用户名: 密码: 验证码:
强风作用下高层建筑风场实测及模态参数识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济和建筑技术的发展,世界各地不断兴建大量高层建筑。轻质高强材料的应用使得现代高层建筑呈现出高柔和低阻尼特性,从而增加了高层建筑的风敏感性。结构风敏感性的增加使得结构风荷载的设计取值和风致振动响应的估计与控制变得更加重要。
     强(台)风是引起高层特别是超高层建筑损伤破坏和振动响应的主要因素。高层建筑风场实测结果是掌握结构风荷载作用机理和结构动力响应及破坏机理最直接的资料,也是修正现有试验方法和理论模型最为权威的依据。风洞研究表明,土木工程研究中假定风速或风压为高斯平稳过程可能与实际不符,高斯风压模型不能准确地描述高层建筑的风压场。特殊地形条件下的风速脉动不完全符合典型的风速谱,且其概率密度函数有可能不符合高斯分布。此外,结构的模态参数尤其模态阻尼参数的准确识别对于高层建筑适用性和安全性设计变得越来越重要。然而,国内对于高层建筑的风场实测尤其风压实测少为鲜见,高层建筑的阻尼数据库较为缺乏,基于环境风激励的模态参数识别也需要更准确的识别方法。
     论文以国家自然科学基金项目“台风作用下超高层建筑非高斯风压的数值模拟研究”(批准号50578092)为依托。对强风作用下处于特殊地形条件的超高层建筑的风场进行了实测研究,基于环境激励下的实测动力响应研究了仅输出模态参数识别的解析小波方法。论文主要内容及研究成果如下:
     1.论文对风场实测及模态参数识别的研究进展进行了综述,详细阐述了近地强风特性,分析了强风作用下高层建筑的风压特征。
     2.提出了利用单尺度小波能量的突变确定时变均值分解的准确层次的方法,利用该层次近似系数的离散正交小波逆变换可得到准确的时变均值。
     3.为了获取在强风作用下高层建筑的风场特性,基于风压测试基本原理,发明了新型风压传感器,设计了高层建筑风场实测及动力响应的实施方案。基于高空风速风压同步实测结果,分别对实测场地的风速风向特征及墙面风压特征进行了分析研究。
     4.基于小波变换分别进行了风压间小波相干和考虑伪相干的小波相干分析,对各测点之间风压的相关性与经验公式计算的风速相关性进行了比较。
     5.基于Gabor小波函数的解析小波变换(AWT),是通过小波函数与复值信号的匹配机制揭示信号的幅频和相频信息以实现结构模态阻尼参数的识别。基于小波变换(WT)理论,探讨了Gabor小波函数的特性及解析小波变换的时频分辨率和端点效应问题;为实现结构模态阻尼参数的准确识别,提出了Gabor小波函数参数选取和有效信号长度确定的依据。
Many tall buildings have been or are being built with the development of world economic and construction technologies in the world. Modern tall buildings has manifested more flexible and lightly damped characteristics due to adopting high strength and lighter-weight materials with respect to those in the past. As a consequence, the sensitivity of these tall buildings to dynamic excitations, such as strong wind, has increasingly increased. On account of the increased sensitivity of tall buildings to wind, the design of wind loads as well as the estimation and control of wind-induced responses have become more important。
     The strong wind, such astyphoon, is a significant factor which gives rise to damage and vibration response of tall buildings or super tall buildings. The results of wind field full-scale measurements on tall buildings are the most direct information to afford insight into wind load effects, wind-induced dynamic responses, and wind-induced breakage on structures. Likewise, they are the most authoritative database used for revising both the present test methods and theoretical analysis models. The wind tunnel researches have showed that the assumption of Gaussian distribution and stationary process of the wind speed or wind pressure may not be consistent with the practicality in the civil engineering. The Gaussian model of wind pressure is unable to accurately describe wind pressure field of tall buildings. The wind velocity fluctuations may be not consistent with the typical velocity spectrum and the probability density functions also may be not accord with the Gaussian distribution under the special terrain conditions. On the other hand, accurate identification of structural dynamic parameters, especially for damping parameters, is becoming more and more importance for both serviceability design and safety design. However, there are serious scarcities of wind field full-scale measurement, especially wind pressure, and of damping data base for tall buildings. Naturally, modal parameters identification based on the excitation of environmental wind also requires an accurate identification method.
     The dissertation is supported by National Natural Science Foundation of China (Numerical simulation study on non-gaussian wind pressure of super high-rise building under the typhoon, Grant No. 50578092). Investigations on the wind field full-scale measurements of tall buildings in the special terrain conditions under the strong wind have been carried out. The analytic wavelet method applied to output-only model parameters identifications is explored by uese of the measured dynamic responses. Main works and results about the dissertation can be summarized as follows:
     1.Development in both the full-scale measurements of wind fields and modal parameters identification are firstly reviewed. Then, the dissertation elaborates the characteristics of the strong winds in the Earth’s atmospheric boundary layer and analyzes the characteristics of the wind pressures on tall buildings.
     2.An approach has been proposed that the accurate levels of decomposing the time-varying mean wind speed are quantitatively determined by the saltation of simple scale wavelet energy. The accurate time-varying mean wind speed can then be gained by the inverse discrete orthogonal wavelet transforms of approximate coefficients in this level.
     3.Based on the basic principle of the wind pressure testing, a new type of wind pressure sensor has been invented in order to obtain the wind field characteristics of tall buildings under strong wind loads. An implementation scheme of wind field full-scale measurements on a super tall building is decvised. The wind velocity and pressure data measured synchronously are then analyzed in this dissertation to gain an insight into the characters of wind velocity, directions, and wind pressure.
     4.The coherence between wind pressures, with and without considerations of spurious coherence, respectively, has been analyzed by resorting to the wavelet transform. Likewise the coherence of wind-induced pressure fluctuations is compared with that of wind velocity fluctuations derived in accordance with an experiential formula.
     5.With resorting to matching mechanism between the wavelet function and complex-valued signal, both the amplitude and phase frequency information can be revealed by the analytic wavelet transformation (AWT) based on the Gabor wavelet function to achieve the modal damping ratios identification of structures. In accordance with the wavelet transform (WT) theory, the characters of Gabor wavelet function, the time-frequency resolutions, and end effects of the AWT are discussed. In order to effectively carry out the modal damping ratios identification of structures, the method selecting the parameters of Gabor wavelet function and the formula determining the usable lengths of signal are thus proposed.
引文
[1]顾明,周印,张锋,项海帆,江欢成.用高频动态天平方法研究金茂大厦的动力风荷载和风致响应.建筑结构学报, 2000, 21(4): 55-61.
    [2] Samali, B., Kwok, C. S., Wood, G. S., and Yang, J, N. Wind tunnel tests for wind-excited benchmark building. J.Eng.Mech, ASCE 2004, 130(3): 447-450.
