用户名: 密码: 验证码:
云南干热河谷膏桐人工林生态系统碳库特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变暖,森林碳循环成为当前研究的热点,而人工林土壤碳循环也是全球碳循环的重要组成部分之一,本研究对全面了解我国人工林土壤有机碳的动态具有重要的意义。本文采用固定样地监测与室内实验相结合的方法,对云南红河流域干热河谷3种不同密度膏桐人工林以及膏桐人工林地、香蕉地和草地3种不同土地利用方式下不同类型土壤活性有机碳含量、土壤碳密度、土壤活性有机碳和矿质氮的时间和空间变化动态、膏桐人工林生物量、生产力、不同器官含碳率、碳分配特征进行了研究,结果表明:
     (1)3种不同密度膏桐人工林,随着土层厚度的增加,土壤活性有机碳含量逐渐减小。土壤总有机碳(TOC)和易氧化碳(ROC)含量大小顺序均为:株行距1.5m×2m>株行距3m×3m>株行距2m×3m;土壤水溶性有机碳(WSOC)大小顺序为:株行距1.5m×2m>株行距2m×3m>株行距3m×3m;土壤微生物生物量碳(MBC)大小顺序为:株行距3m×3m>株行距1.5m×2m>株行距2m×3m。全氮、总有机碳和土壤温度是影响土壤活性有机碳含量的主要因子,适当密植可以提高土壤有机碳的含量。
     (2)3种不同土地利用方式下土壤TOC、WSOC、MBC和ROC含量变化较复杂。0~10cm土层TOC、WSOC和ROC含量以膏桐人工林地最大,香蕉地次之,草地最小;10~25cm和25~40cm土层TOC、WSOC和ROC含量以香蕉地最大,膏桐人工林地次之,草地最小;而MBC含量在0~10cm、10~25cm和25~40cm土层均为香蕉地最大,草地次之,膏桐人工林地最小,土壤总有机碳、全磷是影响土壤活性有机碳含量的主要因子。
     (3)在3种不同密度膏桐人工林地和3种不同土地利用方式下,土壤活性有机碳含量表现都具有明显的季节变化特征,即WSOC和ROC平均含量均为干季>雨季,而MBC平均含量均为雨季>干季。
     (4)土壤矿质氮(NO3--N和NH4+-N)含量在3种不同密度膏桐人工林地和3种不同土地利用方式下均表现出明显的空间和季节变化特征。随着土层厚度的增加,硝态氮和铵态氮含量逐渐减小;膏桐林地和草地土壤硝态氮雨季初期含量最大,干季平均含量>雨季平均含量;膏桐林地和草地土壤铵态氮含量在干季末期最小,在雨季最大,雨季平均含量>干季平均含量;香蕉地受人为干扰较大,硝态氮和铵态氮含量季节变化不明显。
     (5)建立了膏桐人工林生物量估算模型Y=25.005(D2H)0.952,根据样方调查资料,估算出膏桐人工林生态系统的生物量为26.025t·hm-2,年平均净初级生产力为10.827t·hm-2·a-1,林分碳密度为5.54t·hm-2。
     (6)膏桐人工林不同器官含碳率大小顺序为:果实(56.74%)>干枝(45.87%)>根(45.12%)>叶(45.12%),全株平均含碳率为47.27%;土壤表层0~10cm有机碳含量和碳密度分别为16.61g·kg-1和22.76t·hm-2。
The dynamics and characteristics of soil labile organic carbon(MBC,WSO,ROC),mineral nitrogen and the biomass of Jatropha curcas were studied in 3 different densities Jatropha curcas plantation and 3 different land use types(Jatropha curcas plantation, banana plantation and grassland)by the fixed plots combined with laboratory mtthods in dry-hot valley of Honghe river region,Yunnan Province,China. The results showed as follows.
     (1)The sequence of TOC and ROC conten were planting spacing 1.5m×2m>3m×3m>2m×3m; The sequence of WSOC content were planting spacing 1.5m×2m>2m×3m>3m×3m; The sequence of MBC content were planting spacing 3m×3m>1.5m×2m>2m×3m; The soil labile organic carbon content decreased with the increasing of soil depth in the same planting density. The correlationship analysis showed that, soil total nitrogen ,total organic carbon and soil temperature is the main ecological facrors. Three factrors have an effect on soil labile organic carobn content and accumulative contribution rates of these 3 factors accounted for 93.67%.
     (2)The variation of TOC、WSOC、MBC and ROC content in different soil depth were inconsistent at 3 different land use types. The sequence of TOC、WSOC and ROCcontent at 0~10cm soil depth were Jatropha curcas plantation >banana plantation>grassland. The sequence of TOC、WSOC and ROCcontent at 10~25cm and 25~40cm soil depth were banana plantation > Jatropha curcas plantation >grassland; The sequence of MBC content at 0~10cm,10~25cm and 25~40cm soil depth were banana plantation > grassland > Jatropha curcas plantation; the correlationship analysis showed that, soil organic carbon and total phosphorus were the main ecological factors and there has an effect on soil organic carbon content and the accumulative contribution rates of these 2 factors accounted for81.27%.
     (3)There was a same variation characteristic of the soil labile organic carbon content at 3 different planting spacing Jatropha curcas plantations and 3 different land use types in dry-hot valley. The mean content of WSOC and ROC in the dry season were higher than that in the rain season; the mean content of MBC in the rain season was higher than that in the dry season;
     (4)There was a obvious temporal and seasonal variation characteristic of soil mineral nitrogen(NO3--N and NH4+-N)content at 3 different planting spacing Jatropha curcas plantations and 3 ifferent land use types. NO3--N and NH4+-N content decreased with the soil depth increasing. Soil NO3--N content was the highest at the beginning of rain season and mean content in the dry season was higher than that in the rain season at the grassland. The NH4+-N content was the lowest in the end of dry season and the highest in the rain season and mean content in the rain season was higher than that in the dry season at the Jatropha curcas plantations and grassland.
