用户名: 密码: 验证码:
森林火灾燃烧过程中的火行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林火灾具有突发性、随机性和任意性,有一个逐步形成、发生、发展的过程。当一般森林火灾受到特殊火场环境的综合作用时,会有很大的随机性和不可抗拒性。森林火灾又是世界上救助较为困难的自然灾害之一,扑救森林火灾具有极高的危险性。森林火灾变化无常,几乎没有两次相同的火灾。
     火灾发生后,预测、预报林火蔓延速度、能量释放、火强度以及扑火难易程度对森林火灾的扑救,配备人力和物力等具有很重要的意义。研究林火行为有助于及时掌握林火的发生发展,准确的掌握在何时何地在何种条件下会发生林火,有助于事先做好充分准备,有助于做出正确的决策,有助于更加有效、安全地进行扑火,避免事故的发生。但火行为的研究与发展比较缓慢,因为林火的复杂性和林火的试验比较难进行。国外的研究人员仍在改进现有的林火蔓延模型,并应用到火险等级预报、林火发生预报系统中。
     冰雪灾害后,在实地调查了湖南省受冰雪灾害影响的林分及新发生的火烧迹地,设置了野外样地,采集了样品。测定、分析了含水率、可燃物载量等因子,计算了火蔓延速度等火行为参数。结果表明:冰雪灾害后森林中有效可燃物负荷量在短期内成倍地增长,可燃物厚度增加,连续性变强,含水率逐渐降低。在调查的样地中,最低载量为12.23t/hm2,最高达到了50.26t/hm2,有5个样地超过20t/hm2。火环境发生了改变,火行为变得非常复杂:林火蔓延速度增强,面积蔓延速度、周长蔓延速度分别为111.67~972.71 m2/min,427~790m/(24)h;火强度更高,为675~7 500 kW/m,平均超过3 500 kW/m,具备了大火的特征;火烧非常彻底,可燃物的消耗量超过85%;释放的能量大,对树木的损害也非常大,火烈度超过95%。
     收集气象等资料,实地调查大兴安岭地下火火烧迹地,设置野外样地,并采取对照地,各采集样品。测定地下可燃物的含水率、载量、热值、点着温度、灰分含量等因子,从火烧迹地形状、燃烧深度、地下火的分类角度来分析地下火的火行为。结果表明:大兴安岭地下火的燃烧与可燃物干燥程度以及气象条件密切相关,旱情越严重,地下火越多;在3~4月份,平均气温在O℃以下,即使土壤封冻,也可能发生地下火;小叶樟草甸的生产力比较高,在腐烂、分解后不断地沉积,形成腐殖质或者泥炭,构成了地下可燃物。半分解物和腐殖质的点着温度比较高,分别为405℃,525℃,但即使达到这些点着温度,火焰也不是很明显,同时也很难得到具体的热值指数,原因都可能和灰分含量过高有关。受可燃物的厚度、坚实度及含水率的影响,地下火的火行为非常复杂,火强度只能采取燃烧深度近似计算,燃烧深度为15~30 cm;火烧迹地形状为鸡爪形插花状或不规则形插花状;以燃烧对象对地下火分类,可近似分为弱地下火和强地下火。
     根据野外调查结果,基于森林亚类型,从森林可燃物的角度,以主要伴生树种或下层植被为基础,根据云南主要针叶林分布区的自然条件与林分结构特点以及可燃物的各种特征对主要针叶林可燃物进行划分。依据云南主要针叶林的生态习性、可燃物的配置结构等,把可燃物类型简化为:灌木-云南松林,草类-云南松林;灌木-思茅松,草类-思茅松;灌木-华山松,草类-华山松等六个主要类型。
     测定云南主要针叶林云南松林、思茅松林和华山松林的可燃物特征参数,包括载量、表面积体积比、可燃物床厚度、死可燃物熄灭含水率、死可燃物热值和活可燃物的热值。建立6个可燃物模型,将其输入到BehavePlus模型,评估各可燃物类型潜在的火行为。结果表明,云南主要针叶林潜在的火行为十分剧烈,其中,灌木-思茅松林的火行为最强,火焰长度为2~16m、火线强度5 000~12 0000 kw/m、单位面积热量为20 000~27 000 kJ/m2、最大蔓延速率为10~270 m/min,而草类-华山松的火行为最弱,火焰长度为0.8~4.5m、火线强度为300~6 500kw/m、单位面积热量为12 000~18 000kJ/m2、最大蔓延速率为1~25m/min。这和可燃物的类型有关,也和所处的生境条件、立地有关。
     通过火烧迹地调查,可燃物的分析和飞火距离的模拟计算来研究云南松林的飞火,结果表明云南松的球果具有非常好的结构特征,在条件具备的时候,如气象条件,地形合适,很容易引起飞火。飞火移动的距离可用相关的公式来大概估算,估算的飞火距离在0.68km~1.87km,与2006年昆明安宁“3·29”大火产生的飞火距离大致相符合。
Forest fires have their characteristics such as paroxysmal, stochastic and random, and they have steps from shaping, erupting, and extinguishing. At the same time, forest fire are one of the most difficult natural disasters, it is very dangerous to fight with. When facing special environment, the fires will be random and fastness. The same fires can’t exist in the world are due to uncertainty and different losses.
