarbon source rocks. As far as possible correspond with the actual geological facts, the uranium used in the simulation experiment is sandstone-type uranium ore. To simplify the influence factors in the experiment, the uranium used in the experiment is also adopted the solution of UO2CO3 for comparative study.
     Hydrocarbon-generating simulation experiment is proceeded using hydrocarbon source rock with uranium added (sandstone-type uranium ore and UO2CO3 solution). The reactor used in the experiment is autoclave. The uranium added in the hydrocarbon source rocks is 50ppm (UO2CO3 solution); 100ppm and 250ppm (sandstone-type uranium ore) based on the statistics of the uranium contents in hydrocarbon source rocks from domestic to international.
     Experimental results show that uranium can facilitate H from external hydrogen source entering the hydrocarbon generation process, changing unsaturated hydrocarbons to saturated hydrocarbons, promoting the breaking of long-chain hydrocarbons, the high carbon hydrocarbon cracking, the low molecular weight hydrocarbons generating, so that the content of CH4 increased, the degree of dry gas increased, while the additional H2 generated from hydrocarbon source rocks, which promote the hydrocarbon gas yield and contribute to the increase of the total gas quantity in the simulation experiment.
     Uranium can promote the generation of liquid hydrocarbon prior, substantial increase the liquid hydrocarbons and total hydrocarbon production (amount of substance or volume) of hydrocarbon source rock at low temperature.
     Uranium can reduce the production of saturated hydrocarbons and increase the production of aromatic hydrocarbons of hydrocarbon source rocks in simulation experiment, so the ratio of saturated hydrocarbons to aromatic hydrocarbons is reduced. It is more similar to the immature hydrocarbons on the characteristics of group composition of simulation experiment products. The existence of uranium in hydrocarbon source rocks is favorable to the formation of the immature hydrocarbons.
     Uranium can alter the gas chromatography characteristic parameters of saturated hydrocarbons in simulation experiment. It indicates that the existence of uranium can alter the thermal evolution degree and maturity of hydrocarbon source rocks, reduce the hydrocarbon generation threshold values of immature hydrocarbon source rocks and advance the generation of the hydrocarbons, and delay the over mature of organic matter and made it retain a lower maturity that benefit the preservation of hydrocarbons at high temperature. It shows that uranium in hydrocarbon source rocks is one of the accelerating factors of the hydrocarbon generation.
     Such a small amount of hydrocarbon generated in advance can make the host reservoir into a lipophilic reservoir, and it provides advantage conditions for migration and accumulation of late large scale generated hydrocarbons. It makes even the dense reservoir becoming large-scale industrial hydrocarbon reservoirs.
     The difference on the hydrocarbon-generating characteristics betweenⅠ-type and (Ⅲ-type andⅡ-type) hydrocarbon source rock maybe mainly from two reasons. First, the composition of uranium ore is very complex; some factors in it may counteract the effects of uranium on the hydrocarbon-generation at different temperatures. Second,Ⅰ-type hydrocarbon source rock is relatively rich in H toⅢ-type andⅡ-type hydrocarbon source rock; therefore, the effect of external source hydrogen on the hydrocarbon-generation ofⅠ-type hydrocarbon source rock is different fromⅢ-type andⅡ-type hydrocarbon source rock.
引文
1. A. Linares-Solano, I. Martin-Gullon, C. Salinas-Martinez de Lecea, et al. Activated carbons from bituminous coal:effect of mineral matter content [J]. Fuel,2000, (79):635-643.
    2. A. M. Cassou, J. Connan, M. Correia, et al某些铀矿化的有机质的化学研究和显微镜观察.国外铀矿地质.陈宏达译自"The Oklo Phenomenon", IAEA,195-205(1975).
    3. Ai M. Heterogeneous Catalysis and Fine Chemicals Ⅱ [M]. Amsterdam:Elsevier,1991.23-29.
    4. Alexander C, Masaru S, Kuniaki T. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments [J]. Organic Geochemistry.1997,26(7):483-489.
    5. Almon W R, Johns W D. Petroleum-forming reaction. The mechanisms and rate of clay catalyzed fatty acid decarboxylation [A]. Campos R, Goni J eds. Advances in organic geochemistry [C].1975. S. A., Madrid, National Adaro de Investigaciones Mineras,1977,157-172.
    6. Anna M. Cruse, Timothy W. Lyons. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales [J]. Chemical Geology,2004,206:319-345.
    7. Barbier-Baudry D, Bouazza A, Desmurs J R, et al. UraniumⅣ and Uranyle Salts, Efficient and Reusable Catalysts for A cylation of A romatic Compounds [J]. J Mol Catal A:Chem,2000,164(1-2): 195-204.
    8. Baskin D K. Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion [J]. AAPG Bull,1997,81(9):1437-1450.
    9. Bazhenova O K, Arefiev O A. Immature oil as the products of early catagenetic transformation of bacterial-alga origin matter [J]. Organic Geochemistry,1990,16 (1-3):307-311.
    10. Bell J L S, et al. Thermal decomposition of acetate.(?). Catalysis by mineral surfaces [J]. Geochim Cosmochim Acta,1994,5:4155-4177.
    11. Bement W O, Levey R A, Mango F D. The origin of oil generation as defined with a C7 chemistry parameter (2,4-DMP/2,3-DMP). Grimalt J O, Dorronsoro C. Organic Geochemistry:Developments and Application to Energy, Climate, Environment and Human History. A. I. G. O. A., San Sebastian, 1995.505-507.