     (5)The biomass Regression model Y=25.005(D2H)0.952 was set up and applied. The biomass and annual net primary productivity were 26.025t·hm-2 and 10.827t·hm-2·a-1 of Jatropha curcas ,respectively.
     (6)The sequence of carbon ratio in different organs of Jatropha curcas were fruit(56.74%)>stem(45.87%)>root(45.12%)>leaf(45.12%) and the whole tree carbon ratio was 47.27%. the soil organic carbon content and carbon density were 16.61g·kg-1 and 22.76t·hm-2,respectively.
引文
白军红,崔保山,李晓文,等.向海芦苇沼泽湿地土壤铵态氮含量的季节动态变化[J].草业学报,2006,15(1):117-119.
    白军红邓伟欧阳华,等.向海芦苇沼泽湿地土壤硝态氮含量的季节动态变化[J].农业系统科学与综合研究,2005,21(2):85-92.
    曹成有,蒋德明,朱丽辉,等.山竹岩黄蓍固沙群落对土壤养分及生物活性的改良效应[J].应用生态学报,2007,18(8):1739-1744.
    陈宝明.施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响[J].生态环境,2006,15(3):630-632.
    陈果.刘岳燕.姚槐应.一种测定淹水土壤中微生物生物量碳的方法:液氯熏蒸浸提-水浴法[J] .土壤学报,2006,43(6):981-988.
    陈国潮,何振立,姚槐应.红壤微生物量的季节性变化研究[J].浙江大学学报(农业与生命科学版),1999,25(4):387-388.
    陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173-181.
    陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学,2003.
    陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309.
    戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志,2007,26(7):1021-1026.
    党承林,吴兆录.季风常绿杂木林短刺栲群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107.
    樊后保,李燕燕,黄玉梓.马尾松—细叶青冈混交林的生物量及其生产力结构[J].中南林学院学报,2005,25(6):38-41.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J],生态学报,1996,16(5):497-508.
    方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学,2001,43(9):967-973.方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报.2000,24(5):513-517.
    方运霆,莫江明,SandraBrown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J],中南林学院学报,2002,22(1):1-6.
    冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    傅华,陈亚明,王彦荣,等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报,2004,24(3):469-476.
    韩成卫,李忠佩,刘丽,等.去除溶解性有机质对红壤水稻土碳氮矿化的影响[J]..中国农业科学,2007,40(1):107-113.
    韩玉萍,杨万勤.云山森林土壤速效N的分布规律[J].西南师范大学学报,1998,23(2):212-217.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤1997,(2):61-68.
    黄昌勇主编.土壤学[M].北京:中国农业出版社.2000.
    黄从德,张建,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    黄黎英,曹建华,周莉等.不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J].生态环境,2007,16(4):1282-1288.
    黄绍敏,皇甫湘荣,宝德俊,等.土壤中硝态氮含量的影响因素研究[J].农业环境保护,2001,20(5):351-354.
    贾宇平,苏志珠,段建南.黄土高原沟壑区小流域土壤有机碳空间变异[J].水土保持学报,2004,18(1):31-34.
    姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响[J].应用生态学报,2005,16(2)∶2 53-256.
    蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究,1995,8(3):314-321.
    焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
    李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    李娜,黄从德.川西亚高山针叶林生物量遥感估算模型研究[J].林业资源管理,2008,(3):100-104.
    李明峰,董云社,齐玉春,耿元波,温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地,2005,27(l):l-6.
    李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].气象出版社,2002.
    李仁刚,王淑敏,王克武,等.冬小麦对土壤氮和肥料氮的吸收及氮素平衡研究土壤通报,198213(4):122-124.
    李淑芬,俞元春,何晟,南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123
    李文华,邓坤纹,李飞.长白山主要生态系统生物量的研究[J].中国科学院长白山森林生态系统定位研究站.森林生态系统研究,1980,试刊:34-50.
    李晓清,高捍东,李荣伟,等.金沙江干热河谷希蒙德木造林技术及幼林生物量分配[J].西南林学院学报,2007,27(2):23-26.
    李新华,刘景双,孙晓军,等.三江平原小叶章湿地土壤硫的组成与垂直分布[J].生态与农村环境学报2009,25(2):34-38.
    李月梅,曹广民,徐仁海.植物群落生物量和有机碳对高寒草甸土地利用变化的响应[J].草业科学,2007,24(6):4-8.
    李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量[J].农业环境保护,2001,(6):385-389.
    李子敬,袁玉欣,刘炳响,等.铁尾矿区沙棘林生物量和生产力的研究[J].西北林学院学报,2008,23(3):16-20.
    林滨,陶澍,曹军,等.伊春河流域土壤与沉积物中水溶性有机质含量与吸着系数[J].中国环境科学,1996,16(4):307-310.
    林大仪主编.土壤学实验指导[M].北京:中国林业出版社,2004.
    林伟宏,陈克明,刘照光.川西南干热河谷赤按人工林生物量和营养元素含量[J].山地研究,1994,12(4):251-255.
    林心雄.中国土壤有机质状况及其管理[A].见:沈善敏主编.中国土壤肥力[C].北京:中国农业出版社,1998,111-153.
    刘芳.小麦吸收肥料氮和土壤氮的探讨[J].核农学报,1994,15(2):81-84.
    刘国伟,田奇卓,王树亮,等.土壤肥力和灌水组合对小麦植株-土壤系统氮素平衡的影响[J].中国农学通报,2007,23(5):477-482.
