用户名: 密码: 验证码:
软硬相间层状岩体工程地质特性及作为高混凝土重力坝坝基岩体的适宜性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软硬相间层状岩体作为一种复杂的复合岩体,在岩体结构、岩体综合力学参数等方面具有特殊性和复杂性。当以这类岩体作为高混凝土重力坝坝基岩体时,按照现行的岩体结构分类方案、岩体力学参数取值方法及岩体质量评价体系来评价软硬相间层状岩体的工程地质特性就具有一定的局限性。如何准确地获得能反映软硬相间层状岩体工程地质特性的评价指标并对岩体质量作出准确的评价是解决软硬相间层状岩体作为高混凝土重力坝坝基岩体的关键所在。
     在读攻博士学位期间,随着对软硬相间层状岩体研究的深入,逐渐认识到软硬相间层状岩体应该包含软硬相间沉积层状岩体软硬相间副变质层状岩体和各类软硬相间层状岩体等,且软硬相间层状岩体的综合力学参数也应包含综合变形参数和综合强度参数,只有获得了各类软硬相间层状岩体的结构特征、综合力学参数才能全面、准确地评价软硬相间层状岩体的综合工程地质特性,因此对软硬相间层状岩体进行更深入的研究是有必要的。本论文以金沙江观音岩水电站和阿海水电站坝基软硬相间层状岩体为研究原型,通过对软硬相间沉积层状岩体软硬相间副变质层状岩体结构特征的研究,完善了层状岩体结构类型的划分方案,提出对层状岩体进行结构划分时应该分析岩层面与其余结构面的发育情况,应以更发育者为分类依据;对于副变质层状岩体,应该考虑变质作用对层状岩体原结构的改造行为,当后期的变质作用强化或弱化了软硬相间层状岩体原有结构时,采用结构面发育情况来划分岩体结构具有局限性,应当纳入能反映岩体内在工程属性的指标,如岩体纵波速、钻孔岩芯RQD值等综合划分副变质层状岩体的结构类型,并针对阿海水电站坝基岩体提出了“有粘结的层状结构”这一新的岩体结构类型。
     各向异性是软硬相间层状岩体的一个显著特征,岩体的综合力学参数包含综合变形参数和综合强度参数。在对研究原型进行合理概化的情况下,推导出了软硬相间层状岩体在任意倾角下综合变形参数的理论解。对软硬相间层状岩体在不同受力情况下的综合强度参数进行了研究,完善了软硬相间层状岩体综合强度参数的计算方法。对于单层厚度较大的软硬相间层状岩体(如观音岩水电站坝基岩体),常规的岩体原位力学试验只能获得单一岩层的力学参数,为了获得软硬相间层状岩体的综合变形参数试验值,设计了软硬相间多层岩体综合变形模量原位试验,承压板为200×50cm的矩形板。通过对多层岩体大尺寸、高荷载原位变形试验直接获得了软硬相间层状岩体的综合变形模量。对于薄层状的软硬相间层状岩体(如阿海水电站坝基岩体),则比较了常规变形试验和大尺寸、高荷载变形试验结果的异同。在软硬相间层状岩体综合强度参数方面,首先获得各单层岩体的强度参数,然后根据坝基岩体的产状及未来的受力情况采用软硬相间层状岩体综合强度参数计算公式获取其综合强度参数。
     通过对软硬相间层状岩体工程地质特性的分析确定了岩体结构和岩体综合力学参数是评价其工程地质特性优劣的两个核心内容。原位试验是获得软硬相间层状岩体综合力学参数的最佳途径,但对于软硬相间层状岩体综合力学参数的原位变形试验规模庞大,对综合强度参数试验目前尚不能开展,因此建立软硬相间层状岩体其他易于大量获得指标跟综合力学参数之间的关系是全面获得坝基岩体力学参数的较好途径。最后本论文对软硬相间层状岩体综合力学参数的取值方法进行了一定的研究。应用本文对软硬相间层状岩体结构、综合力学参数及岩体质量评价的研究成果成功地选择了观音岩水电站的最佳建基面,优化了阿海水电站河床坝基建基面位置。因此本文对软硬相间层状岩体的研究是符合其工程地质特性的,既具有理论意义又具有实用价值。
Soft-hard-alternated layered rock is a complex composite dike featured by its specificity and complexity in its rock mass structure, mechanical parameters of rock, etc. When such a kind of rock is used as the dam foundation rock for high concrete gravity dam, the applying of existing rock structure classification schemes, dereferencing parameters of rock mass mechanics and rock mass quality evaluation system would present a certain number of limitations on the evaluation of engineering geological characteristics of soft-hard-alternated layered rock. Therefore, it would be critical when the evaluation indicators can be obtained to accurately reflect the engineering geological characteristics of soft-hard-alternated layered rock, which can be used to accurately assess the rock mass to address the dam foundation rock for high concrete gravity dam.
