用户名: 密码: 验证码:
H-V加筋路堤稳定性分析及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平-竖向(Horizontal-Vertical,简称H-V)加筋是一种新型立体加筋形式,即在传统的水平筋条上布置竖直筋片。已进行的三轴试验、平面应变试验结果证明了H-V加筋能有效提高土体强度,限制土体变形。本文通过对H-V加筋路堤的室内模型试验、颗粒流细观模拟及理论分析研究了H-V加筋路堤的承载力特性及机理,研究结果对H-V加筋土的工程应用及相关研究有重要的参考价值。
     本文针对H-V加筋路堤进行了一系列室内模型试验,试验模型设计了不同加筋层数、不同加筋长度、不同荷载分布方式、不同加筋形式等多种工况。通过H-V加筋路堤和传统水平加筋路堤的模型试验结果,证明了H-V加筋路堤能够更有效地提高路堤承载力、减小路堤沉降并且限制路堤边坡侧向变形。在模型试验中加筋路堤的承载力随着加筋层数的增加而增加,因此适量增加加筋层数可以提高路堤的承载力。当加筋位置较为接近路堤荷载作用处时,筋条能够充分发挥其加固功能,并能大幅减小路堤边坡顶部侧向变形。试验还研究了H-V加筋筋条的长短对加筋路堤承载力的影响,虽然短筋对路堤承载力的提高幅度没有长筋大,但节省材料,是更经济的设计方案。H-V加筋路堤的破裂面与未加筋路堤不同,表现为多个不连续的圆弧破裂面。筋条起到了隔开破裂面的作用,H-V加筋路堤的破裂面角度更大,位置更靠近路堤中央。
     在室内模型试验的基础上对加筋路堤进行了颗粒流离散元模拟分析。由路堤内部土颗粒受力分析和位移矢量图研究了H-V加筋路堤的作用机理。H-V筋条不仅提供了水平筋条的拉力,其竖向筋条还提供了侧阻力以限制土体位移,因而在H-V筋条周围形成了范围较大的“土体加固区”,使路堤内部力的分配更均匀。通过数值模拟得到的H-V加筋路堤破裂面形态与模型试验的结果一致,且发现路堤边坡的土颗粒以水平方向位移为主,因此H-V加筋中的竖向筋条能够充分发挥作用以限制土体侧向变形。
     在H-V加筋路堤室内试验和数值模拟的基础上,对现有加筋路堤边坡稳定性系数计算方法进行了修正,得到了适用于H-V加筋路堤边坡的稳定性系数计算方法。其中充分考虑了水平筋条对周围土体的影响及竖筋在提高路堤边坡稳定性系数方面产生的影响。
Horizontal-Vertical (H-V) reinforcing element is a new type of 3D reinforcements, in which some vertical reinforcing elements were placed on the traditional horizontal inclusions to made the reinforcements. The results of triaxial tests and plain strain tests which had been carried out to investigate the behavior of soil reinforced with H-V inclusions have proved that the H-V reinforcing elements can improve the strength of soil and restrict the deformation of soil. In this dissertation the behavior of bearing capacity and mechanism of embankments reinforced with H-V inclusions were investigated by labortatory model tests, numerical simulations and theoretical analysis. The conclusions are available for reference practical application and related research of soil reinforced with H-V elements.
     A series of laboratory model tests had carried out on H-V reinforced embankment. In these model tests, the layer, length, and type of reinforcements and the size of footing were varied. The H-V reinforcing elements were proved in increasing the bearing capacity, reducing the settlements and restricting the lateral displacements of embankments, by the results of laboratory model tests. In model tests the bearing capacity of reinforced embankments were increased with the increment of the layers of H-V reinforcing elements. It can be found that the bearing capacity of embankments can be increased and the lateral displacements on top of the slop can be restricted more effectively, if the location of H-V reinforcing elements was closer to the footing in vertical direction. The short H-V reinforcing element was provided little lower increment in the bearing capacity of embankment but it can save material of reinforcements, according to this optimized design can be provided. The shear bands in H-V reinforced embankments were separated into several discontinuous arc bands by the reinforcing inclusions. The angle of the shear band was larger and the location was close to the middle of embankment.