    刘纪远,王绍强,陈镜明,刘明亮,庄大方.1990~2000年中国土壤碳氮蓄积量与土地利用变化[J].2004,59(4):483-496
    刘茜.不同龄组马尾松人工林生物量及生产力的研究[J].中南林学院学报,1996,16(4):47-51.
    刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46.
    刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8.
    吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.
    马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24,96-100.
    毛青兵.天台山七子花群落下土壤微生物生物量的季节动态[J].生物学杂志,2003,20(3):16-18.
    莫江明.郁梦德.孔国辉,等.鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究[J].植物生态学报,1997,21(4):335-341.
    聂道平,徐德应,王兵.全球碳循环与森林关系的研究—问题与进展[J].世界林业研究,1997,(5):33-40.
    潘根兴.中国土坡有机碳和无机碳库量研究[J].科技通报,1999,(5):330-332.
    潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):12-14.
    彭文英,张科利,杨勤科.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发.2006,(25):94-99.
    朴河春,洪业汤,袁芷云,等.贵州喀斯特地区土壤中微生物量碳的季节性变化[J].环境科学学报,2000,20(1):106-110.
    朴世龙,方精云,陈安平.我国不同季节陆地植被NPP对气候变化的响应[J].植物学报,2003,45(3):269-275.
    屈明华.温带森林土壤有效态氮营养生境演变特征[D].东北林业大学,2005.
    邵月红,潘剑君,孙波.长期施用有机肥对瘠薄红壤有效碳库及碳库管理指数的影响[J].土壤通报,2005,36(2):177-180.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    沈文清,刘允芬,马钦彦,等.千烟洲人工针叶林碳素分布、碳贮量及碳汇功能研究[J].林业实用技术,2006,(8):5-8.
    史作民,刘世荣,程瑞梅.内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征[J].林业科学,2004,40(2):21-27.
    石维,同延安,赵营,等.灌溉施肥对冬小麦土壤氮素盈亏的影响[J].麦类作物学报,2006,26(2):93-97.
    苏永中,赵哈林.土壤有机碳储量影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    孙克刚,张学斌,吴政卿,等.长期施肥对不同类型土壤中作物产量及土壤剖面硝态氮累积的影响[J].华北农学报,2001,16(3):105-109.
    孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究—以我国东北地区为例[J].土壤,2003,(3):236-241.
    孙维侠,史学正,于东升,等.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报, 2004, 41(2): 298-300.
    孙维侠,史学正,于东升,等.基于1∶1 00万土壤空间数据库的有机碳储量估算研究——以中国东北三省为例[J].地理科学,2004,24(5):568~572.
    唐树梅,漆智平.土壤水含量与氮矿化的关系[J].热带作物研究,1997,4:54-60.
    田大伦,盘宏华,康文星,等.第二代杉木人工林生物量的研究[J].中南林学院学报,1998,18(3):11-16.
    王国兵,阮宏华,唐燕飞,等,北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,19(1):37-42.
    王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报,2002,8(1):29-34.
    王连峰,潘根兴,石盛莉等.庐山6种树木立地土壤溶液铝形态与溶解有机碳变化[J].应用生态学报,2003,14(10):1602-1606.
    王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
    王清奎,汪思龙,冯宗炜.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报,2006,28(5):1-6.
    王淑平,周广胜,高素华,等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报2003,27(6)780-785
    王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,(4):349-356.
    王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,(5):533-544.
    王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,(4):390-400.
    王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,(5):797-802.
    吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5)657-664.
    吴仲民,李意德.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341-344.
    汪伟,杨玉盛,陈光水等.罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J].生态学杂志,2008,27(6):924-928.
    王小利,郭胜利,马玉红,等.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J].应用生态学报2007,18(6):1281-1285.
    王艳杰,邹国元,付桦,等.土壤氮素矿化研究进展[J].中国农学通报,2005,21(10):203-208.
    汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,(5):29-35.
    武天云,Schoenau J J,李凤民.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4)∶7 17-722.
    夏汉平,余清发,张德强.鼎湖山3种不同林型下的土壤酸度和养分含量差异及其季节动态变化特性[J].生态学报,1997,17(6):645-653.
    肖冬梅,王森,王跃思,等.阔叶红松林土壤CO2,NO2排放和CH4吸收的研究[J].林业研究,2004,15(2):107-112.
    肖复明,范少辉,,汪思龙,等.毛竹、杉木人工林生态系统碳贮量及其分配特征[J].生态学报,2007,27(7):2794-2801.
    解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):5-43.
    许翠清,陈立新,颜永强.温带森林土壤铵态氮、硝态氮季节动态特征[J].东北林业大学学报,2008,36(10):19-21.
    胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报(自然科学版),2001,29(3):35-40.
    徐秋芳.植被土壤活性有机碳库德研究[D].博士学位论文.浙江:浙江大学,2003.
    徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):84-87.
    杨金艳.东北天然次生林生态系统地下碳动态研究[D].东北林业大学,2005.
    杨丽霞,潘剑君.土壤活性有机碳碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    杨万勤,张健,胡庭兴,等.森林土壤生态学[M].成都:四川科学技术出版社,2006:413–416.
    杨万勤.钟章成.陶建平.何维明缙云山森林土壤速效N、P、K时空特征研究[J].生态学报,2001(8):1285-1289.
    杨万勤,韩玉萍,钟章成.缙云山森林土壤速效氮的分布特征及其与物种多样性的关系研究[J].乐山师范学院学报,1998,1:41-44.
    俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系土壤[J].2003,35(5):424-428.
    袁颖红,李辉信,黄欠如,等.长期施肥对红壤性水稻土团聚体活性有机碳的影响[J],土壤,2008,40(2):237-242.