     While I studied for my doctor degree, along with my in-depth research on soft-hard-alternated layered rock, I came to realize that soft-hard-alternated layered rock should include soft-hard-alternated deposition-stratified rock, soft-hard-alternated stratified parablastesis and a variety of soft-hard-alternated deposition-like rock mass and so on. Besides, the comprehensive deformation parameters of soft-hard-alternated layered rock could be one aspect of the mechanical parameters only, which would be far from enough for the comprehensive and accurate evaluation of integrated engineering geological characteristics of soft-hard-alternated layered rock. So, the deeper research on soft-hard-alternated layered rock is quite necessary. Applying the soft-hard-alternated layered rock of the Jinsha River Guanyinyan Hydropower Station and Ahai Hydropower Station as the prototype for the said research, the present thesis has studied the structural features of soft-hard-alternated deposition-stratified rock and soft-hard-alternated stratified parablastesis, improved the layered rock structure classification schemes and proposed that the developmental situation of the bedding level and other structural profiles should be analyzed when holding the layered rock structure classification which should be considered based on the further more developmental conditions. For the stratified parablastesis, the metamorphism reforming the original structure of layered rock should be considered, i.e., when the late metamorphism strengthens or weakens the original structure of soft-hard-alternated layered rock, the use of structural development for the classification of rock structure would be presented with limitations and those indicators that can reflect the inherent engineering properties of rock should be included, such as longitudinal velocity of rock mass, boring-core RQD value and other structure types for comprehensive classification of stratified parablastesis.
     Anisotropy is a prominent feature of soft-hard-alternated layered rock whose comprehensive mechanical parameters include comprehensive deformation parameters and integrated intensity parameters. In the circumstances having the researched prototype reasonably generalized, the theoretical solution of the comprehensive deformation parameters for soft-hard-alternated layered rock at any angle have been derived, the integrated intensity parameters for soft-hard-alternated layered rock under different strength of stress have been studied and the method for calculating comprehensive strength parameters of soft-hard-alternated layered rock has been improve. For the soft-hard-alternated layered rock having thicker single stratum (such as the Dam Foundation Rock of Guanyinyan Hydropower Station), the conventional rock situ testing of mechanical parameters can only provide mechanical parameters for a single stratum. In order to obtain the experimental values of the comprehensive deformation parameters for the soft-hard-alternated layered rock, the situ testing of comprehensive deformation modulus for soft-hard-alternated layered rock has been designed whose pressure plate is a rectangular plate of 200cm×50cm. The comprehensive deformation modulus for soft-hard-alternated layered rock has been obtained directly by the situ deformation testing of large size and high load in respect to multi- stratum rock. For the soft-hard-alternated layered rock having thin stratum (such as the Dam Foundation Rock of Ahai Hydropower Station), the differences and similarities between the conventional deformation experiments and the large size and high load deformation testing results have been compared. Regarding the integrated intensity parameters for soft-hard-alternated layered rock, those intensity parameters for the rock mass of each single layer has been obtained firstly and then, under the occurrence of rock mass of the dam foundation and its future load-carrying capability, the design formulas for the integrated intensity parameters of the soft-hard-alternated layered rock have been used to calculate out the related comprehensive intensity parameters.