    [3] Davenport, A.G., The spectrum of horizontal gustiness near the ground in high winds. J. Royal Meteorol. Soc., 1961, 87: 194-211.
    [4] Kaimal.J.C.,Wyngaard.J.C.,Izumi.Y., Spectral characteristics of surface-layer turbulence. J. Royal Meteorol. Soc., 1972, (98): 563-589.
    [5] Simiu.E. And Scanlan. R.H. Wind Effects on Structures: fundamentals and Applications to Design. Third Edition, John Wiley and Sons Inc., 1996.
    [6] Kareem, A., Acrosswind Response of Buildings, J. Struct. Div., ASCE, 1982, 108(4): 869-887.
    [7] Marukawa H., Ohkuma T. & Momomura Y, Across-wind and torsional acceleration of prismatic high rise buildings, J. Wind Eng. Indust. Aerody.1992, 41-44, 1139-1150.
    [8] Liang. S. G., Liu, S., Q.S. Li., Zhang L. and GU, M. Mathematical model of acrosswind dynamic loads on rectangular tall buildings, J. Wind Eng. Indust. Aerody. 2002.90: 1757-1770.
    [9] Gu, M. and Quan, Y. Across-wind aerodynamic force and aerodynamic damping of typical tall buildings, J. Wind Eng. Indust. Aerody. 2004.92(13): 1147-1165.
    [10] Stathopoulos, T. Computational wind engineering: past achievements and future challenges, J. Wind Eng. Indust. Aerody. 1997. 67-68: 509-532.
    [11] Aishe Zhang, Cuilan Cao, Ling Zhang., Numerical simulation of the wind field around different building arrangemets. J. Wind Eng. Indust. Aerody. 2005, 93: 891-904.
    [12]杨伟,顾明.高层建筑三维定常风场数值模拟.同济大学学报,2003,31(6):647-651.
    [13]汤树勇,陈水福,唐锦春.相邻高层建筑表面风压的数值模拟.计算力学学报,2004,21(2):159-163.
    [14] Chen, J., and Xu, Y.L.On modeling of typhoon-induced non-stationary wind speed for tall buildings.The Structural Design of Tall and Special Buildings, 2004, 145-163.
    [15] Gurley, K., Tognarelli, M.A., and Kareem.A.Analysis and simulation tools for wind engineering.Prob.End.Mech. 1997, 12(1):9-31.
    [16] Xu, Y.L., Chen, J.Characterizing non-stationary wind speed using empirical mode decomposition.J.Struct.End. ASCE, 2004, 130(6):912-920.
    [17] Gioffre, M., Gusella, V., and Grigoriu, M. Non-Gausian wind pressure on prismatic buildings.I: Stochastic field.J.Struct.End. ASCE, 2001, 127(9):981-989.
    [18] Gioffre, M., Gusella, V., and Grigoriu, M.Non-Gausian wind pressure on prismatic buildings.Ⅱ: numerical simulation.J.Struct.End. ASCE, 2001, 127(9):990-995.
    [19] Peterka, J.A., Cermak, J.E. Wind pressures on buildings-Probability densities. J.Struct.Div. ASCE, 1975, 101(6):1255-1267.
    [20] Davenport, A.G., Gust loading factors, J. Struct. Div., ASCE, 1967, 93(ST3): 11-34.
    [21] Simiu, E. and Scanlan, R.H., Wind Effects on Structures: Fundamentals and Applications to Design, Third Edition, John Wiley and Sons Inc.1996.
    [22] Counihan, J., Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972, Atmos. Envioron., 1975, 9: 871-905.
    [23] Kaimal.J.C.,Wyngaard.J.C.,Izumi.Y., Spectral characteristics of surface-layer turbulence, J.Royal Meteorol.Soc., 1972, 98: 563-589
    [24] Sethu-Raman S., Structure of turbulence over water during high winds, J. Appl. Meteorol., 1979, 18: 324-328.
    [25] Panofsky H.A., Singer I.A., Vertical structure of turbulence, J.Royal Meteorol.Soc., 1965, 91: 339-344.
    [26] Davenport, A. G., The generalization and simplification of wind loads and implications for computational methods, J. Wind Eng. Indust. Aerody, 1993, 46-47: 409-417.
    [27] Davenport, A.G., How can we simplify and generalize wind loads?, J. Wind Eng. Indust. Aerody, 1995, 54-55: 657-669.
    [28] Isyumov N., Overview of wind action on tall buildings and structures, Wind Engineering into the 21st century, Larsen, Larose & Livesey (eds), 1999,15-28.
    [29]张相庭.编著.结构风工程理论·规范·实践.北京:中国建筑工业出版社.2006.6
    [30] Kareem, A., Acrosswind Response of Buildings, J. Struct. Div., ASCE, 1982, 108(4): 869-887.
    [31] Marukawa H., Ohkuma T. & Momomura Y., Across-wind and torsional acceleration of prismatic high rise buildings, J. Wind Eng. Indust. Aerody, 1992, 41-44: 1139-1150.
    [32] Melbourne W.H. and Cheung J.C.K., Resonant and background crosswind response components in turbulent flow,Wind Engineering into the 21st century, Larsen, Larose & Livesey(eds), 1999, 1531-1536.
    [33] Liang, S. G., Liu, S., Q.S.Li., Zhang L. and Gu, M., Mathematical model of acrosswinddynamic loads on rectangular tall buildings, J. Wind Eng. Indust. Aerody, 2002, 90: 1757-1770.
    [34] Gu, M. and Quan, Y., Across-wind aerodynamic force and aerodynamic damping of typical tall buildings,J. Wind Eng. Indust. Aerody, 2004, 92(13), 1147-1165.
    [35] Katagiri J., Nakamura O., Ohkuma T., Marukawa H., Tsujimoto T. & Kondo K., Wind-induced later-torsional motion of tall building, J. Wind Eng. Indust. Aerody, 1992, 41-44, 1127-1137.
    [36] John Holmes, Antonios Rofail, Leighton Aurelius, High frequency base balance technique for tall buildings with torsional and coupled resonant modes, Proc. 11th International Conference on Wind Eng., June 2-5, 2003, Lubbock TX, USA.
    [37] Flay, R., Yip, D. and Vickery, B., Wind induced dynamic response of tall buildings with coupled 3-D modes of vibration, Wind Engineering into the 21st century, Larsen, Larose & Livesey (eds), 1999, 645-652.
    [38] Liang, S. G., Q.S.Li., Liu, S., Zhang L. and Gu, M., Torsional Dynamic Wind Load on rectangular tall Buildings, Engineering Structures, 2004, 26(1): 129-137.
    [39] Marukawa H., Kato N., Fujii K. & Tamura Y., Experimental evaluation of aerodynamic damping of tall buildings, J. Wind Eng. Indust. Aerody, 1996, 59: 177-190.
    [40] Quan Y., Gu, M. and Tamura,Y. Experimental evaluation of aerodynamic damping of square super high-rise buildings, Wind & Sturctures---An International Journal, 2005, 8(5):309-324.