     The PFC numerical simulations (Discrete Element Method) were carried out on the base of the results of model test. The working mechanism of H-V reinforced embankment was investigated by analyzing the contact force between soil particles and the displacement of ball units. When the embankment was under loading, besides the tensile force provided by the horizontal element, the vertical inclusions provided resistance to restrict the lateral displacements of soil. Soil near the H-V inclusions was been strengthened, and these“strengthened areas”made the stresses evenly distributed in filling. The shear bands obtained by the numerical simulations were in common with those observed from model tests. Most soil particles moved horizontally in the slope of the embankment, so the vertical inclusions of H-V reinforcing elements worked effectively and restricted the lateral displacement of the slop.
     By analyzing the result of laboratory model tests and PFC numerical simulations on embankments reinforced with H-V inclusions, the traditional equation to calculate the safe factor of reinforced embankments was been revised. The new equation is suit for calculate the safe factor of embankments reinforced with H-V inclusions, which considering the effect of both horizontal elements and vertical inclusions.
引文
【1】Vidal H. The principles of reinforced earth [J]. Highway Research Record, 1969, 282, 1-16.
    【2】张孟喜.土力学原理[M].华中科技大学出版社, 2007: 252-253.
    【3】Rowe R.K. Numerical modelling of reinforced embankment constructed on weak foundations[C]. Proc. 2nd Int. Symposium on Numerical Models in Geomechanics. Ghent: M.Jackson & Son Ltd., 1986, 543-551.
    【4】Oikawa H. A case history of the construction of a reinforced high embankment on an extra soft ground[C]. Proc. Int. Symposium on Earth Reinforcement. Fukuoka: [s.n]. 1996, 261-266.
    【5】El-Naggar M E, Kennedy J B.New design method for reinforced sloped embankments [J]. Engineering Structures, 1997, 19(1):28-36.
    【6】Yoo C. Laboratory investigation of bearing capacity behavior of strip footing on geogrid- reinforced sand slop [J]. Geotextiles and Geomembranes, 2001, 19(5):279-298.
    【7】Bergado D T, Long P V, Murthy B.R.S. A case study of geotextile-reinfoced embankment on soft ground [J]. Geotextiles and Geomembranes, 2002, 20(6):343-365.
    【8】于志强.土工织物耐久性及堤坝加筋机理的研究[D].天津大学, 2005.
    【9】张苇.土工带加筋碎石垫层的试验研究与有限元分析[D].太原理工大学,2003.
    【10】张苡铭.双向土工格栅加筋路堤影响因素研究[D].武汉理工大学, 2007.
    【11】钱劲松,凌建明,黄琴龙.土工格栅加筋路堤的三维有限元分析[J].同济大学学报. 2003, 31(12): 1421-1425.
    【12】刘春虹,肖朝昀,王建华,陈锦剑.土工织物加固软土路堤的有限元分析[J].岩土力学. 2004, 25(s2): 325-328.
    【13】孙吉勇.复合地基加固技术在高填土路堤地基处理中的应用研究[D].长安大学, 2005.
    【14】Mostafa A, Sawwaf El. Behavior of strip footing on geogrid-reinforced sand over a soft clay slop [J]. Geotextiles and Geomembranes, 2007, 25(1):50-60.
    【15】刘彬,魏丽敏,牛建东.加筋砂垫层对提高软土路基极限填筑高度影响的分析[J].铁道建筑. 2007(10): 57-59.
    【16】张兴强,闫澍旺,邓卫东.交通荷载作用下加筋道路机理分析[J].岩土工程学报. 2001, 23(1): 94-98.
    【17】Hinchberger S D, Rowe R K. Geosynthetic reinforced embankments on soft clay foundations: predicting reinforcement strains at failure [J]. Geotextiles and Geomembranes, 2003,21(3):151-175.
    【18】周建萍.土工织物加筋路堤筋-土界面摩擦力分布形式分析[J].岩石力学与工程学报. 2004, 23(s1): 4366-4367.
    【19】左广洲.加筋垫层承载机理与工程应用研究[D].福州大学, 2005.
    【20】黄仙枝.土工带加筋碎石垫层地基的试验、应用及理论研究[D].太原理工大学, 2005.
    【21】王志斌,李亮,杨小礼.陡坡地基上高填路堤极限承载力研究[J].铁道科学与工程学报. 2007, 4(1): 33-38.