     The analysis of engineering geological characteristics of soft-hard-alternated layered rock has determined that the rock structure and the comprehensive mechanical parameters of rock are two core elements for the evaluation of the merits of the related engineering geological characteristics. The situ testing is the best way for obtaining comprehensive mechanical parameters of soft-hard-alternated layered rock, but the experiment on comprehensive intensity parameters can not be carried out currently because the situ deformation testing of comprehensive mechanical parameters for soft-hard-alternated layered rock is too large a scale. Therefore, for soft-hard-alternated layered rock, the establishment of other relationships is the better way for fully obtaining mechanical parameters of rock mass of dam foundation. Finally, the present thesis has studied to some certain extent the dereferencing method for comprehensive mechanical parameters of soft-hard-alternated layered rock. Using the present research findings in relation to the rock structure of soft-hard-alternated layered rock, the comprehensive mechanical parameters and the evaluation of rock mass, the best construction base surfaces of Guanyinyan Hydropower Station have been successfully chosen and the positions of construction base surfaces of Ahai Hydropower Station riverbed dam foundation has been optimized. Therefore, the present research on the soft-hard-alternated layered rock is in line with the related engineering geological characteristics, providing not only theoretical significance but also practical value.
引文
[1]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [2]张鹏飞主编.沉积岩石学[M].北京:煤炭工业出版社,1990.
    [3]徐光黎等.岩体结构模型与应用[M].北京:中国地质大学出版社,1993.
    [4]中华人民共和国水利部.水利水电工程地质勘查规范(GB50287-2006).北京:中国计划出版社,2006.
    [5]谷德振.岩体工程地质力学基础[M].北京:科学出版设,1979.
    [6]孙玉科,李建国.岩质边坡稳定的工程地质研究[J].地质科学,1965(4).
    [7]谷德振.地质构造与工程建设[J].科学通报,1963(10):22~26.
    [8]孙广忠.工程地质与地质工程[M].北京:地震出版社.1993.
    [9]孙广忠.岩体结构力学[M].北京:科学出版社.1998.
    [10]孙广忠.地质工程学原理[M].北京:地质出版社.2004.
    [12]王思敬.坝基岩体工程地质力学分析[M].北京:科学出版社,1991.
    [13]王思敬,黄鼎成.工程地质世纪成就[M].北京:地质出版社,2004.
    [14]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [15]中华人民共和国水利部.水利水电工程地质勘查规范(GB50287-2006).北京:中国计划出版社,2006.
    [16]湖南省水利水电勘测设计院.中小型水利水电工程地质勘查规范(SL55-93).北京:水利水电出版社,1994.
    [17]中华人民共和国国家标准.岩土工程勘查规范(GB50021-2001).
    [18]中华人民共和国水利部.工程岩体分级标准(GB50218-94).北京:中国计划出版社,1995.
    [19]中华人民共和国国家标准.锚杆喷射混凝土支护技术规范(GBJ86-85).1985.
    [20]林宗元.岩土工程勘查设计手册.沈阳:辽宁科学技术出版社,1996.
    [21]黄向春,骆福英,熊博.层状岩体结构划分与岩体工程地质评价[J].岩土工程界.2005(7).
    [22]郑德超.节理岩体结构德分形研究[J].包头钢铁学院学报.1998(1):9~12.
    [23]袁宝远,杨志法,肖树芳.岩体结构要素分形几何研究[J].工程地质学报.1998(4):355~361.
    [24]徐卫亚,赵永立.坝基工程岩体结构分类分数维研究[J].武汉水利电力大学(宜昌)学报.1999(1):7~10.
    [25]李富平,徐东强,陈彩.岩体结构类型划分德神经网络方法[J].黄金.1999(8):18~21.
    [26]徐卫亚.层状坝基岩体结构分类德三角多项式模式图方法[J].武汉水利电力大学(宜昌)学报.1999(4):283~286.