    [41] Taniike, Y. and Inoka, H., Aeroelastic behaviour of a tall building in wakes, J. Wind Eng. Indust. Aerody, 1988, 28(1): 317-327.
    [42] Kwok, K.C. S., Aerodynamics of the tall buildings, a state of the art in wind engineering, Proc. Of the 9th International Conf. on Wind Engineering, New Delhi, India, 1995, 180-204.
    [43] Khanduri, A.C., Stathopoulos, T. and Bédard, C., Wind-induced interference effects on buildings– a review of the state-of-the–art, Engineering Structures, 1998, 20(7): 617-630.
    [44] English, E. C. and Fricke, F. R., Interference index and its prediction using a neural network analysis of wind-tunnel data, J. Wind Eng. Indust. Aerody, 1999, 83: 567-575.
    [45] Huang, P. and Gu, M., Experimental study of wind-induced dynamic interference effects between two tall buildings, Wind and Strucrures---An International Journal, 2005, (83):147-162
    [46] Xie, Z. N. and Gu, M., Mean Interference effects among Tall Buildings, Eng. Struct, 2004, 26: 1173-1183.
    [47] Xie, Z. N. and Gu, M., A correlation-based analysis on wind-induced interference effectsbetween two tall buildings, Wind and Structures---An International Journal, 2005, 8(3): 163-178.
    [48] Lawson, T.V., The design of cladding, Building and Enviorment, 1976, 11: 37-38.
    [49] Kawai,H., Nishimura G., Characteristics of fluctuating suction and conicalvortices on a flat roof in oblique flow, J. Wind Eng. Indust. Aerody, 1996, 60: 211–225.
    [50] Dyrbye and Hansen, S.O., Wind loads on Structures, John Wiley and Sons Inc.1997.
    [51] Schettini, E. and Solari, E., Probabilistic modeling of maximum wind pressure on structures, J. Wind Eng. Indust. Aerody, 1998, 74-76: 1111-1121
    [52] Q.S.Li., Calderone, I. and Melbourne, W.H., Probabilistic characteristics of pressure fluctuations in separated and reattaching flows for various free-stream turbulence, J. Wind Eng. Indust. Aerody, 1999, 82: 125-145.
    [53] Cermak, J.E., Laboratory simulation of the atmospheric boundary layer, AIAA Journal, 1971, 9:1746-1754.
    [54] Cook N. J., On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel, Atmospheric Environment, 1973, 7: 691-705.
    [55] Cook N. J., Determination of the model scale factor in wind tunnel simulations of the adiabatic atmospheric boundary layer, J. Ind. Aero., 1977, 2:311-321.
    [56] Counihan J. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment, 1969, 3:197-214.
    [57] Campbell G.S, Standen N.M. Simulation of earth’s surface winds by artificially thickened wind tunnel boundary layers. Progress ReportⅡ,National Research Council of Canada, NAE Rep., LTR-L-A, July 1969.
    [58]陈凯,毕卫涛,魏庆鼎.振动尖塔对风洞模拟大气边界层的作用.空气动力学学报,2003,21(2):211-217.
    [59]庞加斌,林志兴,陆烨.关于风洞中用尖劈和粗糙元模拟大气边界层的讨论.流体力学试验与测量,2004,18(2):32-37.
    [60] Kobayashi H, Hatanaka A, Ueda T. Active generation of time history of strong wind gust in a wind tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53:315-330.
    [61] Cermak J.E, Cochran L.S, Leffler R.D. Physical modeling of the atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44:95-946.
    [62] Cermak J.E, Progress in physical modeling for Wind Engineering. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55:439-455.
    [63]庞加斌,林志兴.边界层风洞主动模拟装置的研制及实验研究.试验流体力学,2008.3.82-87.
    [64]杨立波.风洞中大气边界层主动模拟技术研究[同济大学硕士学位论文].上海:同济大学,2005.4.
    [65] Letchford, C.W., Mans C. & Chay, M.T., Thunderstorms, their importance in wind engineering– a case for the next generation wind tunnel, J. Wind Eng. Indust. Aerody, 2002, 90: 1415-1433.
    [66] Gast, K.D. and Schroeder, J.L., Supercell rear-flank downdraft as sampled in the 2002 thunderstorm outflow experiment, Proc. 11th International Conference on Wind Eng., June 2-5, 2003, Lubbock TX, USA.
    [67] Kyle Butler, Shuyang Cao, Ahsan Kareem. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 11(3).
    [68]顾明,叶丰.超高层建筑风压的幅值特性.同济大学学报(自然科学版).2006, 34(2):143-150.
    [69]叶丰,顾明.超高层建筑风压的频域特性.同济大学学报(自然科学版).2006,34(3):285-291.
    [70]顾明,周印,张锋等.用高频动态天平方法研究金茂大厦的动力风荷载和风振响应.建筑结构学报,2000,21(4): 55-60.
    [71]张亮亮,吴云芳,余洋等.高层建筑风荷载高频测力天平试验技术.重庆大学学报(自然科学版).2006, 29(2):99-102.
    [72] Jozwiak.R., Kacprzyk.J., Zuranski.J.A., Wind tunnel investigations of interference effects on pressure distribution on a building. Journal of Wind Engineering and Industrial Aerodynamics .1995, 57:159-166
    [73]顾明,黄鹏.群体高层建筑风荷载干扰的研究现状及展望.同济大学学报.2003, 31(7):762-767.
    [74]谢壮宁,顾明.倪振华.任意排列三个高层建筑间顺风向动力干扰效应的试验研究.工程力学.2005, 22(5):136-142.
    [75]谢壮宁.顾明,倪振华.3个不同高度高层建筑间的横风向动力干扰效应.西安交通大学学报.2004, 38(9):967-972.
    [76] Xu, Y.L. & Kwok, K.C.S., Mode shape corrections for wind tunnel tests of tall buildings, Eng. Struct., 1993, 15(5): 387-392.
    [77] Zhou, Y. Gu, M.and Xiang, H.F., Along-wind static equivalent wind loads, I: unfavorable distributions of wind loads on tall buildings, II: Correction of mode shapes, J. Wind Eng. Indust. Aerody, 1999, 79:135-158.
    [78] Stathopoulos, T., Computational wind engineering: past achievements and future challenges,J. Wind Eng. Indust. Aerody, 1997, 67-68: 509-532.
    [79] Murakami S., Current status and future trends in computational wind engineering, J. Wind Eng. Indust. Aerody, 1997, 67-68:3-34.
    [80] Murakami, S., Overview of turbulence models applied in CWE-1997, J. Wind Eng. Indust. Aerody, 1998, 74-76: 1-24.
    [81] Versteeg H.K, and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. UK London: Longman Group Ltd.1995.
    [82] Peraire, J., Vahdati, M. and Morgan, K., Adaptive remeshing for compressible flow computations, J. Compt. Phys., 1987,72:449-466.