    12. Birch F. Heat flow from radioactivity. Nuclear Geology. John Willey & Son. New York,1954, Chapter 5.
    13. Brian Kendall, Robert A. Creaser, Gwyneth W. Gordon, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia [J]. Geochimica et Cosmochimica Acta,2009,73:2534-2558.
    14. Brooks B T. Evidence of catalytic action in petroleum formation [J]. Ind Eng Chem,1952,44(11): 2570-2577.
    15. C. Manikyamba, Robert Kerrich, Ignacio Gonzalez-Alvarez, Ramavati Mathur, Tarun C. Khanna. 2008. Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity [J]. Precambrian Research,162: 424-440.
    16. Campbell T, Newton M A, Boyd V, et al. Effects of Precursor and Support Variation in the Genesis of Uranium Oxide Catalysts for CO Oxidation and Selective Reduction of NO:Synthesis and Characterization[J]. J Phys Chem B,2005,109:2885-2893.
    17. Chakhmakhchev A, Suzuki M, Takayama K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments [J]. Org Geochem,1997,26 (7):483-490.
    18. Charlou J L, et al. Methane anolmalies over the TAG hydrothermal field on the Mid-Atlantic Ridge[J]. J Mar Res,1987,45:461-472.
    19. Clegg H, Horsfield B, Wilkes H, et al. Effect of artificial maturation on carbazole distributions, as revealed by the hydrous pyrolysis of an organic-sulphur-rich source rock (Ghareb Formation, Jordan) [J]. Org Geochem,1998,29,1953-1960.
    20. Collin J, M aria L, Santos I. Uranium Iodides as Catalysts for Diels-Alder Reactions[J]. J Mol Catal A: Chem,2000,160(3-4):263-267.
    21. Collins M. J, et al. Sorption by mineral surfaces:Rebirth of the classical condensation pathway for kerogen formation [J]. Geochim Cosmochim Acta,1995,59:2387-2391.
    22. Condie, K.C. Chemical composition and evolution of the upper continental crust:Contrasting results from surface samples and shales [J]. Chem. Geol,1993,104,1-37.
    23. Corbet B, Albrecht P, Ourisson G. Photochemical and photornimetic fossil triterpenoids in sediments and petroleum [J]. J Am Chem Soc,1980,101:1171-1173.
    24. Cramer B, Faber E, Gerling P. Reaction Kinetics of Stable Carbon Isotopes in Natural Gas-Insights from Dry, Open System Pyrolvsis Experiments [J]. Energy & Fuels.2001,15(3):517-532.
    25. Curiale J A. A review of the occurrences and causes of migration-contamination in crude oil [J]. Organic Geochemistry,2002,33:1389-1400.
    26. Czochanska Z et al. Organic geochemistry of sediments in New Zealand, Part Ⅰ, A biomarker study of the petroleum seepage at the geothermal region of Waiotapu [J], Geochim. Cosmochim. Acta,1986, 50:507-515.
    27. Daniel J.K. Ross, R. Marc Bustin. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata:Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin [J]. Chemical Geology,2009, 260:1-19.
    28. David J. Mossman, Francois Gauthier-Lafaye, Simon E. Jackson. Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon [J]. Precambrian Research,2005,137:253-272.
    29. Domine F, Dessort D, Brevart, O. Towards a new method of geochemical kinetic modeling: implications for the stability of crude oils [J]. Organic Geochemistry,1998,28,597-612.
    30. E. Tannenbaum, E. Ruth, I R. Kaplan.矿物对干酪根热解产物甾烷和三萜烷的影响.张震之译,彭平安校.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报.贵州人民出版社,1986,407-421.
    31. Eglinton T I, Rowland S J, Curtis C D, et al. Kerogen-mineral relations at raised temperatures in the presence of water [J]. Org. Geochem,1986,10:1041-1052.
    32. Espitalie, J. et al. Role of mineral matrik in kerogen pyrolysis, influence on petroleum generation and migration [J]. AAPG. Bull.1980,64:59-66.
    33. Gamo T, et al. Methane anomalies in seawater over the Loihi submarine summit area, Hawaii [J]. Geochim Cosmochim Acta,1987,51:2857-2864.
    34. Giger W, Schaffner C. Unsaturates steroid hydrocarbon as indicatora of diagenesis in immature Monterey shales [J]. Naturewissenschaften,1981,68:37-39.
    35. Goldstein T P. Geocatalytic reaction in formation and maturation of petroleum [J]. AAPG Bull,1983, 67(1):152-159.
    36. Gozin M, et al. Activation of a carbon-carbon bond in solution by transition-metal insertion [J]. Nature, 1993,364:699-701.
    37. Grant M. Young, W.E.L. Minter, J.N. Theron. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,214:323-345.
    38. Greenfelder, B. S, Voge, H. H and Good, G. M. Catalytic and thermal Cracking of pure hydrocarbon [J]. E. Chem.1949,41:2573-2584.
    39. Haydn H. Murray. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview [J]. Applied Clay Science,2000,17:207-221.
    40. Helgeson H C, Knox A M, Owens C E, et al. Petroleum, oil field waters, and authigenic mineral assemblages:Are they in meta stable equilibrium in hydrocarbon reservoirs? [J]. Geochim Cosmochim Acta,1993,57:3295-3339.