    [27]徐卫亚,赵永立,梁永平.岩体结构识别的三角多项式函数模式图方法[J].工程地质学报.1999(2):181~185.
    [28]王永才.金川镍矿西部岩体结构的不确定性推理分析[J].西部探矿工程.2001(6):60~62.
    [29]黄国明,黄润秋.复杂岩体结构的几何描述[J].成都理工学院学报.1998(4):552~558.
    [30]严春风,宋建波,朱可善.岩体结构面倾向参数概率分布函数改进的Bayes推断方法[J].工程地质学报.1999(4):349~354.
    [31]李义连,满作武,薛果夫.岩体结构面概率模型与确定性模型的耦合[J].地质科技情报.1997(4):101~104.
    [32]Lekhnitskii SG. Theory of Elastcity of an Anisotropic Elastic Body[M]. San Franicesco. Holdenn-Daty Inc. 1963.
    [33] Lekhnitskii SG. Theory of an Anisotropic Body[M].Moscow, Mir Publishers, 1987.
    [34] Barla, G. Rock anisotropy– Theory and laboratory testing. In: M?ller L., editor. Rock mechanics, (1974).
    [35] GERRARD C M. Elastic models of rock masses having one,two and three sets of joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1982,19(1):15–23.
    [36] Amadei, B, Int. J. Rock Mech. Min. Strength of a Regularly Jointed Rock Mass Under Biaxial and Axisymmetric Loading Conditions"[J], Sci. & Geomech. Abstr., Vol. 25, No. 1 3-13, 1988.
    [37]孙广忠著.岩体结构力学[M].北京:科学出版社,1988.
    [38]孙广忠,孙毅编著.地质工程学原理[M].北京:地质出版社,2004.
    [39]鲜学福,谭学术.层状岩体破坏机理[M].重庆:重庆大学出版社,1989.
    [40]赵平劳,姚增.层状岩体结构的复合材料本构模型[J].兰州大学学报(自然科学版),1990,26(2),114~118.
    [41]刘考学.层状岩体及节理岩体的粘弹性模型[J].陕西机械学院学报,1990. Vol.6.No.4:292-307.
    [42]贺少辉,李中林.层状岩体弹塑性本构关系及工程应用研究[J].南方冶金学院学报,1994.Vol.15.No.3:141-148.
    [43]佘成学,熊文林,陈胜宏.层状岩体力的弹粘塑性Cosserat介质理论及其工程应用[J].水力学报,1996.4:10-17.
    [44]王宏图,鲜学福,贺建民,魏福生.层状复合岩体力学的相似性模拟[J].矿山压力与顶板管理,1999.No.2:81-83.
    [45]赵平劳.层状结构岩石抗剪强度各向异性试验研究[J].兰州大学学报(自然科学版),1990,26(4),135~139.
    [46]周火明,盛谦,陈殊伟等.层状复合岩体变形试验尺寸效应的数值模拟[J].岩石力学与工程学报,2002,23(2):289~292
    [47]周火明,盛谦,邬爱清.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661~664
    [48]熊诗湖,邬爱清,周火明.层状岩体变形试验尺寸效应[J].第十届全国岩石力学与工程学术大会论文集,2008,304~307.
    [49]郭志.岩体变形和破坏机制研究[J].中国地质力学研究,地质出版社,1985,112-123.
    [50]周火明,盛谦,熊诗湖.复杂岩体力学参数取值研究[J].岩石力学与工程学报,2002,21(增):2045~2048
    [51]熊诗湖,周火明,邬爱清.层状软岩力学特性现场试验研究[J].地下空间与工程学报,2006,2(6):887~890.
    [52]朱浮声,王泳嘉.层状岩体等效数值分析[J].东北工学院学报,1992. Vol.13.No.6:533-539.
    [53]杨春和,冒海军,王学潮等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学,2006.27(12):2091-2098.
    [54]赵勇进.两河口水电站砂板岩各向异性的研究[J].四川水利发电,2009.20(2).