     During fire, it is necessary to forecast and predict spread rate, energy releasing, fire intensity and degree of difficulty to fight with, in order to match human resource and equipments. Fire behaviors’research is helpful to master forest fire dynamics, prepare for fire occurring, well decision-making and fight effectively and safely. But the processes of research on fire behaviors are slowly because of fire behaviors’complex and experiments’difficulty.
     After snow and ice disasters, stands of forest and new burned areas in Hunan province were surveyed by setting field plots. Moisture content and fuel load were measured by sampling in order to calculate fire behaviors such as rate of spread et al. The results shown fuel load increased instantly, fuel thickness enhanced, fuel continuity swelled and moisture content decreased due to shrubs and herbs died. Load of fuel variated from 12.23t/hm2 to 50.26t/hm2, five sites exceeded 20t/hm2. With fire environment changing sharply, fire behaviors become complex and bring on fire fighters’fatalness. Fire square and perimeter rates of spread are 111.67~972.71 m2/min and 427~790 m/(24)h respectively, while fire intensity is 675~7 500kw/m, the average exceed 3 500 kw/m, with characteristics of conflagration. These fires consumed over 85 percents fuel, and released huge energy. Fire severity index exceed 85%.
     Meteorological information were collected from local weather bureau, fire sites and comparing plots in Daxing’anling were surveyed by setting field samples. At he same time, samples in these plots were gathered. Moisture content, fuel load, heat capacity, ignition point and ash content were measured in laboratory. Fire behaviors were analyzed from fire site shapes, combustion depth and ground fire classification. The results showed correlation between combustibility with dryness of fuels and meteorological conditions. In northeastern China, between March and April, even ambient temperatures are below zero and soil freezing, ground fires will occur. The production of Deyeuxia angustifolia meadow is so high that after rotting, decomposing, and depositing, they can easily change into ground fuels. Because of high ash content, it is hard to measure the heat capacity, while ignition points can be obtained. Ignition point of semi-decomposed layer and humus are 405℃and 525℃respectively. Due to thickness, compactness and moisture content, ground fire behaviors are complicated.
     In view of ecological character, fuel framework, based on forest sub-type and forest fuel characters, by field surveying forest structures and natural conditions, main conifers of Yunnan province can be simplified into 6 types, including Pinus yunnanensis with shrub, Pinus yunnanensis with grasses, Pinus kesiya var. langbianensis with shrub, Pinus kesiya var. langbianensis with grasses, Pinus armandii with shrub and Pinus armandii with grasses.
     By field surveying and lab experiments, indexes of 6 types of fuel characters including fuel loading, surface area-to-volume ratio, fuel bed depth, dead fuel extinction moisture content, heat of combustion of dead fuel and live fuel can be input BehavePlus model. Using outputs of indexes such as flame length, fireline intensity, heat per unit area, and surface rate of spread (maximum), potential fire behaviors can be evaluated. The results shown that fire behaviors of conifers complex. Fire behaviors of Pinus kesiya var. langbianensis -with shrub are strongest, its flame length, fireline intensity, heat per unit area and surface rate of spread (maximum) is 2~16m, 5 000~12 0000 kw/m, 20 000~27 000 kJ/m2 and 10~270 m/min respectively, while Pinus armandii -with grasses’are least, its flame length, fireline intensity, heat per unit area and surface rate of spread (maximum) is 0.8~4.5 m, 300~6 500 kw/m, 12 000~18 000 kJ/m2 and 1~25 m/min, respectively. The differences are ascribed to natural conditions, ecological habit and fuel characters.
     By burned sites surveying, fuel experiments, and modify spotting distance, the results shown that cones of Pinus yunnanensis have well structures for spotting, if condition are appropriate, such as weather and topography, they can easily spread. The spotting distance can be estimated from formula. The spotting distance of Anning fire site is between 1.24 km and 3.34 km, inosculate to actual distance.