    41. Heneghan C S, Hutchings G J, O'Leary S R, et al. A Temporal Analysis of Products Study of the Mechanism of VOC Catalytic Oxidation Using Uranium Oxide Catalysts [J]. Catal Today,1999,54(1): 3-12.
    42. Henning Dypvik, Nicholas B. Harris. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios [J]. Chemical Geology,2001,181:131-146.
    43. Hill, R.H., Tang, Y., Kaplan, I. R. Insights into oil cracking based on laboratory experiments. Organic Geochemistry,2003,34:1651-1672.
    44. Hoering T C. The stable isotopes of hydrogen in Precambrian organic matter [A]. Chemical Evolution of the Early Precambrian (Edited by Ponnamperuma C),81-87[C]. Academic Press, New York,1977.
    45. Hoering T C. Thermal reactions of kerogen with added water, heavy water, and pure organic substances [J]. Organic Geochemistry,1984,5(4):267-278.
    46. Holm N G Marine hydrothermal systems and the origin of life [M]. Dordrecht:Kluwer Academic Publishers,1992,242.
    47. Horita J, Berndt M E. A biogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science,1999,285:1055-1057.
    48. Horsfield B, Schenk H.J, Mills N, et al. Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir [J]. Organic Geochemistry,1992, 19(1-3):191-204.
    49. Huang D F, Li J C, Zhang D J, et al. Maturation sequence of Tertiary crude oils in the Qaidam Basin and its significance in petroleum resource assessment [J]. Journal of Southeast Asian Earth Sciences, 1991,5:3359-3366.
    50. Huang, W., Otten G.A. Cracking kinetics of crude oil and alkanes determined by diamond anvil
    cell-fluorescence spectroscopy pyrolysis:technique development and preliminary results [J]. Organic geochemistry,2001,32:817-830.
    51. Hunt J M. Petroleum geochemistry and geology [M]. W. H. Freeman and Company, San Francisco, 1979.
    52. Hunt J M. Petroleum Geochemistry and Geology,2nd edition [M]. San Francisco:W H Freeman and Co,1996.
    53. Huyck, H.L.O.,1990. When is a metalliferous black shale not a black shale? In:Grauch, R.I., Huyck, H.L.O. (Eds.), Metalliferous Black Shales, Related Ore, Deposits, Proceedings,1989 U.S.Working Group Meeting, International Geological Correlation Program, Project #254, U.S.GS. Circular 1058, 42-56.
    54. Jin Q, Xiong S, Lu P. Catalysis and hydrogenation:Volcanic activity and hydrocarbon generation in rift basins, eastern China [J]. Appl Geochem,1999,14 (5):547-558.
    55. Johns W D. Clay mineral catalysis and petroleum generation [J]. Ann Rev Earth Planet,1979,7: 183-198.
    56. Johns W D. The role of the clay minerals matrix in petroleum generation during burial diagenesis [J]. Dev Sedimental,1982,35:655-664.
    57. Johns, W. D. et al., Clay minerals and Petroleum-Forming reactions during burial and diagenesis [J]. AAPG Bull,1972,56:152-159.
    58. Kissin Y V. Catagenesis and composition of petroleum:Origin of n-alkanes and isoalkanes in petroleum [J]. Geochim Cosmochim Acta,1987,51:2445-2457.
    59. Klemme H D. Giant oil fields related to their geologic setting:A possible guide to exploration [J]. Bullition of Canadian Petroleum geology,1975,23 (1).
    60. Landais P, Michels R, Elie M. Are time and temperature the only constraints to the simulation of organic matter maturation? [J]. Org. Geochem,1994,22:617-630.
    61. Leif R N. Simoneit B R T. The role of alkenes produced during hydrous pyrolysis of a shale [J]. Organic Geochemistry,2000,31(11):1189-1208.
    62. Leventhal, J.S.,1993. Metals in black shales. In:Engel, M.H.,Macko, S.A. (Eds.), Organic Geochemistry, Principles and Applications. Plenum Press,581-592.
    63. Lewan M D, Winters J C, McDonald J H. Generation of oil-like pyrolyzates from organic-rich shales [J]. Science,1979,203:897-899.
    64. Lewan M D.1994. Assessing natural oil expulsion from source rocks by laboratory pyrolysis. In: Magoon L B, Dow W G, eds. The Petroleum System-from Source to Trap. AAPG Memoir,60: 201-210.
    65. Lewan M D. Evaluation of petroleum generation by hydrous pyrolysis experiment [J]. Phil Trans R Soc Lond A,1985,315:123-134.
    66. Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochimica et Cosmochimica Acta,1997,61(17):3691-3723.
    67. Li Maowen, Fowler M G, Obermajer M, et al. Geochemical characterization of Middle Devonian oils in NW Alberta, Canada:possible source and maturity effect on pyrrolic nitrogen compounds [J]. Org Geochem,1999,30:1039-1057.
    68. Li S Y, Guo S H, Tan X F. Characteristics and kinetics of catalytic degradation of immature kerogen in the presence of mineral and salt [J]. Organic Geochemistry,1998,29 (527):1431-1439.
    69. Li Sumei, Wang Tieguan, Zhang Aiyun. Effect of maturity on pyrrolic nitrogen compounds [J]. Scientia Geologica Sinica,2000,9(2):227-236.
    70. Li-Hung Lin, Pei-Ling Wang, Douglas Rumble, et al., Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome [J]. Science,2006,314:479-482.