    [55]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007.28(5):896-902.
    [56]巫德斌,徐卫亚,朱珍德等.泥板岩流变试验与黏弹性本构模型研究[J].岩土力学与工程学报,2004.23(8):1242-1246.
    [57]张振光.南水北调西线隧洞砂板岩互层围岩稳定形研究[J].东北水利水电,2009.27(294):1-3.
    [58]Z.T.Bieniawski.Engineering Classification of Jointed Rock Mass[M]. Trans.S.Africa Inst. Civ. Engrs.1973.15(12).
    [59]苏生瑞,周志东.溪洛渡水电站坝基亚体质量综合分级[J].人民长江,1998(12).29-30.
    [60]Arild Palmstrom.Characterizing Rock Masses by the Rmi for use in Practical Rock Deep Space.1996.vol(3):287-303.
    [61]Hakan Stille, Arild Palmstrom.Classification as a tool in rock engineering[J].Tunnelling and Underground Space Technology.18(2003):313-335.
    [62]Manuel Romana.DMR,a new geomechanics classification for use in dams foundations[J].adapted from RMR.Reprint for 4th international Symposium on Roller Compacted Concrete(RCC)Dams MADRID2003.P:1-9.
    [63]杨子文.岩体工程分级-岩石力学德理论与实践[M].北京:水利水电出版社,1981.
    [64]陈昌彦,王贵荣.各类岩体质量评价方法德相关性探讨[J].岩石力学与工程学报,2002.21(22):1894-1900.
    [65]鲁先元,高鹏飞等.三些坝基建基面岩体质量验收标准[J].岩石力学与工程学报,1996.15(增):599-604.
    [66]韩爱果.坝基岩体质量量化分级及图形展示[D].成都理工大学工学博士学位论文,2002.
    [67]王锦国,周志芳.溪洛渡水电站坝基岩体工程质量德可托评价[J].勘察科学技术,2001(6):25-29.
    [68]原国红,陈剑平等.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005(9).
    [69]贾超,肖树芳.可拓学理论在洞室岩体质量评价中的应用[J].岩石力学与工程学报,2003(5).
    [70]周志芳.采用层次分析-模糊综合评判法探讨岩体质量评价[J].勘察科学技术,1989(5).
    [71]李强.BP神经网络在工程岩体质量分级中的应用[J].西北地震学报,2002(3).
    [72]连建法,慎乃齐等.基于分形理论的岩体质量评价初探[J].勘察科学技术,2003(2).
    [73]彭振华,丁浩等.分形理论在地下工程岩体质量评价中的应用[J].隧道建设,2003(1).
    [74]刘树新,张飞.三维岩体质量的多种分形研究[J].包头钢铁学院学报,2003(2).
    [75]聂德新等.向家坝水电站坝址岩体结构.岩体质量及建基面选择研究科研报告.2003.
    [76]宋彦辉,聂德新.坝基层状岩体质量评价探讨[J].长江科学院院报,2005(1).39-41.
    [77]孙万和,周创兵.坝基岩体分类与质量评价[J].全国第三次工程地质大会论文选集.成都:成都科技大学出版社,1998,375-397.
    [78]孙万和,朱焕春,周创兵.坝基岩体分类[J].武汉水利电力学院学报, 1989. Vol.22.No.4.
    [79]胡卸文,黄润秋.水利水电规范中的岩体质量分类探讨[J].成都理工学院学报, 1996(3). 64-68.
    [80]胡卸文,黄润秋,徐志文.澜沧江某电站岩体质量分类中的力学参数选取探讨[J].工程地质学报, 1996(2). 8-13.
    [81]鲜学福,谭学术.层状岩体破坏机理[M].重庆:重庆大学出版社, 1989.
    [82]聂德新等.金沙江观音岩水电站层状地基工程地质特性及可利用研究报告[R].2005.
    [83]周思孟主编.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社1998.
    [84]钱伟长,叶开源著.弹性力学[M].北京:科学出版社,1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700