引文
[1]骆介禹.森林燃烧能量学.哈尔滨:东北林业大学出版社,1992,61~122
    [2]朴金波.林火行为研究.哈尔滨:黑龙江科学技术出版社,2002,98~126
    [3]付长超,刘吉平,刘志明.近60年东北地区气候变化时空分异规律的研究.干旱区资源与环境,2009,23(12):60~65
    [4]赵春雨,任国玉,张运福等.近50年东北地区的气候变化事实检测分析.干旱区资源与环境,2009,23(7):25~30
    [5]张艳平,胡海清.大兴安岭气候变化及其对林火发生的影响.东北林业大学学报,2008,36(7):29-31
    [6]康永祥,张景群,李登武.秦岭中段北坡主要植被类型潜在火行为划分.东北林业大学学报,1999,17(5):20~24
    [7]张家来,曾祥福,胡仁华等.湖北主要森林可燃物类型及潜在火行为研究.华中农业大学学报,2002,21(6):550~554
    [8]袁宏永,范维澄,王清安.由航空影像及DTM测量林火行为的数学模型与方法.火灾科学,1995,4(2):31~37
    [9]田晓瑞.俄罗斯林火研究的发展与国际合作.森林防火,2001,1:43~44
    [10]田晓瑞,舒立福.全球林火国际合作.世界林业研究,2001,14(4):19~24
    [11] K. C. Ryan, Dynamic Interactions between Forest Structure and Fire Behavior in Boreal Ecosystems, Silva Fennica, 2002, 36(1): 13~39
    [12]舒立福,王明玉,田晓瑞等.关于森林燃烧火行为特征参数的计算与表述.林业科学,2004,40(3):179~183
    [13] R. Weise, G. S. Biging A qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects. Forest Science, 1997, 43 (2): 170~180.
    [14]唐晓燕,孟宪宇,易浩若.林火蔓延模型及蔓延模拟的研究进展.北京林业大学学报,2002,24(1):87~91
    [15]李建微,陈崇成,於其之等.虚拟森林景观中林火蔓延模型及三维可视化表达.应用生态学报,2005,16(5):838~842
    [16]陈崇成,李建微,唐丽玉等.林火蔓延的计算机模拟与可视化研究进展.林业科学,2005,41(5):155~162
    [17] R.E. Keane, J. L.Garner et al. Development of the Input Data Layers for the FARSITE Fire Growth Model for the Selway–Bitterroot Wilderness Complex, USA, USDA Forest Service General Technical Report RMRS-GTR-3, 1998: 1~121
    [18]朱霁平,王海晖,范维澄.森林地表火火行为预测预报系统.工程热物理学报,1999,18(2):256~260
    [19]高宝嘉,张桂娟,周国娜等.承德县人工针叶林地表枯死可燃物参数估测及潜在地表火行为评价.林业科学,2009,45(10):163~167
    [20] M. D. Luis, M. J. Baeza, et al Fuel Characteristics and Fire Behaviour in Mature Mediterranean Gorse Shrubland, International Journal of Wildland, 2004, 13: 79~87
    [21]张景群,康永祥,吴宽让等.秦岭森林潜在火行为数量分类及划分指标研究.林业科学,2001,37(1):101~106
    [22]张敏,刘东明.长白山林区落叶松林可燃物模型及火行为状况.自然灾害学报,2007,16(2):127~132
    [23]魏云敏,鞠琳.森林可燃物载量研究综述.森林防火,2006,4:18~21
    [24]张景群,王得祥.可燃物含水率与林火行为的关系.森林防火,1992,3:9~11
    [25] D. Arseneault, Impact of Fire Behavior on Postfire Forest Development in a Homogeneous Boreal Landscape, Canadian journal of forest research, 2001, 31(8): 1367~1374
    [26] C. L. Raymend and D. L. Peterson, Fuel Treatments Alter the Effects of Wildfire in a Mixed-evergreen Forest, Oregon, USA, Canadian journal of forest research, 2005, 35(12): 2981~2995
    [27]姚树人.火场形势预测的研究.森林防火,2007,2:37~38
    [28]舒立福,田晓瑞,徐忠忱.森林可燃物可持续管理技术理论与研究.火灾科学,1999,8(4):18~24
    [29] D. A. Schmidt, A. H. Taylor, C. N. Skinner. The Influence of Fuels Treatment and Landscape Arrangement on simulated Fire behavior, Southern Cascade range, California, Forest Ecology and Management, 2008, 255: 3170~3184
    [30]朱霁平,刘小平,林其钊等.变坡度情况下森林地表上坡火行为若干特征实验研究.火灾科学,1999,8(2):63~71
    [31]钟茂华,范维澄,王清安.林火蔓延突变形态的模拟实验研究.自然科学进展,2000,10(4):350~353