    曾觉民.可大力发展的生物质能源植物-膏桐[J].云南林业,2006,27(2):21-22.
    章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系土壤与环境[J].2002,11(2):140~143
    张家武,廖利平,李锦芳.马尾松火力楠混交林凋落物动态及其对土壤养分的影响.应用生态报,199,4(4):359-363.
    张雷,严红.土壤有机碳储量及影响其分解因素[J].东北农业大学学报,2004,35(6):744-748.
    张修玉,管东生,黎华寿,等.广州典型森林土壤有机碳库分配特征[J].中山大学学报(自然科学版),2009,48(5):137-142.
    张永丽,于振文.灌水量对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报,2007,21(5):155-158.
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,(5):518-522
    朱连奇,朱小立,李秀霞.土壤有机碳研究进展[J].河南大学学报,2006,(3):72-75.
    Acea M J. Carballas T. Principal components analysis of the soil microbial populations of humid zone of Galicia (Spain)[J].1990,22:749-759.
    Adams T M,Adams S N. The effect of liming and soil pH on carbon and nitrogen contained in the soil biomass[J].Journal of Agricultural Science,1983,101:553-558.
    Amato ,Ladd J N,Ellington A, et al. Decomposition of plant material in Australian soils .IV. Decomposition in sit of14C labeled and15N labeled legume and wheat materials in a range of southern Australian soils[J]. Australian Journal of Soil Research,1987,25∶9 5-105.
    Amthor J S,M A Hustonet al.Terrestrial Ecosystem Responses to Global Change:A Research Strategy,ORNL/TM-1998/27,Oak Ridge National Laboratory,1998.
    Aoyama M,Angers DA et al. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J].Canadian Journal of Soil Science,1999,79(2):295-302
    Arnold S S.,Fernandez I J.,Rustad LE. et al.Microbial response of an acid forest soil to experimental soil warming[J].Biology and Fertility of Soils,1999,30(3):239-244.
    Batjes N H.Total carbon and nitrogen in soil of the world[J].European Journal of soil science,1996,47:151-163.
    Barbhuiya,A.R.,Arunachalam, A., Pandey, H.N. et al.,Dynamics of soil microbial biomass C,N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J].European Journal of Soil Biology,2004,40:113-121.
    Beringer,J.,Hutley,L.B.,Tapper,N.J.et al.Savanna fires and their impact on net ecosystem productivity in North Australia[J].Global Change Biol.,2007,13(5):990-1004.
    Biederbeck W B,Hunt H W,Woodmansee R G,et al.Phoenix,a model of the dynamics of carbon and nitrogen in grassland soils[J].Ecol Bull,1981,33:49-115.
    Biederbeck V O,Janzen H H,Campbell C A,et al.Labile organic matter as influenced by cropping practices in an arid environment[J].Soil Biology&Biochemistry,1994,26(12):1647-1656.
    Blair G J,Lefroy R D B,Lisle L.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J].Aust.J.Agric.Res,1995,46:1459-1466.
    Blunier T,Chappellaz J,Schwander J,et al.Variations in atmospheric methane concentration during the Holocene epoch[J].Nature,1995,374:46-49.
    Bohn,H.L.,Estimate of organic carbon in world soils[J].Soil Science Society of America Journal[J].1982,46:1118–1119. Bolin Bert,Sukumar R.In:Watson Robert T,Noble ,Ian R,Bolin Bert et al. eds Land Use,Land-Use Change and Forestry[M].2000,Cambridge University Press,UK.23-51.
    Bolinder L.C.,Angers D.A.,Gregorich E.G.,et al.The response of soil quality indicators to conservation management[J].Can.J.Soil Sci.,1999,79(1):37-45.
    Boone Richard D., Nadelhoffer Knute J., Canary Jana D.Roots exert a strong influence on the temperature sensitivityof soil respiration[J].Nature,1998,396,570-572.
    Bouwman A F.Global distribution of the major soils and land cover types,John Wiley and Sons,New York,1990,33-59. Brown S,Lugo A E.The storage and Production of organic matter in tropical forests and their role in the global carbon cycle[J].Biotropica,1982,14:161-187.
    Brown S,Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes[J].Science,1984,233:1290-1293. Bruce D.C,Deborah L.A.Dissolved organic carbon in old field soils:Total amounts as a measure of available resources for soil mineralization[J].Soil Biology&Biochemistry,1992,24(6):585-594.
    Cambardella C.A.,Elliotta E.T.Methods for Physiealse Paratlon and eharacterization of 5011 organic matter fractions[J].Geoderm 1993,56:443-457.
    Campbell C A,Mconkey B G,Zentner R P,et al.Tillage and crop rotation effects on soil organic C and N in a course-textured Typic Haploboroll in southwestern Saskatchewan[J].Soil and Tillage Research,1996,37(1):3-14.
    Canadell J G. Land use effects on terrestrial carbon sources and sinks[J].Science in China(Series C),2002,45(suppl.):1-9. Chantigny M H,Angers D A,Prevost D et al. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization[J].Soil Biol.Biochem,1999,31:543-550.
    Chapman PJ, Reynolds B, Wheater HS. The seasonal variation in soil water acid neutralizing capacity in peaty podzols in mid-Wales[J].Water Air Soil Pollut, 1995,85:1089-1094
    Chen Tsai-Huei,Chiu Chih-Yu,Tian Guang long.Seasonal dynamics of soil microbial biomass in coastal sand duneforest[J].Pedobiologia,2005,49(6):645-653.
    Christ M J. David M B. Dynamics of extractable organic carbon in spodosol forest floors[J].Soil Biol Biochem,1996,28:1171-1179.
    Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. Eur J Soil Sci,2001,52:345-353
    Coleman D C,Crossley D A J. Fundamentals of Soil Ecology[M].Academic Press,San Diego,1996.