    71. Lu Shan Tan, et al., Pyrolysis of kerogen in the absence and presence of montmorillonite-I. The generation, degredation and isomerization of Steranes and triterpanes at 200and 300℃ [J]. Org. Geochem.1989,14:491-499.
    72. Mackenzie, A. S. et al., Molecular Parameters of maturation in the Toarcian Shales, Paris Basin, France. I. Changes in the Configuration of acyclic isoprenoid alkanes, Steranes and triterpanes [J]. Geochim. Cosmochim. Acta,1980,44:1709-1721.
    73. Madhavaram H, Idriss H. Acetaldehyde Reactions over the Uranium Oxide System [J]. J Catal,2004, 224(2):358-369.
    74. Mango F D. The origin of light hydrocarbons [J]. Geochim Cosmochim Acta,2000,64:1265-1277.
    75. Mango F D. The origin of light hydrocarbons in petroleum:ring preference in the closure of carbocyclic rings [J]. Geochimica et Cosmochimica Acta,1994,58:895-901.
    76. Mango F D. Transition metal catalysis in the generation of petroleum and natural gas [J]. Geochim Cosmochim Acta,1992,56:553-555.
    77. Manikyamba, C., Kerrich, R. Geochemistry of Black shales from the Neoarchean Sandur Superterrane, India:First cycle volcanogenic sedimentary rocks in an intraoceanic arc-trench complex [J]. Geochim. Cosmochim. Acta.2006,70,4663-4679.
    78. Mastalerz M, Schimmelmann A. Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition [J]. Organic Geochemistry,2002,33(8):921-931.
    79. Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in the soils and sediments [J]. Chem Geol,1994,114:347-363.
    80. Moldowan J M. Advances in molecular geochemistry with application to oil and gas exploration [A]. In:CNPC, ed. AAPG-2004 Abstract [C],6th International Conference on Petroleum Geochemistry and Exploration in the Afro-Asian Region, Beijing,2004. Beijing:CNPC,2004.17-18.
    81. Monthioux M, Landais P, Monin J C. Comparison between natural and artificial maturation series of humic coal s from the Mahakam delta, Indonesia [J]. Org. Geochem.,1985,8:275-292.
    82. Mossman, D.J., Gauthier-Lafaye, F., Nagy, B., et al. Geochemistry of organic-rich black shales overlying the natural nuclear fission reactors of Oklo, Republic of Gabon [J]. Energy Sources,1998, 20,521-539.
    83. Nordstrom. D. K, et al., Geochemical thermodynamics [M]. The Benjamin/Cummings Publishing Co. Inc.1985.
    84. Orr, W L.1981. Comments on pyrolytic hydrocarbon yields in source rock evaluation [J]. Organic Geochemistry,3:775-787.
    85. P. Landais, J. Connan法国两个二叠系盆地:Cerlly/ Lodeve中铀与有机质的关系[J].国外铀矿地质.陈宏达摘译自《Bull. Cent. Rech. Explor.-Prod. ELF-Aquitaine》,1980,4(2):709-757.
    86. Pang Xiongqi, Li Maowen, Li Sumei, et al. Origin of crude oils in the Jinhu Depression of North Jiangsu-South Yellow Sea Basin, eastern China [J]. Organic Geochemistry,2003,34(4):553-573.
    87. Pass G, Littlewood A B, Burwell R L Jr. Reactions Between Hydrocarbons and Deuterium on Chromium Oxide Gel II. Isotopic Exchange of Alkanes [J]. J Am Chem Soc,1960,82:6281-6283.
    88. Paull C K, et al. Methane rich plumes on the Carolina continental rise, associations with gas hydrates [J]. Geology,1995,23:89-92.
    89. Peters K E, Moldowan J M. The biomarker guide:interpreting molecular fossils in petroleum and ancient sediments [M]. New Jersey:Prentice Hall, Englewood Cliffs,1993,110-265.
    90. Philippi G T.蛋白质——低分子量石油烃的一种原始母质[J].地质地球化学,1977,(12):438-443.
    91. Price L C. Metamorphic free-for-all [J]. Nature,1994,370:253-254.
    92. Rybach L, Muffler L J P(编),北京大学地质系地热研究室(译).地热系统——原理和典型地热系统分析.北京:地质出版社,1986.
    93. S. Lo Monaco, L. Lopez, H. Rojas, et al., Distribution of major and trace elements in La Luna Formation, Southwestern Venezuelan Basin [J]. Organic Geochemistry,2002,33:1593-1608.
    94. S. M. Golabi, J. B. Raoof. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives [J]. Journal of Electroanalytical Chemistry,1996,416:75-82.
    95. Sambasiva Rao, V.V., Sreenivas, B., Balaram, V., et al. The nature of the Archaean upper crust as revealed by the geochemistry of the Proterozoic shales of the Kaladgi basin, Karnataka, southern India [J]. Precambrian Res.1999,98,53-65.
    96. Sansone F J, et al. Adisorption of short-chain organic acids onto nearshore marine sediments [J]. Geochim Cosmochim Acta,1987,51:1889-1896.
    97. Schenk H J, Di Primio R, Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part I: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis [J]. Org Geochem,1997, 26(7-8):467-481.
    98. Schimmelmann A, Boudou J P, Lewan M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis [J]. Organic Geochemistry,2001,32(8): 1009-1018.
    99. Schimmelmann A, Lewan M D, Wintsch R P. D/H isotope rations of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types Ⅰ, Ⅱ, ⅡS, Ⅲ [J]. Geochimice et Cosmochimica Acta,1999,63(22):3751-3766.