    [32] B. Mark, B. Jim. Fire Behavior in High Elevation Timber, Fire Management Today, 2003, 63 (4): 56~ 62
    [33] B. W. Butler, R. A. Bartlette, et al The South Canyon Fire revisited Lessons in Fire Behavior, FireManagement Today, 2003, 63(4): 77~84
    [34] V. D. Xavier, P. L. Paulo Fire Spread in Canyon, International Journal of Wildland Fire, 2004, 13: 253~274
    [35]舒立福,寇晓军.森林特殊火行为格局的卫星遥感研究.火灾科学,2001,10(3):140~143
    [36] L. N. Kobzir, J. R. McBride, Wildfire Burn Patterns and Riparian Vegetation Response along two Northern Sierra Nevada Streams, Forest Ecology and Management, 2006, 222: 254~265
    [37] A. M Paulo and C. A. Oureiro, Fire Behaviour and Severity in a Maritime Pine Stand under differing Fuel Conditions, Ann. For. Sci. 2004, 61: 537~544
    [38] J.S.Crosby Vertical Wind Currents and Fire Behavior, Fire Management Today, 2004, 64(1): 24~26
    [39] W.C Bessie and E.A Johnson The relative Importance of Fuels and Weather on Fire Behavior in Subalpine Forests, Ecology, 1995, 76(3): 747~762
    [40]王明玉,舒立福,王秋华等.中国南方冰雪灾害对森林火灾火发生短期影响分析—以湖南为例.林业科学,2008,44(11):64~68
    [41]王明玉,舒立福,赵凤君等.中国南方冰雪灾害对森林可燃物影响的数量化分析—以湖南为例.林业科学,2008,44(11):69~74
    [42] S. L. Stephens and J. J. Moghaddas, Experimental Fuel Treatment Impacts on Forest Structure, potential Fire Behavior, and predicted Tree Mortality in a California mixed Conifer Forest, Forest Ecology and Management, 2005, 215: 21~36
    [43]瓦连季克,马特维耶夫,索夫罗诺夫.大面积森林火灾.曲宝恩,贾琪功,王宪章等译.哈尔滨:黑龙江省出版社,1984,7~40
    [44]张思玉.夏季森林火灾现状及其趋势.防灾科技学院学报,2008,10(3):1~5
    [45]文定元,舒立福.林火理论知识.哈尔滨:东北林业大学出版社,1999,21~27
    [46] J. M Varner Smoldering Fire in long-unburned Longleaf Pine Forests: Linking Fuels with Fire Effects, [Ph. D. Dissertation submitted to the University of Florida] 2005, 44~54
    [47] R. Guillermo, C. Natalie et al, The Severity of Smouldering Peat Fires and Damage to the Forest Soil, Catena 2008, 74: 304~309
    [48]舒立福,王明玉,田晓瑞等.大兴安岭地下火形成火环境研究.自然灾害学报,2003,12(4):62~67
    [49]李忠琦,张淑云,李华等.黑龙江省呼中林区地下火发生的气象条件分析.森林防火,2004,1:23~24
    [50]路长.阴燃与森林地下火特性研究.中国科学技术大学硕士学位论文,2000,1~10
    [51] J. Reardon, R. Hungerford et al, Factors Affecting sustained Smouldering in Organic Soils from Pocosin and Pond Pine Woodland Wetland, International Journal of Wildland, 2007, 16: 107~118
    [52]王志成,刘绍卓.夏季森林地下火分类及火行为特点.林业科技,2004,29(4):26~28
    [53]王志成.夏季森林地下火扑救技术及机具.林业机械与木工设备,2004,32(5):45~46
    [54]王耀华,张忠信,李建民等.森林地下火的危害及防治措施.林业科技,2000,25(1):37~38
    [55]单延龙,舒立福,李华等.森林可燃物与火行为.哈尔滨:东北林业大学出版社,2007, 7~92
    [56] A. Anthenien, S. D. Tse and A. C. Fernandez-Pello On the Trajectories of Embers initially Elevated or Lofted by Small Scale Ground Fire Plumes in High Winds, Fire Safety Journal, 2006, 41(5): 349~363