    【22】Kaniraj S R, Abdullahh H. Stability analysis of reinforced embankments on soft soil [J]. Journal of Geotechnical Engineering, 1992, 118(12):1994-1999.
    【23】Tsukada Y, Isoda T, Yamanouchi T. Geogrid subgrade reinforcement and deep foundation[C]. Proceedings of the Geosynthetics Case Histories. ISSMFE, Committee TC9, 1993, 158–159.
    【24】翁升,马时冬.土工布加筋垫层对路基变形和稳定的影响[J].岩土力学. 2001, 22(1): 42-46.
    【25】Borges J L, Cardoso A S. Structural behavior and parametric study of reinforced embankments on soft clays [J]. Computers and Geotechnics,2001,28(3):209-233.
    【26】Tamdjiria V, Low B K, The C I. Effect of reinforcement force distribution on stability of embankments [J]. Geotextiles and Geomembranes,2002,20(6):423-443.
    【27】陈建峰,石振明,孙红.加筋路堤稳定性综合分析方法[J].岩土力学. 2004, 25(s2): 433-436.
    【28】刘金龙.边坡稳定性及路堤变形与破坏机理研究[D].中科院武汉岩土力学研究所, 2006.
    【29】凌建明,钱劲松,黄琴龙,张勇.路基拓宽工程处治技术及其效果[J].同济大学学报(自然科学版). 2007, 35(1): 45-49.
    【30】张志清,苏燕,金江.黄土加筋路堤试验路段应力变形分析[J].铁道建筑. 2007(8): 58-61.
    【31】张宗堂.土工材料在加陡路堤边坡中的应用分析[J].铁道工程学报. 2007, 11(11): 20-23.
    【32】刘金龙,栾茂田,王吉利,袁凡凡.土工织物加固软土路基的机理分析[J].岩土力学. 2007, 28(5): 1009-1014.
    【33】万智,李志勇,万剑平,刘宝琛.加筋路堤稳定性分析和优化设计[J].中南公路工程.2006, 31(2):18-20.
    【34】Ju J W. Bearing capacity of sand foundation reinforced by geonet [C]. Proc Int Symposium on Earth Reinforcement, 1996. 603-608.
    【35】Fannin R J, Sigurdsson O. Field Observations on Stabilization of Unpaved Roads with geosynthetics [J]. Journal of Geotechnical Engineering, ASCE,1996,122(7):544-552.
    【36】Kurian N P, Beena K S, Kumar R K. Settlement of reinforced sand in foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123 (9):721-733.
    【37】朱湘,黄晓明,邓学钧.土工格栅加筋路堤机理研究[J].公路交通科技,2000,17(1):1-5.
    【38】黄广军,张千里,俞锡健,罗强,蔡英.加筋垫层对地基沉降控制效果的多方案比较[J]. 岩土工程学报. 2001, 23(5): 598-601.
    【39】罗强,刘俊彦,张良.土工合成材料加筋砂垫层减小软土地基沉降试验研究[J].岩土工程学报. 2003, 25(6): 710-714.
    【40】Zarnani S, Scott J D, Sego D C. Long term performance of a reinforced clay embankment [C]. Geosynthetic Research and Development, 2005,161,31-37.
    【41】张培.换填与加筋相结合处理加宽路基下软土地基的研究[D].武汉理工大学, 2006.
    【42】王吉利,刘金龙,沈兴富,彭圣平.加筋路堤的竖向沉降分析[C].第二届全国岩土与工程学术大会论文集,2006, 169-174.
    【43】Briancon L, Villard P. Design of geosynthetic-reinforced platforms spanning localized sinkholes [J]. Geotextiles and Geomembranes,2008, 26(5):416-428.
    【44】徐少曼.堤坝下软基土工织物加筋效果与尺寸效应[J].岩土工程学报,1999,21(1):28.
    【45】徐少曼.关于土工织物堤坝软基问题[J].福州大学学报,1999,27(2):76-80.
    【46】Rowe R K, Soderman K L. An approximate method for estimating the stability of geotextile-reinforced embankments [J]. Canadian Geotechnical Journal, 1985, 22(3):392-398.
    【47】Bergado D T, Long P V, Lee C H, Loke K H, Werner G. Performance of reinforced embankment on soft Bangkok clay with high-strength geotextile reinforcement [J]. Geotextiles and Geomembranes , 1994, 13(6): 403-420.