    100. Seewald J S, Benitez-Nelson B C, Whelan J K. Laboratory and theoretical constraints on the generation and composition of natural gas [J]. Geochimica et Cosmochimica Acta,1998,62(9): 1599-1617.
    101. Seewald J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures:Constraints from mineral buffered laboratory experiments [J]. Geochim Cosmochim Acta,2001,65:1641-1644.
    102. Seewald J S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal control [J]. Nature,1994,370:285-287.
    103. Seewald J S. Organic-inorganic interaction in petroleum-producing sedimentary basins [J]. Nature, 2003,426 (20):327-333.
    104. Senanayake S D, Chong S V, Idriss H. The Reactions of Formaldehyde over the Surfaces of Uranium Oxides:A Comparative Study between Polycrystalline and Single Crystal Materials [J]. Catal Today, 2003,85(2-4):311-320.
    105. Sherwood B L, Westgate T D, et al. A biogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs [J]. Nature,2002,416:522-524.
    106. Simoneit B R T. Petroleum generation in submarine hydrothermal systems. an update [J]. Can Mineral, 1988,26:827-840.
    107. Siskin M, Katritzky A R. Reactivity of organic compounds in hot water:Geochemical and technological implications [J]. Science,1991,254:231-237.
    108. Snowdon L R. Oil from type Ⅲ organic matter:resinite revisited [J]. Org. Geochem.,1991,17(6): 743-747.
    109. Snowdon L R. Powell T G. Immature oil and condensate-modification of hydrocarbon generation model for terrestrial organic matter [J]. AAPG Bulletin,1982,66:775-788.
    110. Sykora R E, King J E, Illies A J, et al. Hydrothermal Synthesis, Structure, and Catalytic Properties of UO2Sb2O4 [J]. J Solid State Chem,2004,177(4-5):1717-1722.
    111. Tang Y, Jenden P D, Nigrini A, et al. Modeling early methane generation in coal [J]. Energy & Fuels, 1996,10(3):659-671.
    112. Tang Y, Perry J K, Jenden P D, et al., Mathematical modeling of stable carbon isotope ratios in nature gases [J]. Geochim. Cosmochim. Acta.,2000,64:2673-2687.
    113. Tang Y, Stauffer M. Multiple cold pyrolysis gas chromatography:a new technique for modeling hydrocarbon generation [J]. Organic Geochemistry,1994,22(3-5):863-872.
    114. Taylor S H, Heneghan C S, Hatchings G J, et al. The Activity and Mechanism of Uranium Oxide Catalysts for the Oxidative Destruction of Volatile Organic Compounds [J]. Catal Today,2000a,59 (3-4):249-259.
    115. Taylor S H, Hutchings G J, Palacios M L, et al. The Partial Oxidation of Propane to Formaldehyde Using Uranium Mixed Oxide Catalysts [J]. Catal Today,2003,81(2):171-178.
    116. Taylor S H, O'Leary S R. A Study of Uranium Oxide Based Catalysts for the Oxidative Destruction of Short Chain Alkanes [J]. Appl Catal, B,2000b,25(2-3):137-149.
    117. Thompson K F M, England W A, Fleet A J. From Petroleum Migration Geological Society [C]. Special Publication,59,191-205.
    118. Thompson K F M. Classification and thermal history of petroleum based on light hydrocarbons [J]. Geochim Cosmochem ASTA,1983,47(2):303-316.
    119. Thornton E C and Seyfried W E Jr. Reactivity of organic-rich sediment in seawater at 350℃,500bars, experimental and theoretical constraints and implications for the Guaymas Basin hydrothermal system. [J] Geochim Cosmochim Acta,1987,51:1997-2010.
    120. Tissot B P, Welte D H. Petroleum Formation and Occurrence-A New Approach to Oil and Gas Exploration [M]. Springer-Verlag, Berlin, Heidelberg, New York,1978.
    121. Tissot B P, Welte D H. Petroleum Formation and Occurrence. New York:Springer Verlag,1984.
    122. Tissot, B., Initial data on the mechanism and Kinetics of oil formation in Sediments; Inst. Fancais Petrole Ann. Rev. Combust. Lipuides,1969,24:470-501.
    123. Trendel J M, Lohmann F, Kinizinger J P et al. Identification of des-A-triterpenoid hydrocarbons occurring in surface sediments [J]. Tetrahedron,1989,45:4457-4470.
    124. Trent P. Vorlicek and George R. Helz. Catalysis by mineral surfaces:Implications for Mo geochemistry in anoxic environments [J]. Geochimica et Cosmochimica Acta,2002,66(21): 3679-3692.
    125. Tyson R V. Sedimentary organic Matter [M], Chapman & Hall,2-6 Boundary Row, London SE18HN, UK.1995.
    126. Vine, J.W., Tourtelot, E.B., Geochemistry of black shale deposits-a summary report [J]. Econ. Geol. 1977,65,253-272.
    127. Wayne G. Powell, Paul A. Johnston, Christopher J. Collom. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,201:249-268.
    128. Wedepohl K. H. Environmental influences on the chemical composition of shales and clays. In Physics and Chemistry of the Earth, vol.8 (eds. L. H. Ahrens, F. Press, S. K. Runcorn and H. C. Urey). Pergamon, Oxford, pp.305-333.1971.