    [57]金可参,居恩德.林火管理知识问答.哈尔滨:黑龙江科学技术出版社,1990,25~41
    [58] T. Paysen, M. Narog Fire Impacts on Soil Nutrients and Soil Errosion in Mediterranean Pine Forest Plantation, Catena, 1993, 20 (1 /2): 129~139
    [59]林其钊,朱霁平,张慧波.森林大火中飞火行为的研究.自然灾害学报,1998,7(3):32~38
    [60]林其钊.林火飞过程度模拟计算.计算力学学报,1999,16(3):302~307
    [61]钟占荣,周建军,邹样辉等.山地林火蔓延模型的研究.火灾科学,2001,10(2):83~87
    [62]周建军,黄平,张昱春.有关林火行为的一些实验研究.火灾科学,1998,7(2):1~7
    [63] J. K. Barnett. Contrast Modeling and Predicting Fire Behavior, Fire Management Today, 2005, 65(3): 19~22
    [64] E. A. Johnson, K. Miyanishi, Forest Fires: Behavior and Ecological Effects, Academic Press, London, 2001, 151~165
    [65]王明玉,李涛,任云卯等.森林火行为与特殊火行为研究进展.世界林业研究,2009,22(2):45~49
    [66] R C. Rothermel. A Mathematical Model for Predicting Fire Spreading in Wildland Fuels, USDA, Forest service research INT-115, 1972, 64~125
    [67] C. Craig, C. Phillip, T. Philip, T. Louis, W et al Fire in Forestry, VolumeⅠForest Fire Behavior and Effects. New York, John Wiley & sons.1983, 97~121
    [68]毛贤敏.风和地形对林火蔓延速度的作用.应用气象学报,1993,4(1):100~104
    [69]朱敏,冯仲科,胡林.对两个森林地表火蔓延改进模型的研究.北京林业大学学报,2005,27(增刊2):138~141
    [70]杨景标,马晓茜,林莉等.基于传热分析的林火蔓延特性研究.火灾科学,2002,11(1):35~42
    [71]毛学刚,范文义,李明泽等.基于GIS模型的林火蔓延计算机仿真.东北林业大学学报,2008,36(9):38~41
    [72]黄作维.基于GIS和RS的林火行为预测研究.西北林学院学报,2006,21(3):94~97
    [73]肖化顺,张贵,蔡学理.基于模糊数据挖掘技术的林火行为预测研究.南京林业大学学报(自然科学版),2006,30(4):97~100
    [74]武乐清.林火蔓延模型及其动态模拟初探.林业资源管理,2003,5:69~71
    [75]张贵,刘大鹏.基于温度场动态变化的林火蔓延模型研究.湖南师范大学自然科学学报,2007,30(2):125~129
    [76]曲智林,胡海清.基于气象因子的森林火灾面积预测模型.应用生态学报,2007,18(12):2705~2709
    [77]梅志雄,徐颂军,王佳嫪.基于DRNN和ARIMA模型的森林火灾时空综合预测方法.林业科学,2009,45(8):101~106
    [78]李勇,冯仲科,王维等.基于遥感图像的林火蔓延模型的研建.北京林业大学学报,2007,29(增刊2):93~97
    [79]秦向东,路长,林其钊.计算机图形技术在林火蔓延模拟计算中的应用.计算机辅助设计与图形学学报,2005,17(12):2619~2624
    [80]胡林,冯仲科,聂玉藻.基于VLBP神经网络的林火预测研究.林业科学,2006,42(增刊1):155~158
    [81]刘军万,李舟军,文定元.林火三维蔓延的数学模型和计算机仿真.林业科技,2006,31(4):30~34
    [82]王惠,周汝良,庄娇艳等.林火蔓延模型研究及应用开发.济南大学学报(自然科学版),2008,22(3):296~301
    [83]朱启疆,戎太宗,孙睿等.林火扩展的分形模拟案例研究.中国科学(E辑),2000,30(增刊):106~112
    [84] G. D. Richards. The Mathematical Modelling and Computer Simulation of Wildland Fire Perimeter Growth over a 3-Dimensional Surface, International Journal of Wildland Fire 1999, 9(3): 213~221
    [85] A. P. Dimitrakopoulos Mediterranean Fuel Models and Potential Fire Behaviour in Greece, International Journal of Wildland, 2002, 11:127~130
    [86] M. Jayalaxshmi, B Andrea, Assessing Fire Potential in a Brazilian Savanna Nature Reserve, Biotropica, 2005, 37(3): 439~451
    [87] J.S. Glitzenstein. D.R Streng et al Fuels and Fire Behavior in Chipped and Unchipped Plots: Implications for Land Management near the Wildland/Urban Interface, Forest Ecology and Management, 2006, 236:18~29