    [83] Devloo P, Oden JT, Tattani P. An h-p adaptive finite element method for the numerical simulation of compressible flow. Compute Methods Appl Mech Eng 1988, 70:203–35.
    [84] Biswas R, Srawn RC. A new procedure for dynamic adaption of three dimensional unstructured grids. Appl Numer Math 1994, 13:437–52.
    [85] Ait-Ali-Yahia D, Habashi WG, Tam A, et al. A directly adaptive methodology using an edge-based error estimate on quadrilateral grids. Int J Numer Methods Fluids 1996, 23:673–90.
    [86] Murakami, S., Mochida, A. and Hayashi, Y., Examining the k ?εmode by means of a wind tunnel and large eddy simulation of the turbulence structure around a cube, J. Wind Eng. Indust. Aerody, 1990, 5: 87-100.
    [87] Murakami, S., Comparison of various turbulence models applied to a bluff body, J. Wind Eng. Indust. Aerody, 1993, 46-47:21-36.
    [88] Deardoff, J.W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 1970, 41:453-480.
    [89] Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., A dynamic subgrid scale eddy viscosity model, Phys. Fluids, 1991, A3 (7), 1760-1765.
    [90] Spalart, P.R, Jou, W.-H., Strelets, M. and Allmaras, S.R., Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, 1st AFOSR Int.Conf. on DNS/LES, Aug.4-8, 1997, Ruston, LA. In Advances in DNS/LES, C. Liu & Z. Liu Eds., Greyden Press, Colombus, USA
    [91] Yakhot V, Orszag S A. Renormalization group analysis of turbulence: basic theory. Journal of Scientific Computing, 1986, (1):3-11.
    [92] T.H.Shih, W.W.Liou, A.Shabbir, Z Yang, J Zhu. A newκ?εeddy viscosity model for high Reynolds number turbulent flows. Compute Fluits.1995, 24(3):227-28.
    [93] Wilcox D C. Reassessment of the Scale-Determining Equation for Advanced TurbulenceModels. AIAA Journal, 1988, 26(11): 1297-1310.
    [94] Menter F.R. Two-Equation Eddy-viscosity Turbulence Models Engineering Application. AIAA Journal, 1994, 32(8):1598-1605.
    [95] W.P.Jones, B.E.Launder. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer, 1973, 16:1119-1130.
    [96] L.Shen, D.K.P.Yue. Large-eddy simulation of free-surface turbulent. Journal of Fluid Mechanics, 2001, 440:75-116.
    [97] Grigoriadis. D.G.E., Bartzis. J.G., Goulas. A., Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and Fluids, 2004, 33(2):201-222.
    [98] Davidson L, Peng S.H. A Hybrid LES-RANS Model Based on a One-Equation SGS Model and a Two-Equationκ?ωModel. The 2th Int. Symp. On turbulence and shear flow phenomena, Stockholm, 2001, 2:175-180.
    [99] Glück.M., Breuer.M., Durst.F., Halfmann.A., Rank.E. Computation of fluid-structure interaction on lightweight structures, J. Wind Eng. Indust. Aerody, 2001, 89:1351-1368.
    [100] Yoshihide Tominaga, Akashi Mochida, Shuzo Murakami, Satoshi Sawaki. Comparison of various revised k–e models and LES applied to flow around a high-rise building model with 1:1:2 shapes placed within the surface boundary layer. Journal of Wind Engineering and Industrial Aerodynamics .2008, 96: 389–411.
    [101] Tremblay F,Habashi W,Aule M,Wang C.J,Huang B.C,Wang G.J. A CWE/WT Study of the flow over high-and low-rise buildings with anisotropic mesh optimization. The Fourth International Symposium on Computational Wind Engineering Yokohama, Japan 2006.
    [102]李盛勇.廖耘.汪丛军等人.广州合景大厦所受风荷载特点.结构工程师2006,22(6):68-72.
    [103]黄本才.汪丛军,周大伟等人.下游干扰体对上游高层建筑风力的影响.同济大学学报(自然科学版).2007, 35(8):025-1030.
    [104]周大伟.黄本才.徐再根等,金茂大厦平均风压及风环境干扰数值风洞试验模拟.建筑结构.2005,35(12):74-76,82.
    [105]杨伟,黄鹏,顾明.高层建筑风致静力干扰效应的实验和数值研究.同济大学学报,2004,32(2), 152-156.
    [106]张敏,楼文娟,何鸽俊等人.群体高层建筑风荷载干扰效应的数值研究.工程力学.2008, 25(1):179-186.
    [107] Holmes, J. D., Wind loading of structures, Spon Press, London.2001.
    [108] Kwok K.C.S and Hitchcock, P.A., Designing for typhoons in Hong Kong, J. Wind Eng., 2001,89:689-692.
    [109] Letchford, C.W., Mans, C. & Chay, M.T., Pressure distributions on a cube in a simulated thunderstorm downburst, Part B: Moving downburst observations, J. Wind Eng. Indust. Aerody, 2002a, 90:733-753.
    [110] Letchford, C.W., Mans C. & Chay, M.T., Thunderstorms, their importance in wind engineering– a case for the next generation wind tunnel, J. Wind Eng. Indust. Aerody, 2002b, 90:1415-1433.
    [111] Gardner A., Letchford, C.W. and Mehta K.C., Full scale experiment in a transitional flow regime, Proc. 11th International Conference on Wind Eng., June 2-5, Lubbock TX, USA, 2003, 1973-1980.
    [112] Goswami.I., Scanlan.R.H.,Jones.N.P. Vortex-induced vibrations of circular cylinders.Ⅰ: Experimental data;Ⅱ: New Model. J. Eng. Mech., ASCE 1993, 119: 2270-2302.
    [113] Ehsan.F. and Scanlan.R.H. Vortex-Induced Vibration of Flexible bridges. J.Eng.Mech. ASCE 1990, 116: 1392-1411.
    [114] Coyle, D.C. Measuring the behaviour of tall buildings. Engineering News-Record, 1931, 310–13.
    [115] Rathbun, J.C. Wind forces on a tall building. Transactions of ASCE, 1940, 105:1–41
    [116] Dalgliesh.W.A., Wright.W. and Schriever.W.R., Wind pressure measurements on a full-scale high-rise office building, Proc. Int. Res. Seminar on Wind Effects on Buildings and Structures, Ottawa, 1967, Vol. 1, pp. 167-200.
    [117] Dalgliesh.W.A., Experiences with wind pressure measurements on a full-scale building, Proc. Technical Meeting concerning Wind Loads on Buildings and Structures, Natl. Bur. Stand., Building Sci. Ser. 30, Gaithersburg, Maryland, Jan., 1969, pp. 61-71;
    [118] Dalgliesh.W.A., Statistical treatment of peak gusts on cladding. ASCE Journal of the Structural Division, 1971, 97: 2173–87.