    129. Wedepohl K. H. The composition of the upper Earth's crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In Metals and Their Compounds in the Environment (ed. E. Merian). VCH, Weinheim, pp.3-17.1991.
    130. Welhan J A. Origins of methane in hydrothermal systems [J]. Chem Geol,1988,71:183-198.
    131. Williams J A, Bjoroy M, Dolcater D L, et al. Biodegradation in South Texas Eocence oil-effects on aromatics and biomarkers [J]. Org Geochem,1986,10(3):451-462.
    132. Wilson G V. Bitumen deposits of Northwest Alabama [J]. APPG Stud. Geol.,1984,25:549-554.
    133. Wingert W S. GCMS Analysis of diamondoid hydrocarbons in SmackoNer petroleum [J]. Fuel,1992, 71:37-43.
    134. #12
    135. #12
    136.彼得斯K E,莫尔多万J M.生物标志物指南[M].姜乃煌译.北京:石油工业出版社,1996,160.
    137.陈建平,黄第藩,霍永录等.酒东盆地营尔凹陷油气生成和运移聚集[J].石油勘探与开发,1995,22(6):1-8.
    138.陈建渝,牛瑞卿,李水福,等.济阳坳陷孤南洼陷低熟油成藏特征[J].地球科学——中国地质大学学报,2002,27(4):435-440.
    139.陈军红,傅家漠,盛国英等.金刚烷化合物的结构特性及其地球化学意义[J].科学通报,1996,41(6):524-527.
    140.陈致林,李素娟,王忠.低-中成熟演化阶段芳烃成熟度指标的研究[J].沉积学报,1997,15(2):
    192-197.
    141.陈中红,查明,吴孔友,等.柴达木盆地东部侏罗系煤系烃源岩生烃潜力评价及地球化学特征[J].吉林大学学报(地球科学版),2006,36(S):24-28.
    142.程克明等.陆相原油及凝析油的轻烃单体组成特征及地质意义[J].石油勘探与开发,1987,1,34-43.
    143.丛津生,薛伟,赵新强,等.硬脂酸锌催化非光气合成甲苯二氨基甲酸甲酯[J].河北工业大学学报,2001,30(1):32-36.
    144.戴鸿鸣,王顺玉,王海清,等.四川盆地寒武系-震旦系含气系统成藏特征及有利勘探区块[J].石油勘探与开发,1999,26(5):16-20.
    145.戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势和天然气地学理论重要进展[J].天然气地球科学,2005,16(2):127-142.
    146.段毅,王传远,郑朝阳,等.柴达木盆地西部尕斯库勒油田原油地球化学特征及成因[J].矿物岩石,2006,26(1):86-91.
    147.段毅,张辉,郑朝阳,等.柴达木盆地原油成因研究[J].沉积学报,2004,22(S):61-65.
    148.冯子辉,霍秋立,刘世妍.延吉盆地白垩系未熟油的生成与特征[J].石油勘探与开发,1998,25(6):8-11.
    149.傅成铭,邱林.吐哈盆地十红滩铀矿床构造特征及其与铀矿化时空关系研究[J].新疆地质,2006,24(2):192-196.
    150.傅家谟,盛国英,江继纲.膏岩沉积盆地形成的未成熟石油[J].石油与天然气地质,1985,6(2):150-158.
    151.高剑峰,陆建军,赖鸣远,等.岩石样品中微量元素的高分辨率等离子质谱分析[J].南京大学学报(自然科学版),2003,39(6):844-850.
    152.高瑞华,戴维林,杨新丽,等.新型铀基催化剂的研究进展[J].石油化工,2005,34(8):791-796.
    153.高志龙,何生,陈建渝.合溥盆地生油岩有机地球化学特征[J].地球科学——中国地质大学学报,1995,20(1):101-106.
    154.格林别尔格И В.关于石油形成的化学变化方面的几个问题[A].波尔费里也夫ВБ主编,石油生成与运移问题讨论集[C].1955.周家珩,译.北京:科学出版社,1962,192-206.
    155.韩永林,王海红,陈志华,等.耿湾-史家湾地区长6段微量元素地球化学特征及古盐度分析[J].岩性油气藏.2007,19(4):20-26.
    156.何家雄,陈伟煌,钟启祥.莺歌海盆地泥底辟带浅层天然气成因及烃源探讨[J].天然气地球科学,1994,5(6):15-27.
    157.何文祥,王培荣,潘贤庄,等.莺-琼盆地原油成熟度研究[J].天然气地球科学,2004,15(4):387-390.
    158.侯读杰,王铁冠,孔庆云,等.松辽盆地朝长地区原油的地球化学特征[J].石油大学学报(自然科学版),1999,23(2):27-30.
    159.侯读杰等.低熟油富硫大分子早期降解生烃机制[J].江汉石油学院学报,1996,18(1):30-36.
    160.黄第藩,李晋超.陆相沉积中的未熟石油及其意义[J].石油学报,1987:8(1):1-9.
    161.黄第藩,秦匡宗,王铁冠,等.煤成油的形成与成烃机理[M].北京:石油工业出版社,1995,1-82.
    162.黄第藩,张大江,王培荣,等.中国未成熟石油成因机制和成藏条件[M].北京:石油工业出版社,2003,145-17.
    163.黄第藩.成烃理论的发展——(Ⅰ)未熟油及有机质成烃演化模式[J].地球科学进展,1996,11(4):327-335.