    Contin M.,Corcimaru S.,De Nobili M.et al. Temperature changes and the ATP concentration of the soil microbial biomass[J].Soil biology&biochemistry,2000,32(8-9):1219-1225.
    Coops,N.C.,black,T.A.,Jassal,R.S.et al. Comparison of MODIS,eddy covariance determined and physiologically modelled gross primary production(GPP)in a Douglas-fir forest stand[J].Remote Sensing Environ.2007,107:385-401.
    Cox,P.M.,Betts,R.A.,Jones,C.D.et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled model[J].Nature 2000,408:184-187.
    Cronan C S,Aiken G R.Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park,NewYork. Geochim.Cosmoehim.Acta,1985,49:1697-1705.
    Cronan C S.Patterns of organic acid transport from forested watersheds to aquatic ecosystems[M].In Organic Acids in Aquatic Ecosystems.E M Perdue and E T Gjessing(eds).Life Sciences Research Report 48.Chichester:John Wiley§Sons Ltd,1990,245-260.
    Curtin D,Steppuhn H,Campbell CA et al. Carbon and nitrogen mineralization in soil treated with chloride and phosphate salts[J].Canadian Journal of Soil Science,1999,79(3):427-429.
    Davids E A,Trumbore S E,Amundson R.Soil warming and organic carbon content[J].Nature,2000,408(1,4):789-790. Davidson E A, Ackermann I L. Changes in soil carbon inventories following cultivation of previously untilled soils[J]. Biogeochemistry, 1993, 20(3):161-193.
    Davidson,E.A.,Lefebvre,P.A. Estimating regional carbon stock and spatially covarying edaphic factors using soil maps at three scales[J].Biogeochemistry,1993,22:107-131.
    Davidson E A,Trumbore S E, Amundson R. Soil warming and organic carbon content[J].Nature,2000,408(14):789-790. Delprat L,Chassin P,Lineres M.Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation[J].Eur J Agron,1997,7:201-210.
    Devi N. B.,Yadava P.S. Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur, North-east India[J]. Applied Soil Ecology,2006,31(3):220-227.
    Dixon R.K.,Brown S.,Houghton R.A.,Solomon A.M. et al.Carbon pools and flux of global forest ecosystems[J].Science,1994,263:185-190.
    Domisch Timo,Finér Leena, Lehto Tarja et al.Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings[J].Plant and Soil,2002,239(2):173-185.
    Dosskey M G,Pertsch P M.Transport of dissolved organic matter through a sandy forest soil[J].Soil Science Society of America Journal,1997,61:920-927.
    Evans C D,T D Davies,P J Wigington,et al.Use of factor analysis to investigation processes controlling the chemical composition of four streams in the Adirondack Mountains,New York[J].J Hydrol,1996,185:297-316.
    Fang Jingyun, Chen Anping, Peng Changhui et al.Changes in Forest Biomass Carbon Storage in China Between 1949 and1998.Science,2001,292:2320-2322.
    Fang J Y, Wang G G, Liu G H , et al. Forest biomass of China:an estimate based on the biomass-volume relationship[J]. Ecological Applications,1998,8(4):1084-1091.
    Fang_S.,Xue J.,Tang L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns[J]. Journal of Environmental Management,2007,85:672-679.
    Feller C,Beare M H. Physical control of soil organic matter dynamics in the tropic[J].Geomderma,1997,79(1-4):69-116.
    Fernandes S A P,Bernoux M,Cerri CCet al. Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon[J].Geoderma,2002,107:227-241
    Finnigan J J,Clement R Malhi Y,et al. A re-evaluation of long-term flux measurement techniques. PartⅠ.Averaging and coordinate systems[J].Bound-layer Meteorology,2003,107:l-48.
    Fisher, F. M.,Gosz,J. R.Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest[J].Biology and Fertility of Soils,1986,2,35-42.
    Franzluebbers K,Weaver R W,Juo A S.R.et al. Mineralization of carbon and nitrogen from cowpea leaves decomposing in soils with different levels of microbial biomass[J].Biology and Fertility of Soils,1996,19:100-102.
    Ghiorse M,Moore T R.Source sand sinks of dissolved organic carbon in a forested swamp catchment[J].Biogeochemistry,1991,15:1-19.
    Gijsman A J,Sanz J I . Soil organic matter pools in a volcanic-ash soil under fallow or cultivation with applied chicken manure[J].European journal of soil science,1998,49:427-436.
    Gregorich E G, Beare M H, Stoklas U. et al. Biodegradability of soluble organic matter in maize-cropped soils[J].Geoderma,2003,113,237-252.
    Gross K L.,Pregitzer K S.,Burton A J. Spatial variation in nitrogen availabiclity in three successional plant communities[J]. Journal of ecology 1995 83:357-367.
    Guggenberger G,Kaiser K,Zech W.Mobilization and immobilization of dissolved organic matter in forest soils[J].Z Pflanzernaehr Bodenkd,1998,161:401-408.
    Guggenberger Georg, Zech Wolfgang.Composition and dynamics of dissolved carbohydrates and lignin-degradation products in two coniferous forests,N.E.Bavaria, Germany Soil Biology and Biochemistry,1994,26(1):19-27.
    Guo,L.B.,Gifford,R.M.,Soil carbon stocks and land use change: a meta analysi[sJ]. Global Change Biology,2002,8:345-360. Harper C W,Blair J M.,Fay PA,et al. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem[J]. Global Change Biology,2005,11(2):322~334.
    Haynes R.J.Labile organic matter fractions as central components of the quality of agricultural soils:an overview[J].Adv.Agron.,2005,85:221-268.