    【48】Palmeira E M, Pereira J H F, Silva D. Backanalysis of geosynthetic reinforced embankments on soft soils [J]. Geotextiles and Geomembranes, 1998, 16(5): 273-292.
    【49】Bergado D T, Chai J C, Miura N. FE analysis of grid reinforced embankment system on soft Bangkok clay [J]. Computers and Geotechnics, 1995,17(4):447-471.
    【50】Sharma J S, Bolton MD. Centrifuge modelling of an embankment on soft clay reinforced with a geogrid [J]. Geotextiles and Geomembranes, 1996,14(1):1-17.
    【51】Borges J L, Cardoso A S. Overall stability of geosysnthetic-reinforced embankments on soft soils [J]. Geotextiles and Geomembranes, 2002, 20(6):395-421.
    【52】毛林峰.土工合成材料加筋路堤软基有限元分析[D].华中科技大学, 2006.
    【53】刘金龙,栾茂田,王吉利,袁凡凡.土工织物加固软土路基的机理分析[J].岩土力学. 2007, 28(5): 1009-1014.
    【54】Bergado D T, Youwai S, Teerawattanasuk C, Visudmedanukul P. The interaction mechanism and behavior of hexagonal wire mesh reinforced embankment with silty san backfill on soft clay [J]. Computers and Geotechnics, 30(6):517-534.
    【55】Li A L, Rowe RK. Effects of viscous behavior of geosynthetic reinforcement and foundation soils on the performance of reinforced embankments [J]. Geotextiles and Geomembranes, 2008, 26(4):317-334.
    【56】孟庆山,孔令伟,郭爱国,胡明鉴,刘观仕.高速公路高填方路堤拼接离心模型试验研究[J].岩石力学与工程学报,2007,26(3):580-586.
    【57】曾友金,徐光明,章为民.高速公路黄土坝式高路堤离心模型试验研究[C].第一届中国水利水电岩土力学与工程学术讨论会论文集,2006,1013-1016.
    【58】向科,罗凤.土工离心模型试验中的加筋材料[J].地下空间与工程学报, 2007,3(5):890-892.
    【59】陈建峰,俞松波,叶铁锋,石振明.软土地基加筋石灰土路堤离心模型试验研究[J].岩石力学与工程学报,2008,27(2):287-293.
    【60】Gray D H, Ohashi H. Mechanics of fiber reinforcement in sand [J]. Journal of Geotechnical Engineering-ASCE, 1983, 109(3):335-351.
    【61】Maher M H, Gray D H. Static response of sands reinforced with randomly distributed fibers [J]. Journal of Geotechnical Engineering-ASCE, 1990,116(11):1661-1677.
    【62】Santoni R L, Tingle J S, Webster S. Engineering properties of sand fiber mixtures for road construction [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3):258-268.
    【63】Park T, Tan S A. Enhanced performance of reinforced soil walls by the inclusion of short fiber [J]. Geotextiles and Geomembranes, 2005, 23(4):348-361.
    【64】Koerner R M, Wayne M H, Carroll R G.. Analytic behavior of geogrid anchorage[C]. Proceedings Geosynthetics’89 Conference, San Diego, 1989, 525–536.
    【65】Alrefeai T O. Behavior of granular soils reinforced with discrete randomly oriented inclusions [J]. Geotextiles and Geomembranes, 1991, 10(4):319-333.
    【66】Foose G J, Benson G H, Bosscher P G. Sand reinforced with shredded waste tires [J]. Journal of Geotechnical Engineering, 1996, 122(9):760-767.
    【67】Hataf N, Rabimi M M. Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds [J]. Construction and Building Materials, 2005, 20(10):910-916.
    【68】Kumar A, Walia B S. Mohan J. Compressive strength of fiber reinforced highly compressible clay [J]. Construction and Building Materials, 2005, 20(10):1063-1068.
    【69】Hatami K, Bathurst R J, Di Pietro P. Static response of reinforced soil retaining walls with nonuniform reinforcement [J]. International Journal of Geomechanices, 2001,1(4): 477-506.
    【70】Operstein V, Frydman S. The stability of soil slopes stabilized with vegetation [J]. Ground Improvement, 2002,6(4):163-168.
    【71】张孟喜.立体加筋土[P],中国专利,ZL200510028241.8, 2009-2.