    [119] Standen, Dalgliesh.W.A., and Templin, R.J., A wind tunnel and full-scale study of turbulent wind, pressures on a tall building, Proc. 3rd. Int. Conf. on Wind Effects on Buildings and Structures, 6-11 Sept., 1971, Tokyo, Part 11, pp. 199-209.
    [120] Dalgliesh.W.A., Comparison of model/full-scale wind pressures on a high-rise building. Journal of industrial aerodynamics.1975, (1), 55-66.
    [121] Dalgliesh.W.A., Templin, R.J., and Cooper, K.R., Comparisons of wind tunnel and full-scale building surface pressures with emphasis on peaks, Wind Engineering Proc., 5th International Conference on Wind Engineering, (Ed. By J.E. Cermak), July 1979, 553-565.
    [122] Dalgliesh.W.A., Rainer.J.H., Measurements of wind induced displacements and accelerations of a 57-storey building in Toronto, Canada, Proc., 3rd Colloquium onIndustrial Aerodynamics, Buildings Aerodynamics, Part 2, Aachen, Germany, 14-16 June 1978,67-78.
    [123] Templin, R.J., and Cooper, K.R., Torsional effects on the wind-induced response of a high-rise building, Presented 4th U.S. International Conference on Wind Engineering Research, Seattle, Washington, and July 1981, 26-29.
    [124] Dalgliesh.W.A., Comparison of model and full scale tests of the commerce court building in Toronto. Proceedings of the International Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications Gaithersburg, Maryland, April 1982, 575-589.
    [125] Dalgliesh.W.A., Comparison of Model and Full-scale Tests of Commerce Court Building in Toronto, NBS Workshop, Washington, D.C., 1982
    [126] Dalgliesh.W.A., Cooper, K.R., Templin, R.J., Comparison of model and full-scale accelerations of a high-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 1983, (13):217-228
    [127] Newberry .C.W. The measurement of wind pressures on tall buildings, Symposium on wind effects on buildings and structures.London.1965, (1), 113-150.
    [128] Newberry .C.W., Eaton. K.J., Mayne. J.R., The nature of gust loading on tall buildings. Proc. International research seminar on wind effects on buildings and structures. Ottawa, Canada, September 1967, (1):339-428, University of Toronto press, 1968.
    [129] Newberry .C.W., Mayne. J.R., Wind loading of a tall building in an urban environment; A comparison of full scale and wind tunnel tests. Symposium on wind effects on buildings and structures. April 1968, loughborough university of technology Vol.1, England, 1968.
    [130] Joubert. P. N. et.al. The drag of bluff bodies immersed in a turbulent boundary layer. Proc. International research seminar on wind effects on buildings and structures. Ottawa, Canada, September 1967, (1):297-336, University of Toronto press, 1968.
    [131] Van Koten, Wind measurements of high buildings in the Netherlands. Proc. International research seminar on wind effects on buildings and structures. Ottawa, Canada, September 1967, (1):685-704, University of Toronto press, 1968.
    [132] Davenport, A.G., Perspectives on the full-scale measurement of wind effects, J. Wind Eng. Indust. Aerody, 1975, (1): 23-54.
    [133] Kawai, H., Ishizaki, H., Wind pressure characteristics on a full-scale tall building. Proc. Regional conf. tall buildings. 1976, 161-173.
    [134] Fujimoto.M., Ohkuma.T., Full-scale measurement of pressure and vibration of a tall building due to typhoon 7920 part 1 characteristics of winds and pressures, Proc. Of the 6thnat. symp. On wind engineering.1980, 201-208.
    [135] Ohkuma.T., Marukawa.H., Niihori.Y. and Kato.N. A full-scale measurement of wind pressure and response accelerations of a high-rise building, Proc. Of the 8th colloquium on industrial aerodynamics, Aachen, 1989, 155-166.
    [136] Ohkuma.T., and Marukawa.H., Full-scale measurement of wind pressures and response accelerations of a high-rise building. Journal of Wind Engineering and Industrial Aerodynamics. 1990, 36(1-3): 1063-1071
    [137] Kawabata.S, Ohkuma.T., Kanda.J., Kitamura.H., Ohtake.K. Chiba port tower: Full-scale measurement of wind actions Part 2.asic properties of fluctuating wind pressures. Journal of Wind Engineering and Industrial Aerodynamics. 1990, 33:253-262.
    [138] Jun. Kanda, and Ohkuma.T., Recent developments in full-scale wind pressure Measurements in Japan. J. Wind Eng. Indust. Aerody, 1990, 33: 243-252.
    [139] Isyumov.N. and Davenport. A. G. Comparison of full-scale and wind tunnel wind speed measurements in the commerce court plaza. Journal of Wind Engineering and Industrial Aerodynamics.1975, (1): 177-199
    [140] Lee.Y, Tanaka.H., Shaw.C.Y. Distribution of wind-and temperature-induced pressure differences across the walls of a twenty-storey compartmentalized building. J. Wind Eng. Indust. Aerody, 1982, 10: 287-301.
    [141] Matsui.G., Suda.K., Higuchi.K.. Full-scale measurement of wind pressures acting on a high-rise building of rectangular plan. J. Wind Eng. Indust. Aerody, 1982, 10: 267-286.
    [142] Ohkuma.T., Marukawa.H., Full-scale measurement of wind pressures and response accelerations of a high-rise building. J. Wind Eng. Indust. Aerody. 1991, 38: 185-196.
    [143] C.P.W. Geurts., Rutten. H.S., Wisse. J.A. Coherence of wind-induced pressures on buildings in urban areas: Set up of a full-scale experiment. Journal of Wind Engineering and Industrial Aerodynamics.1996, (65): 31- 41
    [144] Geurts .C.P.W. Full-scale and wind-tunnel measurements of the wind and wind-induced pressures over suburban terrain. Journal of Wind Engineering and Industrial Aerodynamics. 1996, (64): 89-100.
    [145] Geurts .C.P.W., Rutten. H.S., Wisse. J.A. Spectral characteristics of wind induced pressures on a full scale building in suburban terrain Journal of Wind Engineering and Industrial Aerodynamics.1997, (69-71):609-618
    [146] Kawai. H., Katsura. J., Ishizaki.H.,Characteristics of pressure fluctuations on the windward wall of a tall building, in: Proc. 5th Int. Conf. on Wind Engineering., Fort Collins, 1979, 519- 528.
    [147] Hajj. M.R., Tieleman. H.W., Application of wavelet analysis to incident wind in relevance to wind loadings on low-rise structures, J. Fluid Eng. 118 (1996).
    [148] Farge. M., Wavelet transforms and their applications to turbulence, Annual Rev. Fluid Mech. 1992, (24):395-457.
    [149] Jordan.D.,Hajj.M.R.,Tieleman. H.W., Wavelet analysis of the relation between atmospheric wind and pressure fluctuations on a low-rise building, Journal of Wind Engineering and Industrial Aerodynamics. 1997, (69-71):647-655.