    Heath,L.S.,Smith,J.E. An assessment of uncertainty in forest carbon budget projection[sJ]. Environ. Sci. Pollut. 2000,3:73-82.
    Hishi Takuo, Hirobe Muneto, Tateno Ryunosuke et al.Spatial and temporal patterns of water-extractable organic carbon (WEOC) of surface mineral soil in a cool temperate forest ecosystem[J]. Soil Biology and Biochemistry,2004,36(11):1731-1737
    H?gberg Peter, Nordgren Anders, Buchmann Nina et al.Large-scale forest girdling shows that current photosynthesis drives soil respiration[J].Nature,2000,411:789-792.
    Houghton J.T.,Ding Y.,Griggs D.J. et al.Climate Change 2001:The Scientific Basis,contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press,Cambridge,UK,2001.
    Houghton R A,Hobbie J E,Mellilo J M,et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to atmosphere[J].Ecol Monogr,1983,53(3):235-262.
    Houghton,R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990[J]. Tellus,1999,50B(2):298-313.
    Houghton RA,Skole DL,Nobre CA et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J].nature,2000,403:301-304.
    Ingestad T. Plant Growth in Relation to Nitrogen Supply. In:Clark,F. E. & Rosswall,T. eds. Bull. ,Stockholm, 1981,33(303) :268~271.
    Ingram,J.S.I.,Fernandes,E.C.M.,Managing Carbon sequestration in soils: concepts and terminology[J]. Agric. Ecosyst. Environ,2001,87:111-117. IPCC. http://ipcc-wgl.ucar.edu/wgl/wglreport.html
    Jandl R., Sollins P. Water-extractable soil carbon in relation to the below ground carbon cycle[J].Biology and Fertility of Soils,1997,25:196-201.
    Jardine,P.M.,Weber,N.L,McCarthy,J.F.Mechanisms of dissolved carbon adsorption on soil[J].Soil Science,1989,53:1378-1385.
    Jenkinson D S,Rayner J H.The turnover of soil organic matter in some of the Rothamsted classical experiments[J].Soil sci.,1977,123:298-305.
    Jenkinson S.An extraction method for measuring soil microbial biomass C[J].Soil Biol. Biochem.,1987,17: 703-707.
    Johnson W C,Sharpe D M.The ratio of total to merchantable forest biomass and its application to the global carbon budget[J].Can.J.For.Res.,1983,13:372-382.
    Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10:423-436.
    Kaiser K,Guggenberger G,Haumaier L,et al. Seasonal variations in the Chemical composition of dissolved organic matter in organic forest floor layer Leachates of old一growth Seots Pine(Pinus sylvestris L.)and European beeeh (Fagus sylvatica L.) Stands in northeastern Bavaria,Germany[J]. Biogeochemistry,2001,55:103-143.
    Kaiser K, Guggenberger G, Zech W. Sorption of DOM and DOM fractionst to forest soils[J].Geoderma,1996,74:281-303.
    Jackson, R.B., Caldwell, M.M. The scale of nutrient hete-rogeneity around individual plants and its quantification with geostatistics. Ecology,1993,74:612-614.
    Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matteras related to its properties[J].Geoderma,2003b,113:273-291.
    Kalbitz. Mobilization of heavy metals and arsenic in polluted wet land soils and its dependence on dissolved organic matter[J].The Science of the Total Environment,1998,209:27-39.
    Kalbitz K.,Solinger S.,Park J.H.et al. Controls on the dynamics of dissolved organic matter in soils: A review[J].Soil science,2000,165(4):277-304.
    Kandeler E. Tscherko D., Bardgett R.D.et al. The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem[J].Plant and Soil,1998, 202(2):251-262.
    Kawahigashi M.,Hiroaki Sumida,Kazuhiko Yamamoto;Seasonal changes in Organic compounds in soil solutions obtained volcaniec ash soils under different land uses. Geoderma,2003,113:381-396.
    Keeling, C. D, Chin J. F. S., Whorf T. P. Increased activity of northern vegetation in inferred from atmospheric CO2 measurements[J].. Nature, 1996,382:146~149.
    Khan M S,Zaidi A,Wani P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture - A review[J].Agron. Sustain. Dev.,2007,27:29-43.
    King AW,Emanuel WR,Wullschleger SD et al. In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2[J]. Tellus B,1995,47(4):501-519.
    Kilawe,E.C.,Lusambo,L.P.,Katima,J.H.Y. et al. Aboveground biomass equations for determination of carbon storage in plantations forests in Kilombero District,Morogoro-Tanzania[J]. Int. For. Rev.,2001,3:317-322.
    Lal R.Soil carbon sequestration in China through agricultural intensification,and degraded and desertified ecosystems[J].Land Degrad.Dev,2002,13,469-478.
    Lal R,Logan T J,Fausey N R. Long-term tillage effects on a Mollic Ochraqualf in north-west Ohio III. soil nutrient profile[J].Soil Tillage Res,1990,15:371-382.
    Lal R,Logan T J. Advances in Soil Science:soil management and greenhouse effect,Lewis Publishers,Boca Raton, London,1995,293-307
    Lal,R. Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123:1-22.
    Lal,R.,Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci.[J].1999,1,307-326.
    Lal,R. Soil carbon sequestration impacts on global climate change and Food security[J].Science,2004,304:1623–1626.
    Lambin EF,Turnerb B. L.,Geista HJ.The causes of land use and land-cover change: moving beyond the myths[J].Global Environmental Change,2001,11:261-269.
    Leite Luiz Fernando Carvalho. Simulating trends in soil organic of an Acrisol under no-tillage and disc-plow systems using the century model[J].Geoderma,2003.
    Levy P.E.,Friend A.D,White A. The Influence of Land Use Change On Global-Scale Fluxes of Carbon from Terrestrial Ecosystems[J].Climatic Change,2004,67,185-209.