    【72】Zhang M X, Javadi A A, Min X. Triaxial tests of sand reinforced with 3D inclusions [J]. Geotextiles and Geomembranes, 2006,24(4):201-209.
    【73】张孟喜,张石磊,黄瑾.低超载下条带式带齿加筋界面特性[J].岩土工程学报, 2007,29(11):1623-1629.
    【74】Zhang M X, Zhou H. Model test on sand retaining wall reinforced with denti-strip inclusions[J]. Science in China Series E: Technological Sciences, 2008, 51(12): 2269-2279.
    【75】张孟喜,周淮.条带式带齿加筋砂土挡墙的模型试验[J].中国科学E辑, 2009, 39(1): 48-56.
    【76】杨锡武,欧阳仲春.加筋高路堤陡边坡离心模型的研究[J].土木工程学报. 2000, 33(5): 88-91.
    【77】杜运兴.预应力CFRP加筋土技术的应用与研究[D].湖南大学, 2003.
    【78】Jian X, Ling J M. Failure mode of reinforced embankment under earthquake loading [C]. Inernational conference on transportation engineering, 2007, 828-833.
    【79】Sarsby R.W. Use of‘Limited Life Geotextiles’(LLGs) for basal reinforcement of embankments built on soft clay [J]. Geotextiles and Geomembranes, 25(4):302-310.
    【80】Rowe R K, Taechakumthorn C. Combined effect of PVDs and reinforcement on embankments over rate-sensitive soil [J]. Geotextiles and Geomembranes,2008,26(3): 239-249.
    【81】付海峰,闫澍旺,舒晓武.加筋及灌浆联合处理软土地基在路基加宽中的应用和分析[J].岩土力学. 2007, 28(1):197-200.
    【82】曹卫平,陈仁朋,陈云敏.桩承式加筋路堤土拱效应试验研究[J].岩土工程学报. 2007, 29(3):436-441.
    【83】Schdosser F, Long N T. Recent result in French research on reinforced earth [J]. Journal of the Construction Division, ASCE, 1974, 100 (C03):223-237.
    【84】Goodman R E. Methods of Geological Engineering in Discontinuous Rocks [M]. West Group Press, 1976.
    【85】袁文忠.相似理论与静力学模型试验[M].西南交通大学出版社, 1998.
    【86】周健,池永,池毓蔚,徐建平.颗粒流方法及PFC2D程序.岩土力学[J], 2000, 21 (3): 271-274.
    【87】周健,廖雄华,池永,徐建平.土的室内平面应变试验的颗粒流模拟.同济大学学报[J], 2002,30(9):1044-1050.
    【88】周健,张刚.管涌现象研究的进展与展望.地下空间[J], 2004, 24(4): 536-567.
    【89】刘文白,周健.上拔荷载作用下桩的颗粒流数值模拟.岩土工程学报, 2004, 26 (4):516-521.
    【90】周健,屈俊童,贾敏才.混凝土框架倒塌全过程的颗粒流数值模拟.地震研究[J], 2005, 28(3): 288-292.
    【91】Chareyre B, Villard P. Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems [J]. Journal of Engineering Mechanics, 2005, 131(7):689-698.
    【92】曾庆有,周健.不同墙体位移方式下被动土压力的颗粒流模拟.岩土力学[J], 2005, 26(s): 43-47.
    【93】McDowell G R, Harieche O, Konietzky H, Brown S F, Thom N H. Discrete element modeling of geogrid-reinforced aggregates [J]. Geotechnical Engineering, 2006, 159 (1):35-48.
    【94】Zhou Jian, Su Yan, Chi Yong. Simulation of soil properties by particle flow code.岩土工程学报[J], 2006, 28(3):390-396.
    【95】Zhang J, Yasufuku N, Ochiai H. A few considerations of pullout test characteristics of geogrid reinforced sand using DEM analysis. Geosynthetics Engineering Journal, 2007, 22(11):103-110.
    【96】Kazempoor S, Noorzad A, Mahboubi A, Mirghasemi A. Numerical modelling of smooth geomembrane-soil interaction shear behaviour by distinct element method [C]. Proceeding of the 4th Asian Regional Conference on Geosynthetics, Shanghai, China,2008, 575-578.
    【97】张石磊,张孟喜. H-V加筋土性状的颗粒流细观模拟.岩土工程学报[J], 2008, 30(5):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700