    164.霍秋立,冯子辉.三肇凹陷低成熟原油地球化学特征及成因探讨[J].大庆石油地质与开发,1995,14(4):6-11.
    165.蒋启贵,王勤,承秋泉,等.不同组分烃源岩生烃动力学特征浅析[J].石油实验地质,2005,27(5):512-518.
    166.金强,万从礼,周方喜.金湖凹陷闵桥玄武岩中微量元素向烃源岩的迁移及其地质意义[J].中国石油大学学报,2006,30(3):1-5.
    167.金强.柴达木盆地西部第三系蒸发岩微量元素组成及其地球化学特征[J].石油大学学报,2003,27(2):1-5.
    168.金强.裂谷盆地生油层中火成岩及其矿物与有机质的相互作用油气生成的催化加氢作用研究进展及展望[J].地球科学进展,1998,13(6):542-545.
    169.孔祥星,张林晔,徐思煌.济阳坳陷车西洼陷油-源对比及运移规律探讨[J].石油实验地质,2005,27(2):188-193.
    170.黎彤,倪守斌.地球和地壳的化学元素丰度[M].北京:地质出版社,1990:44-51.
    171.李素梅,李雪,张庆红,等.牛庄洼陷第三系古沉积环境及其控油气作用[J].石油与天然气地质,2003,24(3):269-273.
    172.李素梅,庞雄奇,金之均,等.济阳坳陷牛庄洼陷南斜坡原油成熟度浅析[J].地质地球化学,2001a,19(4):50-56.
    173.李素梅,庞雄奇,金之钧,等.沉积物中NSO杂环芳烃的分布特征及其地球化学意义[J].地球化学,2001b,30(4):347-352.
    174.李素梅,庞雄奇,金之钧,等.苏北金湖凹陷混合原油的地质地球化学特征[J].石油大学学报(自然科学版),2002,26(1):11-15.
    175.刘宝泉,郭树之,国建英,等.加温时间、加水量及样品颗粒大小对模拟实验结果的影响[A].第七届全国有机地球化学学术会议论文摘要汇编[C].大庆,1998,161-162.
    176.刘池洋,等.盆地多种能源矿产共存富集成藏(矿)研究进展[M].北京:科学出版社,2005,1-16.
    177.刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.
    178.刘全有,刘文汇,王晓锋,等.不同烃源岩实验评价方法的对比[J].石油实验地质,2007,29(1):
    88-94.
    179.刘旺勋.未成熟油气的生成[J].西安地质学院学报,1995,17(3):83-88.
    180.刘文汇,黄第藩,熊传武,等.成烃理论的发展及国外未熟-低熟油气的分布与研究现状[J].天然气地球科学,1999,10(1-2):1-22.
    181.刘文汇,王万春.烃类的有机(生物)与无机(非生物)来源——油气成因理论思考之二[J].矿物岩石地球化学通报,2000,19(3):179-186.
    182.刘志武,周立发,何明喜.周口拗陷石炭-二叠系油气资源及其成藏条件[J].地球科学与环境学报,2008,30(3):271-277.
    183.卢红选,孟自芳,李斌,等.含铀物质对褐煤有机质热模拟生烃的影响[J].新疆石油地质,2007,28(6):718-720.
    184.卢红选,孟自芳,李斌,等.含铀物质对泥岩有机质热模拟生烃产物的影响[J].沉积学报,2008,26(2):324-329.
    185.卢双舫,刘晓艳,付晓泰,等.未熟-低熟油生成机理的化学动力学研究及其初步应用[J].沉积学报,2001,19(1):130-135.
    186.卢双舫,钟宁宁,薛海涛,等.碳酸盐岩有机质二次生烃的化学动力学研究及其意义[J].中国科学(D辑:地球科学),2007,37(2):178-184.
    187.罗渝然,等.化学键能数据手册[M].北京:科学出版社,2005.
    188.马立元,程克明,熊英,等.酒西坳陷部分原油生物标记物特征异常分析[J].沉积学报,2006,24(4):590-595.
    189.马立元,张晓宝,胡勇,等.柴达木盆地西部坳陷区混源气判识[J].石油与天然气地质,2004,25(6):625-628.
    190.梅水泉,周续业,李小朗,等.诸广-九嶷地区富铀矿的水成叠加作用初探[J].铀矿地质,1998,14(1):7-11.
    191.苗建宇,周立发,张宏福,等.新疆北部中二叠统烃源岩地球化学特征与沉积环境[J].地质学报,2004,78(4):534-541.
    192.苗建宇.国家973项目“多种能源矿产共存成藏(矿)机理与富集分布规律”阶段成果,2005,2007.
    193.庞雄奇,李素梅,黎茂稳,等.八面河地区“未熟-低熟油”成因探讨[J].沉积学报,2001,19(4):586-591.
    194.秦建中,王静,郭爱明.冀中坳陷未熟油研究及勘探前景[J].沉积学报,1997,15(2):105-108.
    195.盛国英,傅家谟,江继刚,等.原油与生油岩中脱羟基维生素E的发现及意义[J].中国科学,1987,B(4):423-428.
    196.史继扬,向明菊,屈定创,等.氨基酸、脂肪酸对过渡带气、低熟原油形成的意义[J].沉积学报,1995,15(2):84-88.
    197.宋宁,林春明,陈丽萍.未熟-成熟油混合后生物标志物参数的变化特征[J].新疆石油地质,2004,25(3):267-270.