    Liang B C,Mackenzie A F,Sehnitzer M,et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1998,26:88-94.
    Liechty H O,Kuuseoks E,Mroz G.D.Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J].J. Environ Qual.1995,24:927-933
    Luyssaert Sebastiaan,Schulze E.-Detlef,Annett B?rner et al.Old-growth forests as global carbon sinks[J]. Nature,2008,455:213-215.
    Luiz?oa F.J, Proctorb J, Thompsonc J et al.Rain forest on MaracáIsland, Roraima, Brazil: soil and litter process response to artificial gaps[J]. Forest Ecology and Management,1998,102(2-3):291-303.
    Malhi,Y.,Baldocchi,D.D.,Jarvis,P.G. The carbon balance of tropical,temperate and boreal forests[J].Plant Cell Environ. 1999,22(6):715-740.
    Marumoto T. Nitrogen and microbial biomass in arable soils.In:Wada H,Tsuru S eds .Soil biomass. Hakuyusya,Tokyo,1984,115-140.
    Meyer J L,Edwards R T,Risley R.Bacterial growth on dissolved organic carbon from blackwater river[J]. Microb.Eeol.,1987,13:13-29.
    McDowell WH,Likens GE.Origin,composition,and flux of dissolved organic carbon in the Hubbard brook Valley[J].Ecol.Monogr,1988,58:177-195.
    McDowell,W.H.,Currie,W.S.,Aber,J.D,et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J].Water Air and Soil Pollution,1998,105:175-182.
    McGill W B,Cannon KR,Robertson J A,et al.Dynamics of soil microbial biomass and water-soluble organic C in Berton L after 50 years of cropping to two rotations[J].Can. J. Soil Sci.,1986,66:1-19.
    Moore T R., Desouza W,Koprivnijak J F. Controls on the sorption of dissolved organic carbon in soils[J].Soil Science,1992,154:120-129.
    Motavalli P P, Discekici H, Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer [J]. Agriculture, Ecosystems& Environment, 2000,79(1):17-27.
    Nambu K, Yonebayashi K. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferious and broad leaf forest[J].Soil Science and Plant Nutrition,1999,45:307-319.
    Nichols J D. Relation of Organic Carbon to Soil Properties and Climate in the Southern Great Plains[J].Soil Sci Soc. Am. J.,1984,48∶1 382-1384.
    Pan Y D, Luo T X, Birdsey R, et al. New estimates of carbon storage and sequestration in China’s forests:effects of age-class and method on inventory-based carbon estimation[J]. Climatic Change, 2004,67:211-236.
    Pankhurst CE. Biological indicators of soil health and sustainable productivity. In:Greenland DJ,Szabolcs I eds. Soil Resilience and Sustainable Land Use. Madison,Wisconsin:Soil Sci Soc Am Spec Publ,1994,331~352.
    Paul E. A.,Clark F. E. Soil Microbiology and Biochemistry[M].San Diego:Academic Press,1996,184.
    Paul E A R?mkensA M,Van der Plicht Johannes. Evolution of CO2 and soil carbon dynamics in biologically managed,row–crop agroecosystems[J].Appl. Soil Ecol.,1999,11:53-65.
    Patrick A.W.,David L.Jones,Roger Finlay,et al. The carbon we do not see the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review[J]. Soil Biology &Biochemistry,2005,37:1-3.
    Peltoniemi,M.,Makipaa,R., Liski,J.,et al. Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data[J]. Global Change Biology,2004,10:2078-2091
    Priha O,Grayston S J,Hiukka R,et al.Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris,Picea abies and Betulapendula at two forestsites[J].Biology and Fertility of Soils,2001,33:17-24.
    Priha O. Microbial activities in soils under Scotspine, Norway spruce and silver birch. Academic dissertation in University of Helsinki 1999. 50
    Post W M,Emanuel W R.zinke P J,et al.soil carbon pools and world life zones[J]. Nature,1982,298(8):156-159.
    Post W M,King A M,Wullschleger S D.Soil organic matter models and global estimates of soil organic carbon[A].In:Powlson DS,et al eds.Evaluation of Soil Organic Matter Models[C].Berlin,Heidelberg:Springer-Verlag,1996.201-224.
    Post W M, Pastor J, Zinke P J. Global patterns of soil nitrogen storage[J].Nature ,317:613– 616.
    Powlson D S,Brookes P C&Christensen B T.Measurement of soil microbial biomass provides an early indication of change in total soil organic matter due to straw incorporation[J].Soil boil.Biochem.,1987,19:159-164.
    Qualls R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water[J].. Soil Sci Soc Am J, 1992, 56: 578~586
    Qualls R G,Haines B L,Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J].Ecology,1991,72:254-266.
    Qualls R G, Haines B L, Swank W T, et al. Soluble organic and inorganic nutrient fluxes in clear cut and mature deciduous forests[J].Soil Science Society of America Journal,2000,64:1068-1077.
    Raghubanshi A. S.,Srivastava S. C.,Singh R. S. Nutrient release in leaf litter[J].Nature,1990,346:227. Raghubanshi A.S. Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest[J].Soil Biology and Biochemistry,1992,24(2):145-150
    Raich,J.W.,Schlesinger,W.H. The global carbon dioxide ?ux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992,44B:81-99.
    Rapalee,G.,Trumbore,S.E.,Davidson,E.A.,et al. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape[J].Global Biogeochemical Cycles,1998,12:687-701.
    Robson A.D.Soil acidity and plant growth[M].Sydney:Academic Press,1989.
    Rodeghiero M,Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global change biology,2005,7:1024-1041.
    Ruan H. H.,Zou X. M,Scatena F. N,Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J]. Plant and soil,2004,260(1-2):147-154.