    [88] W. Page, M. J.Jenkins, Predicted Fire Behavior in Selected Mountain Pine Beetle-infested Lodgepole Pine, Forest science, 2007, 53(6):662~674
    [89]金文斌,张志,吴丽萍等.Landis模型用于林火生态格局的研究设想.中国林业,2006,1:33~34
    [90] D J. Mladenoff, LANDIS and Forest Landscape Models, Ecological Modelling, 2004, (180) 7~19
    [91] J. Yang, H. S. He, et al, A Hierarchical Fire Frequency Model to Simulate Temporal Patterns of Fire Regimes in LANDIS, Ecological Modelling, 2004, (180):119 ~133
    [92] Z.B. Shang, H S. He, et al, Modeling the long-Term Effects of Fire Suppression on Central Hardwood Forests in Missouri Ozarks, using LANDIS, Forest Ecology and Management, 2007, (242):776~790
    [93] R. M. Scheller, S V Tuyl, et al, Simulation of Forest Change in the New Jersey Pine Barrens under Current and pre-Colonial Conditions, Forest Ecology and Management, 2008, (255):1489~1500
    [94]胡远满,徐崇刚,常禹等.空间直观景观模型LANDIS在大兴安岭呼中林区的应用.生态学报,2004,24(9):1846~1856
    [95]刘志华,常禹,贺红士等.模拟不同森林可燃物处理对大兴安岭潜在林火状况的影响.生态学杂志,2009,28(8):1462~1469
    [96]徐崇刚,胡远满,常禹等.空间直观景观模型LANDISⅠ.运行机制.应用生态学报,2004,15(5)∶837~844
    [97] S. R. Ryu, J. Q. Chen, et al. Relating Surface Fire Spread to Landscape Structure: An Application of FARSITE in a Managed Forest Landscape. Landscape and Urban Planning, 2007, 83: 275~283
    [98] C. Yohay, P. Shlomit, et al. Assessing Fire Risk using Monte Carlo Simulations of Fire Spread, Forest Ecology and Management, 2009, 257: 370~377
    [99] M. Muge, S. C. Popescu, et al, Sensitivity Analysis of Fire Behavior Modeling with LIDAR-Derived Surface Fuel Maps, Forest Ecology and Management, 2008, 256: 289~294
    [100]段旭,陶云.2008年1月中国南方地区罕见低温冰雪天气的气候特征及其成因.云南大学学报(自然科学版),2009,31(5):477~483
    [101]陶诗言,卫捷.2008年1月我国南方严重冰雪灾害过程分析.气候与环境研究,2008,13(4):337~350
    [102] A. G. Rhoads, S. P. Hamburg, T. J. Fahey, et al. Effects of an Intense Ice Storm on the Structure of a Northern Hardwood Forest, Canadian Journal of Forest Research, 2002, 32: 1763~1775
    [103] C. W. Lafon, Forest Disturbance by Ice Storms in Quercus Forests of the Southern AppalachianMountains USA, Ecoscience, 2006, 13: 30~43
    [104]王旭,黄世能,周光益等.冰雪灾害对杨东山十二度水自然保护区栲类林建群种的影响.林业科学,45(9):41-47
    [105]李秀芬,朱教君.森林的风/雪灾害研究综述.生态学报,2005,25(1):148~157
    [106] E. Valinger and J. Fridman, Models to Assess the Risk of Snow and Wind, Damage in Pine, Spruce, and Birch Forests in Sweden, Environmental Management, 1999, (24)2:209~217
    [107] A. Jalkanen, U. Mattila, Logistic Regression Models for Wind and Snow Damage in Northern Finland Based on the National Forest Inventory Data, Forest Ecology and Management, 2000, 135:315~330
    [108]M.-L. Pa¨a¨talo. Risk of Snow Damage in Unmanaged and Managed Stands of Scots Pine, Norway Spruce and Birch. Scand. J. For. Res. 2000, 15: 530~541