    [150] Geurts .C.P.W., Hajj. M.R., Tieleman. H.W., Continuous wavelet transform of wind and wind-induced pressures on a building in suburban terrain. Journal of Wind Engineering and Industrial Aerodynamics. 1998, (74-76): 609-617.
    [151] Kato.N., Niihori.Y., Kurita.T., Ohkuma.T., Full-scale measurement of wind-induced internal pressures in a high-rise building. Journal of Wind Engineering and Industrial Aerodynamics. 1997, (69-71):619-630.
    [152]孙天风,周良茂.无肋双曲线型冷却塔风压分布的全尺寸测量和风洞研究.空气动力学学报.1983, 12(4), 68-76.
    [153]周良茂,李培华.两个邻近全尺寸双曲冷却塔风压分布的测量气动实验与测量制.1992, 6(3), 37-44.
    [154] Xu YL, S. Zhan. Field measurements of Di Wang Tower during Typhoon York. J. Wind Eng. Indust. Aerody. 2001, 89: 73-93.
    [155]伊廷华,李宏男,王国新.基于小波变换的高层建筑脉动风速模拟与实测研究.振动与冲击.2007, 26(3):13-18.
    [156] Q. S. Li, WONG. C. K., FANG.. J. Q., Et al, Field measurements of wind and structural responses of a 70-storey tall building under typhoon conditions. Struct. Design Tall Build, 2000, 9: 325-342.
    [157] Q.S.Li, Y.Q.Xiao, Field measurements of wind effects on the tallest building in Hong Kong, Struct. Design Tall Spec.Build.2003, 12.67-82.
    [158] Q. S. Li, Y. Q. Xiao, Wong,C. K., Jeary. A. P., Field measurements of typhoon effects on a super tall building. Eng. Struct, 2004, 26: 233-244.
    [159] Q. S. Li , J.R.Wu., S.G.. Liang., Y. Q. Xiao., Wong,C. K., Field measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete tall building.Eng.Struct.2004,26(12):1779-1994.
    [160] Q. S. Li, Y. Q. Xiao, Wong,C. K., Full-scale monitoring of typhoon effect on super tall building. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 20: 697-717.
    [161] Q. S. Li, Y. Q. Xiao, J. Y. Fu, Z.N. Li. Full-scale measurements of wind effects on the JinMao building. Journal of Wind Engineering and Industrial Aerodynamics.2007, (95), 445–466.
    [162] Q. S. Li, J.Y. Fu, Y. Q. Xiao, Wind tunnel and full-scale study of wind effects on China‘s tallest building. Engineering Structures. 2006, (28): 1745–1758
    [163]李秋胜等.广州中信广场台风特性与结构响应同步监测研究.第十二届全国结构风工程学术会议论文集.2005, 778-784.
    [164]李秋胜等.沿海城市中心风场特性及香港国际金融中心风致振动现场实测.第十三届全国结构风工程学术会议论文集.2007.
    [165] Surry.D., Pressure measurements on the Texas Tech Building: Wind tunnel measurements and comparisons with full scale. J.Wind Eng.Indust.Aerody., 1991, 38:235-247.
    [166] Hisashi Okada, and Young-Cheol Ha. Comparison of wind tunnel and full-scale pressure Mmeasurement tests on the texas tech building. J. Eng. Mech., ASCE 1992, 41-42, 1601-1612.
    [167] Yoshida.M., Kondo.K., Suzuki.M., Fluctuating wind pressure measured with tubing system. J. Wind Eng. Indust. Aerody. 1992, 41-44: 987-998.
    [168] Howard H. T. Ng, Kishor C. Mehta. Pressure Measuring System for Wind-Induced Pressures on Building Surfaces. J. Wind Eng.Indust. Aerody, 1990, 36:351-360.
    [169] Meecham.D., Surry.D., and Davenport. A.G.., The magnitude and distribution of wind-induced pressures on hip and gable roofs. J.Wind Eng.Indust.Aerody., 1991, 38:257-172.
    [170]郅伦海等.基于远程监控系统的广州中信广场风特性及风致响应实测研究.第十三届全国结构风工程学术会议论文集.2007.
    [171]李正农等.多个地区风场和建筑结构风致响应的远程监控实测系统.第十三届全国结构风工程学术会议论文集.2007.
    [172]李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动, 2002, 22(6): 76-83.
    [173]李宏伟.结构健康监测的无线传感器网络系统研究及应用.哈尔滨工业大学博士学位论文,2005.
    [174]欧进萍,周智等.黑龙江呼兰大桥的光纤光栅智能检测技术.土木工程学报,2004, 37(1):45-49.
    [175]张启伟.大型桥梁健康监测概念与监测系统设计.同济大学学报. 2001, 29(1): 65-69.
    [176] Jian-Huang Weng,Chin-Hsiung Loh,Jerome P.Lynch,Kung-Chun Lu,Pei-Yang Lin,Yang Wang.Output only modal identification of cable-stayed bridge using wireless monitoring systems. Eng. Struct. 2007, 12: 1-11.
    [177] Kareem A, Gurley K. Damping in structures: its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(2-3): 131-157.
    [178] Jeary, A.P. Establishing non-linear damping characteristics of structures from on-stationary response time-histories, Strucl. Eng. 1992, 70 (4): 61-66.
    [179] Maia, N. Silva, J. Theoretical and Experimental Modal Analysis, Research Studies. Press, UK, 1997.
    [180] Jimin He and Zh iFang Fu. Modal Analysis. Butterworth-Heinemann.Press.UK, 2001.
    [181] Brincker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain decomposition. Proc. 18th Int. Modal Analysis Conference, Kissimmee, USA, 2000.
    [182] Brincker R, Ventura C, Andersen P. Damping estimation by frequency domain decomposition. Proc. 19th Int. Modal Analysis Conference, San Antonio, USA, 2001.
    [183] Breukelman, B., A. Dalgleish and N. Isyumov .Estimates of damping and stiffness for tall buildings,in: Proc. 7th U.S. National Conf. on Wind Engineering, June, UCLA, Los Angeles.1993.
    [184] Jones, N.P. and Spartz. C.A., Structural damping estimates for long-span bridges, J. Eng. Mech. 1990, 116(11): 2414-2433.
    [185] Y.L. Pi, N.C. Mickleborough, Modal identification of vibrating structures using ARMA model, Journal of Engineering Mechanics. 1989, 115: 2232-2250.
    [186] Bodeux. J.B., and Golinval. J.C., Modal identification and damage detection using the data-driven stochastic subspace and ARMAV methods. Mechanical Systems and Signal Processing. 2003, 17(1): 83-89.
    [187] Van Overschee, P. & De Moor, B.Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, the Netherlands, 1996
    [188] Brincker, R., Krenk, S., Kirkegaard, P.H. & Rytter, A. Identification of the dynamical properties from correlation function estimates, Bygningsstatiske Meddelelser, Danish Society for Structural Science and Engineering, 1992,63(1):1-38.