    Saynesa Vinisa, Hidalgob Claudia, Etcheversb Jorge D. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico[J].Applied Soil Ecology,2005,29(3):282-289
    Schlesinger WH. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature,1990,348:232-234.
    Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biological feedbacks in global desertification[J]. Science,1990, 247, 1043-1048.
    Schimel D S,Braswell B H,Holland E,et al.Climate,edaphic,and biotic controls over turnover of carbon in soi1[J].Global Biogeochemical Cycles,1994,8(3):279-293.
    Scott M. J.,Jones M. N.,Woof C. et al.Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system[J].Environment international,1998,24(5-6):537-546.
    Shen H,Xu ZH,Yan XL. Effect of fertilization on oxidizable carbon, microbial biomass carbon and mineralizable carbon under different agroecosystems[J].Communications in Soil Science and Plant Analysis,2001,32(9-10):1575-1588.
    Singh,J. S.,Raghubanshi,A. S.,Singh R. S. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J].Nature,1989,338:499–500.
    Smith,A.,Brown,K.,Ogilvie,S. et al. Waste Management Options and Climate Change[M]. European Commission,DG Environment,2001,AEA Technology,Abingdon.
    Smith J L,Paule A. The significance of soil microbial biomass estimations[M],In Soil Biochemistry, Bollag J M&Stotzky G(eds).New York:Marcel Dekker,inc,1991,359-396.
    Smith J L.Cycling of nitrogen through microbial activity[M].In:Hadfield J C,Steward B.A.(Eds),Soil Biology:Effects on Soil Quality. Boca Raton,Florida:Lewis Publishers,1994,91-120.
    Smith, J.E., Heath L.S., and Jenkins J.C. Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests. General Technical Report NE-298. Newtown Square, PA: USDA Forest Service, Northeastern Research Station. 2003,57.
    Smolander A,Kitunen V.Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J].Soil Biology&Biochemistry,2002,34(5):651-660.
    Solomon D,Fritzsche F,Tekalign M, et al. Soil organic matter composition in the subhumid Ethiopian highlands as influenced by deforestation and agricultural management[J].Soil Science Society of America Journal, 2002,66(1):68-82.
    Sparling G P, RossD J. Biochemicalmethods to estimate soil microbial biomass: current developments and applications . In: S oil organic matter dynamics and sustainability of tropical agriculture,eds K. Mulongoy and R. Merckx. Wiley-Sayce. Leuven,1993.21-17.
    Specht,West. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia[J].Biomass and Bioenergy.2003,25:363–379.
    Stevenson.Cycles of soil carbon,nitrogen,phosphorus,sulfur micronutrients,editon 2[M].John Wiley&New York:Sons,Inc,1999.
    Strobel B.W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution:a review[J].Geoderma,2001,99:169-198.
    Sun,O J.,Campbell,J.,Law,B.E.,Wolf,V. Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest,USA[J]. Global Change Biology,2004,10:1470-1481.
    Tans,P. , Fung I.P., Takahashi T. Observational constraints on the global atmospheric CO2 budget [ J ] .Science, 1990,247:1431-1438.
    Tipping E,Woof C,Rigg E,et al.Climatic influences on the leaching of dissolved organic matter from upland UK moorland soil,investigated by a field manipulation experimeny[J].Environ. Int.,1999,25:83-95.
    Turner B. L. II,Skole D.,Sanderson S. et al. Land use and land cover change[J].Earth Science Frontiers,1997,4,26-33.
    Turunen,J.,Roulet,N.T.,Moore,T.R.,et al. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada[J]. Global Biogeochemical Cycles,2004,18,GB3002.
    Van Gestel M.Ladd J N.AmatoM Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J].Soil Biology & Biochemistry,1992,24(2):103-111
    Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass[J].Soil Biol.Biochem,1987,19:703-707.
    Verburg P.S.J., Van Dam D., Hefting M.M. et al. Microbial transformations of C and N in a boreal forest floor as affected by temperature[J].Plant and Soil,1999,208(2):187-197.
    Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L. Microbial community response to nitrogen deposition in northern forest ecosystems[J].Soil Biology & Biochemistry,2004,26:1443-1451.
    Wander M.M.,Traina S.J.,Stinner B.R.,et al.The effects of organic and conventional management on biologically active soil organic matter fractions[J].Soil Sci.Soc.Am.J.,1994,58:1130-1139.
    Wang F L,Bettany J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J]. J Environ Qual.,1993,22:709-714.
    Watson R T,Verardo D J. Land-use change and forestry[M]. Cambridge:CambridgeUniversity Press,2000.
    Wofsy S C,Goulden M L,Munger J W,et al. Net exchange of CO2 in a mid-latitude forest[J]. Science,1993,260:1314-1317.
    Yanai,R.D.,Currie,W.S.,Goodale,C.L. Soil carbon dynamics after forest harvest:an ecosystem paradigm reconsidered[J].Ecosystems,2003,6:197–212.
    Zhao M, Zhou GS. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventorydata[J]. Forest Ecology and Management , 2005,207:295-313.
    Zhou G S, Wang Y H, Jiang Y L, et al. Estimating biomass and net primary production from forest inventory data:a case study of China’s Larix forests[J].Forest Ecology and Management, 2002,169:149-157.
    Zhou Guoyi ,Liu Shuguang,Li Zhian et al. Old-Growth Forests Can Accumulate Carbon in Soils[J]. Science,2006,314,1417-1417.
    Zsolnay A,Gorlitz H.Water extraxtable organic matter in arable soils-effects of drought and long-term fertilization[J].Soil Biol Biochem,1994,26:1257-1261.
    Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil[J]. Soil Biology&Biochemistry,1991,23:1077-1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700