    [109] D R. Miller, R Dunham, et al, A Demonstrator of Models for Assessing Wind, Snow and Fire Damage to Forests using the WWW, Forest Ecology and Management, 2000 (135):355~363
    [110]张思玉.2008年中国南方冰雪灾害对夏季森林火灾的影响.防灾科技学院学报,2008,10(2):11~14
    [111]杨湘桃,薛生国.湖南森林资源地理特征研究.经济地理,2001,21(6):736~739
    [112]肖兴威.中国森林资源图集.北京:中国林业出版社,2005,104~106
    [113]刘兰芳,谭青山,陈涛等.湖南省2008年雨雪冰冻灾害形成机理分析.水土保持研究,2009,16(3):264~267
    [114]彭险峰,何友军.湖南省森林冰雪灾害调查.湖南林业科技,2008,35(3):48~50
    [115]林其钊,舒立福.林火概论.合肥:中国科学技术大学出版社,2003,88~132
    [116] J.J. Zhu and X F Li, Factors Affecting the Snow and Wind Induced Damage of a Montane Secondary Forest in Northeastern China, Silva Fennica, 2006, 40(1):37~51
    [117]邵全琴,黄麟,刘纪远等.2008年春季中国南方冰雪冻害林木物理折损典型样带分析.山地学报,2008,27(2):177~187
    [118]谭辉,朱教君,康宏樟.林窗干扰研究.生态学杂志,2007,26(4):587~594
    [119]昝启杰,李鸣光.林窗及其在森林动态中的作用.植物学通报,1997,14(S1):18~24
    [120] B. Pérez and J.M. Moreno, Methods for Quantifying Fire Severity in Shrubland Fires, Plant Ecology, 1998, 139: 91~101
    [121]郑焕能,温广玉,柴一新.林火灾变阈值.火灾科学,1999,8(3):1~5
    [122]袁春明,文定元.马尾松人工林可燃物负荷量和烧损量的动态预测.东北林业大学学报,2000,28(6):24~27
    [123]单延龙,张敏,于永波.森林可燃物研究现状及发展趋势.北华大学学报(自然科学版),2004,5(30):264~269
    [124]刘志忠,肖功武,李志芳等.森林可燃物管理研究.哈尔滨:东北林业大学出版社,1994,45~68
    [125]欧育湘.实用阻燃技术.北京:化学工业出版社,2002,66~102
    [126]孙力,安刚.北太平洋海温异常对东北地区旱涝的影响.气象学报,2003,61(3):346~353
    [127]魏凤英,张婷.东北地区干旱强度频率分布特征及其环流背景.自然灾害学报,2009,18(3):1~7
    [128]林益明,黎中宝,陈奕源等.福建华安竹园一些竹类植物叶的热值研究.植物学通报,2001,18 (3):356~362
    [129]林益明,向平,林鹏.深圳福田几种红树植物繁殖体与不同发育阶段叶片热值研究.海洋科学,2004,28(2):43~48
    [130] W. H. Frandson, The Influence of Moisture and Mineral Soil on the Combustion Limits of Smoldering Forest Duff, Can. J. Res, 1987, 17:1540~1544
    [131] J. Adler and D. M. Herbert, Smouildering front Shapes for steady Propagation in a stratified Medium. IMA Journal of Applied Mathematics 2004, 69:375~390
    [132] W H. Frandsen, Heat Evolved from Smoldering Peat, International. Journal of Wildland Fire, 1991, 1(3):197~204
    [133]赵伟涛,陈海翔,周建军等.森林泥炭的热解特性及热解动力学.物理化学学报,2009,25(9):1756~1762
    [134]郑焕能,葛学林.中国东北林火.哈尔滨:东北林业大学出版社,2000,88~101
    [135]周以良.中国大兴安岭植被.北京:科学出版社,1991,65~121
    [136] A. Youngblood, C. S. Wright, R. D. Ottmar, et al, Changes in Fuelbed Characteristics and Resulting Fire Potentials after Fuel Reduction Treatments in dry Forests of the Blue Mountains, Northeastern Oregon, Forest Ecology and Management, 2008 (255):3151~3169
    [137]郑焕能.森林防火.哈尔滨:东北林业大学出版社,1991,8~9
    [138]胡海清,彭徐剑,刘雪峰等.大兴安岭几种主要可燃物类型地被物灰分含量比较分析.东北林业大学学报,2009,37(7):55 ~57
    [139]董广生,葛学林,金晓钟等.林火学.哈尔滨:东北林业大学出版社,1997,35~76
    [140]王贤祥.森林火行为的分级或分类标准的研究.火灾科学,1995,4(1):12~18