    [189] Asmussen, J.C. Modal Analysis based on the random decrement technique. Application to Civil Engineering Structures, Ph.D. Thesis, Univ. Aalborg, 1997
    [190] Ibrahim, S.R. & Mikulcik, E.C. A Method for the direct identification of vibration parameters from the free response, the Shock and Vibration Bulletin, 1977, 47(4):183-198.
    [191] Fukuzono, K. Investigation of multiple-reference ibrahim time domain modal parameter estimation technique, M.Sc. Thesis, Univ. Cincinnati, USA, 1986.
    [192] Brown, D.L., Allemang, R.J., Zimmerman, R. & Mergeay, M. Parameter estimationtechniques for modal analysis, SAE Technical Paper Series, N.790221, 1979.
    [193] Vold, H., Kundrat, J., Rocklin, G.T. & Russel, R.A Multi-input modal estimation algorithm for Mini-Computers”, SAE Technical Paper Series, N.820194, 1982
    [194] Bart Peeters and Guido de Roeck. Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing .1999, 13(6): 855-878
    [195] Bart Peeters, Herman Van der Auweraer, Frederik Vanhollebeke.et al. Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock and Vibration.2007, 14 (4): 283-303.
    [196] Littler JR and Ellis BR. Measuring the dynamic characteristics of prototype structures. In a State of the Art in Wind Engineering, Krishna P (ed.), 1995, pp: 133–154.
    [197] Huang NE, Shen Z, Long SR, Manli C.Wu.,The empirical mode decomposition and the hilbert spectrum for nonlinear and non– stationary time series analysis. Proc. R. Soc. London, 1998, 454: 903– 995.
    [198] Yang JN, Lei Y. Identification of natural frequencies and damping ratios of linear structures via Hilbert transform and empirical mode decomposition. Proc. Of International Conference on Intelligent Systems and Control, IASTED/Acta press, Anaheim, CA, 1999, 310-315.
    [199]陈隽,徐幼麟. HHT方法在结构模态参数中的应用.振动工程学报, 2003, 16 (3): 383-388.
    [200] Xu YL, Chen SW, Zhang RC. Modal identification of Di Wang building under Typhoon York using the Hilbert-Huang transforms method. The Structural Design of Tall and Special Buildings, 2003, 12 (1): 21-47.
    [201] Peng ZK, Peter W, Chu Tse FL. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 2005, 19: 974–988.
    [202] Huang NE, Shen Z, Long S.R, et al. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London A, vol. 454, pp. 903–995, 1998.
    [203] Huang, NE.Man-Li C Wu. Steven R Long. Samuel S.P Shen, confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. London, 2003, 459:2317–2345.
    [204] Olhede, S., and Walden, A. T. The Hilbert spectrum via wavelet projections. Proc. R. Soc. London, Ser. A, 2004, 60: 955–975.
    [205] Kijewski T, Kareem A, Efficacy of hilbert and wavelet transforms for time-frequency analysis. Journal of Engineering Mechanics, ASCE 2006, 132(10): 1037–1049.
    [206] Ruzzene M, Fasana A, Garibaldi L, Piombo B. Natural frequency and damping identification using wavelet transform: application to real data. Mechanical Systems and Signal Processing Journal, 1997, 11: 207-218.
    [207] Slavic J, Simonovski I, Boltezar M. Damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration, 2003, 262: 291-307.
    [208] Le TP, Argoul P. Continuous wavelet transform for modal identification using free decay response. Journal of Sound and Vibration, 2004, 277: 73-100.
    [209] Kijewski T, Kareem A. Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering, 2003, 18: 339-355.
    [210] Davenport, A. G., Past,present and future of wind engineering, J.Wind Eng. & Ind. Aeordyn.2002, 90: 1371-1380.
    [211] Shuzo Murakami. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics.1997.67&68:3-34
    [212] Cermak.J.E.,Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering. And Industrial Aerodynamics.2003, 91:355-370.
    [213] Tamura.Y., and Matsui.M.,Rescent topics in wind engineering focusing on monitoring techniques.Proceedings of the International Conference on Advances in Building Technology 4-6December 2002,Hong Kong.China.65-74.
    [214]项海帆等著.现代桥梁抗风理论与实践.北京:人民交通出版社,2005,11.
    [215]陈振清,刘光栋.桥梁风工程研究的若干进展.第十五届全国结构工程学术会议特邀报告.
    [216]申建红,李春祥.土木工程结构风场实测及新技术研究的进展.振动与冲击,2008,27(10):124-129.
    [217] Claes Dyrbye, Svend O.Hansen.Wind loads on structures. John Wiley & Sons.1997.
    [218]叶丰.高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究[D ].上海:同济大学. 2004.
    [219]顾明,唐意,全涌.矩形截面超高层建筑风致脉动扭矩的基本特征[J].建筑结构学报, 2009, 30 (5) ,191-197.
    [220]中华人民共和国国家标准.热带气旋等级.GB/T 19201-2006.
    [221] Monin A.S.,Obukho, A.M.,Basic laws of turbulent mixing in the ground layer of the atmospherie, Trans.Geophys.Inst.Akda, Nauk USSR, 1954, 151:163-187.
    [222]贺德鑫编著.风工程与工业空气动力学.北京:国防工业出版社.2006.10-12.
    [223]庞加斌,沿海和山区强风特性的观测分析与风洞模拟研究[D].同济大学.2006.3
    [224] Henry W., Tieleman. Strong wind observations in the atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics .2008, 96:41-77.
    [225] Davenport. A.G. The ralationship of wind structure to wuctures.vol.1.London:1965:54-102.
    [226] Panofsky, H.A., Dutton, J.A., Atmospheric Turbulence. Wiley-Interscience, New York. 1983.
    [227] GB 50009-2001,建筑结构荷载规范,中华人民共和国国家标准.2002, 3.
    [228]项海帆著.现代桥梁抗风理论与实践.北京:人民交通出版社.2005.
    [229] Franklin, J.L., Black, M.L. and Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather and Forecasting, 2003, 18:32–44.
    [230] Holmes, J. D., Wind loading of structures, Spon Press, London.2007.
    [231] Kato N, Ohkuma T, Kim J., Marukawa. R. H., Niihori.Y.Full scale measurements of wind velocity in two urban areas an ultrasonic anemometer. Journal of wind Engineering and Industrial Aerodynamics.1992, 41-44:67-78.
    [232]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究.流体力学试验与测量,2002,16(3),32-39.
    [233] Ishizaki,H. Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions.J.Wind Eng.Ind.Aerodyn.1983, 13:55-66.
    [234] Shuyang Cao, Yukio Tamura, Naoshi Kikuchi, et.al.Wind charactristics of a strong typhoon.Journal of wind Engineering and Industrial Aerodynamics.2009, 97:11-21.
    [235] Flay. R.G.J. and Stevenson. D.C.,Integral length scales in strong winds below 20m. Journal of wind Engineering and Industrial Aerodynamics.1988, 28:21-30.