    198.宋一涛,廖永胜,王忠.潍北凹陷孔店组烃源岩评价及油源分析[J].石油与天然气地质,2005,26(4):487-493.
    199.田辉.塔里木盆地地台盆区天然气生成动力学模拟与成藏研究[D].广州:中国科学院广州地球化学研究所,2006.
    200.妥进才,王随继.油气形成过程中的催化反应[J].天然气地球科学,1995,6(2):37-40.
    201.王大锐,高建昆,罗怀章,等.云南景谷盆地低熟石油地球化学特征及意义[J].石油学报,2001,22(5):11-15.
    202.王德义.铀(238)在催化中的应用及防护[J].现代化工,1985(1):59,45.
    203.王培荣,周光甲.生物标志物地球化学.石油地质家培训讲义,江汉石油学院分析测试中心,2002
    204.王社教,胡圣标,汪集.塔里木盆地沉积层放射性生热的热效应及其意义[J].石油勘探与开发,1999,26(5):36-38.
    205.王铁冠,钟宁宁,侯读杰,等.低熟油气形成机理与分布[M].北京:石油工业出版社,1995b.
    206.王铁冠,钟宁宁,侯读杰,等.细菌在板桥凹陷生烃机制中的作用[J].中国科学(B辑),1995a,25(8):883-889.
    207.王文军,宋宁,姜乃煌,等.未熟油与成熟油的混源实验、混源理论图版及其应用[J].石油勘探与开发,1999,26(4):34-37.
    208.王先彬,妥进才,李振西,等.天然气成因理论探索——拓宽领域、寻找新资源[J].天然气地球科学,2003,14(1):30-34.
    209.王先彬,妥进才,闫宏,等.深层石油天然气形成机制[A].2001年全国沉积学大会摘要论文集[C].武汉:中国地质大学,2001,163-164.
    210.王先彬,妥进才,周世新,等.地球深部有机质质演化与油气资源[J].石油勘探与开发,2005,32(4):159-164.
    211.王晓峰,刘文汇,徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展,2006,16(10):1275-1281.
    212.王志林,李百祥.酒东盆地地温场特征及肃州地区地热开发可行性分析[J].甘肃地质,2007,16(1-2):61-66.
    213.魏春生.无机组分在油气生成过程中可能具有的潜在作用——地球化学研究带来的某些新启示[J].矿物岩石地球化学通报,1996,15(1):54-56.
    214.吴德云,张国防.盐湖相有机质成烃模拟实验研究[J].地球化学,1994,23(增刊):173-181.
    215.吴庆余,盛国英,傅家谟.不同热模拟条件下蓝藻甾烷化合物的对比研究[J].中国科学,1992,22(8):883-888.
    216.吴庆余,宋一涛,盛国英,等.微生物成烃的分子有机地球化学研究[J].中国科学基金,1997,(2):103.
    217.夏燕青,周凤英,彭德华,等.柴达木盆地未成熟-低成熟油形成实验模拟[J].天然气地球科学,
    1999,10(1-2):30-36..
    218.熊永强,耿安松,王云鹏,等.2001.干酪根二次生烃动力学模拟实验研究[J].中国科学D辑:地球科学,31(4):315-320.
    219.徐永昌,刘文汇,沈平.含油气盆地油气同位素地球化学研究概述[J].沉积学报,2001,19(2):161-168.
    220.徐永昌,吴仁铭,沈平,等,沉积岩中铀、钍、钾与区域地温状态的关系[A],见石油地球科学学会论文集[C],1982,科学出版社.
    221.杨晓敏,廖林,姜晓健.山东省孤南洼陷低熟油特征及成藏模式[J].地质科技情报,2004,23(1):69-72.
    222.张景廉.地质催化反应在成烃作用过程中的意义[J].天然气地球科学,1992,2:17-23.
    223.张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64.
    224.张永刚,蔡进功,许卫平,等.泥质烃源岩中有机质富集机制[M].北京:石油工业出版社.26-40.2007.
    225.张云献,彭渤莹,刘海燕.东濮凹陷北部地区低成熟原油生物标志物特征[J].断块油气田,1999,6(2):14-16.
    226.张在龙,劳永新,王培新.盐水对未熟生油岩中脂肪酸催化脱羧生烃的影响[J].石油大学学报(自然科学版),2000,24(6):57-59.
    227.赵全民,刘喜林,范传军,等.舞阳、襄城盐湖盆地未熟-低熟油成藏模式[J].地质科技情报,2002,21(4):23-26.
    228.郑淑惠,郑斯成,莫志超.稳定同位素地球化学分析[M].北京:北京大学出版社,1986:p133.
    229.钟宁宁,王铁冠,熊波,等.煤系低熟油形成机制及其意义[J].江汉石油学院学报,1995,17(1):1-7.
    230.周光甲,陈致林,李经荣,等.成油藻对油气生成的贡献研究[A].见:王启军编,第四届全国有机地球化学会议论文集[C].武汉:中国地质大学出版社,1990:25-37.
    231.周世新,邹红亮,解启来,等.沉积盆地油气形成过程中有机-无机相互作用[J].天然气地球科学,2006,17(1):42-47.
    232.朱光有,金强,张水昌,等.东营凹陷湖相烃源岩TOC与Sr的正相关性及原因[J].地学前缘,2005,12(4):551-560.
    233.祖小京,妥进才,张明峰,等.矿物在油气形成过程中的作用[J].沉积学报,2007,25(2):298-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700