    [141] E. A. Johnson, Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, Cambridge University Press, New York, 1992, 114~129
    [142] J.K. Smith, W.C. Fischer, Fire Ecology of the Forest Habitat Types of Northern Idaho USDA Forest Service, General Technical Report INT-363. 1997, 132~142
    [143]云南森林编写委员会.云南森林.昆明:云南科技出版社,北京:中国林业出版社,1986,69~175
    [144]王栋.中国森林火险调查与区划.北京:中国林业出版社,2000,221~233
    [145]李世友,王秋华,李本飞等.滇中10种木本植物鲜叶枝易燃性比较.西南林学院学报,2006,26(1):56~58
    [146]李世友,李小宁,李生红等.3种针叶树种树皮的阻燃性研究.浙江林学院学报.2007,24(2):192~197
    [147]李世友,陈宏刚,罗文彪等.昆明地区主要造林树种鲜枝叶的燃烧性研究.西北林学院学报,2008,23(5):148~151
    [148]李世友,张桥蓉,马爱丽等.6种针叶树活枝叶在森林防火戒严期的燃烧性比较.安徽农业大学学报,2009,36(2):178~183
    [149]武警云南省森林总队.云南高山林区灭火作战研究,2004,22~36
    [150]文定元.森林防火基础知识.北京:中国林业出版社,1995,73~90
    [151]韩恩贤,薄颖生,韩刚.陕西针叶林下可燃物分布状况调查研究.陕西林业科技,2003,(2):38~39
    [152]王晓丽,牛树奎,马钦彦等.北京地区主要针叶林易燃可燃物垂直分布.北京林业大学学报,2009,31(2):31~35
    [153]唐荣逸,周汝良.云南松可燃物载量预测模型研究.山东林业科技,2007,(1):1~4
    [154]李世友,张桥蓉,蔡德稳等.滇中云南松和华山松林林窗与林缘主要易燃植物的调查.安徽农业科学,2009,37(6):2489~2490
    [155]马志贵,王金锡.林火生态与计划烧除.成都:四川民族出版社,1993,1~25
    [156]王金锡,马志贵,牟克华等.云南松森林计划烧除试验研究之一.森林防火,1993,(1):9~13
    [157]谢玉敏,李军伟.树种燃烧性的研究.森林防火,1999,(3):38~39
    [158]李世友,袁俊杰,王文元等.集体林权制度改革后森林消防面临的新形势及对策.林业调查规划,2008,33(3):118~120
    [159]李世友,刘会龙,张凯等.预防华山松树冠火的最低修枝高度探讨.华中农业大学学报,2009,28(3):361~364
    [160]李世友,马爱丽,朱丽等.华山松树干耐火性初步研究.西北林学院学报,2009,24(2):105~107
    [161] J. H. Scott, R E. Burgan, Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model, General Technical Report RMRS-GTR-153, 2005, 1~5
    [162]单延龙,宋刚,周晶.估算可燃物表面积体积比的一种新方法—水浸法.森林防火,1999,(1):45~46
    [163]单延龙,刘乃安,胡海清等.凉水自然保护区主要可燃物类型凋落物层的含水率,东北林业大学学报,2005,33(5):41~43
    [164] J K Brown, Handbook for Inventorying downed Woody Material, Gen Tech, Rep, INT-16, Ogden, UT: USDA, Forest Service, Intermountain Forest and Range Experiment Station, 1974, 69~74
    [165] F. A. Albini, Estimating Wildfire Behavior and Effects, USDA For, Serv .Gen. Tech. Rep. INT-30, 1976, 92~162
    [166] P L Andrews and R C Rothermel, Charts for Interpreting Wildland Fire Behavior Characteristics. USDA For.Serv.Res.Pap.INT-131, Inernt, For and Range Exp, Stn, Ogden, Utah, 1982:1~24
    [167]秦剑,解明恩,刘瑜等.云南气象灾害总论.北京:气象出版社,2000,118~124
    [168] Y Bergeron, D. Gagnon, Age Structure of red Pine (Pinus resinosa) at its Northern Limit in Quebec, Can J For Res, 1987, 17:129~137
    [169] Y Bergeron, J. Brisson, Fire Regime in red Pine Stands at the Northern Limit of the Species range, Ecol, 1990, 71(4):1352~364
    [170]郑焕能,居恩德.林火管理.哈尔滨:东北林业大学出版社,1988,12~65
    [171] J.R. Weir, Probability of Spot Fires during Prescribed Burns.Fire Management Today, 2004, 64 (2): 24~26
    [172]戴兴安,周汝良,李小川等.森林燃烧中的特殊火行为研究进展.世界林业研究,2008,21(1):47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700