    [236] Reed D.A, Scanlan T.H.Autoregressive representation of longitudinal, lateral, and vertical turbulence spectral. Journal of wind Engineering and Industrial Aerodynamics.1984, 17:199-214.
    [237] Kato N, Ohkuma T, Kim J., Marukawa. R. H., Niihori.Y.Full scale measurements of wind velocity in two urban areas an ultrasonic anemometer. Journal of wind Engineering and Industrial Aerodynamics.1992, 41-44:67-78.
    [238]庞加斌,葛耀君,陆烨.大气边界层湍流积分尺度的分析方法.同济大学学报,2002,30(5):622-626.
    [239]肖仪清,孙建超,李秋胜.台风湍流积分尺度与脉动风速谱.自然灾害学报.2006, 15(5):45-54
    [240] Harris. R.I., Some further thoughts on the spectrum of gustines in strong winds, Journal of wind Engineering and Industrial Aerodynamics.1990, 33:461-467
    [241] Morfiadakis, E.E., Glinou, G.L.and Koulouvari, M.J.The suitability of the von Karman spectrum for the turbulence in a complex terrain wind farm, Journal of wind Engineering and Industrial Aerodynamics.1996,62:237-257.
    [242] Dyrbye, C., and Hanse, S.O.Wind loads on structures, John Wiley &Sons Ltd, Chichester, England, UK.
    [243] Solari, G. Gust buffeting I: peak wind veloctity and equivalent pressure, J.Structural Engineering, ASCE, 1993a, 119:383-398.
    [244] Krenk. S., Wind field coherence and dynamic wind forces, Proceedings IUTAM Symposium on advances in nonlinear stochastic mechanics, Trondheim, Norway, July 1995.
    [245]楼文娟,孙炳南,傅国宏等.复杂体型高层建筑表面风压分布的特征.建筑结构学报.1995, 16(6):38-45
    [246]苏国,陈水福.复杂体型高层建筑表面风压及周围风环境的数值模拟.工程力学.2006, 23(8):144-150.
    [247]顾明,叶丰.超高层建筑风压的幅值特性.同济大学学报(自然科学版).2006, 34(2):143-150.
    [248]黄本才.汪丛军著.结构抗风分析原理及应用.上海:同济大学出版社.2008.9(第二版)
    [249] Massimiliano Gioffre, Vittorio Gusella, Mircea Grigoriu, Non-Gaussian Wind Pressure on Prismatic Buildings.Ⅰ:Stochastic field.J. Struct .Eng.ASCE 2001, 127(9):981-989.
    [250]李锦华,李春祥,申建红.非高斯脉动风压的模拟研究,振动与冲击, 2009, 28(9): 5-8.
    [251] Kumar.K.S. and Stathopoulos, T. Non-Gaussian wind pressure fluctuations on roofs.Proc, 12th Engrg.Mech.Conf.La Jolla, Calif.1998, 1423-1426.
    [252]顾明,叶丰.高层建筑的横风向激励特性和计算模型的研究.土木工程学报.2006.39(2):1-6.
    [253]葛楠,周锡元,侯爱波.矩形高层建筑横向湍流脉动风压谱密度函数的分析计算.沈阳建筑大学学报(自然科学版).2005, 21(6):649-654.
    [254] Davenport .A.G., The relationship of wind structure to wind loading, Proc. Conf. on Wind Eftects on Buildings and Structures, Teddington, 1963, pp. 54 102.
    [255]王燕编著,应用时间序列分析.北京:人民大学出版社,2005.7.108-109.
    [256] Xu YL, Chen J. Characterizing nonstationary wind speed using empirical mode decomposition. J. Struct. Eng., 2004, 130 (6): 912-920.
    [257] Bendat JS, Piersol AG. Random data: analysis and measurement procedures. Second Edition. John Wiley & Sons, 1986, pp: 396-398.
    [258]陈隽,徐幼麟.经验模式分解在信号趋势项提取中的应用.振动、测试与诊断,2005,25(2): 101-104.
    [259] Huang NE, Shen Z, Long SR, Wu ML, Shih HH, Zheng Q, Yen NC, Tung CC, and Liu HH. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London A, vol. 454, pp. 903–995, 1998.
    [260]印欣运,何永勇,彭志科,褚福磊.小波熵及其在状态趋势分析中的应用.振动工程学报, 2004, 17 (2): 165-169.
    [261]陈凯,余永生,贾丛贤.傍山地区的强风场特性实测研究.流体力学实验与测量.2007, 17(3), 18-22.
    [262] Stathopoulos.T., and X.ZHU., Wind Pressures on Buildings with Appurtenances, Journal of Wind Engineering and Industrial Aerodynamics, 1988, (31):265-281.
    [263] Kawai, H. Pressure fluctuations on square prisms: applicability of strip and quasi-steady theories. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13: 197-208.
    [264] Gurley K, Kareem A. Application of wavelet transform in earthquake, wind, and ocean engineering. Engineering Structures, 1999, 21: 149-167.
    [265] Torrence, C., Compo, G. P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998, 79: 61–78.
    [266] Torrence, C., Webster, P. Interdecadal changes in the ENSO-Monsoon system. Journal of Climate, 1999, 12(8): 2679-2690.
    [267] Dunyak, J., Gilliam, X., Peterson, R., Smith, D. Coherent gust detection by wavelet transform. Journal of Wind Engineering and industrial Aerodynamics, 1998, 77-78: 467-478.
    [268]李宏男,伊廷华,伊晓东,王国新.基于RTK GPS技术的超高层结构风振观测.工程力学, 2007,24(8): 121-126.
    [269] Gurley, K., Kijewski, T., Kareem, A. First- and higher-order correlation detection using wavelet transforms. Journal of Engineering Mechanics, ASCE 2003, 129(2): 188-201.
    [270] Carter, G. C. Coherence and time delay estimation. Proceeding of the IEEE, 1987, 75(2): 236-255.
    [271]朱明武,李永新,卜雄洙编著.测试信号处理与分析.北京:北京航空航天大学出版社, 2006.
    [272] Addison, Paul S. The illustrated wavelet transform handbook: introductory theory and applications in science engineering. Medicina and Finance, Institute of Physics Press, Bristol and Philadelphia, 2002.
    [273] Cheong, H. F. Estimation of the minimum pressure coefficient due to gusts. Structural Safety, 1995, 17: 1-16.
    [274] Gurley K, Kareem A. Application of wavelet transform in earthquake, wind, and ocean engineering. Engineering Structures, 1999, 21: 149-167.
    [275] Stazewski W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. Journal of Sound and Vibration, 1998, 214 (4): 639–658.
    [276] Argoul P, Le T P. Instantaneous indicators of structural behavior based on continuous Cauchy wavelet transform. Mechanical Systems and Signal Processing Journal, 2003, 17: 243-250.
    [277] Chui C K. Wavelet analysis and applications: an introduction to wavelets, vol. 1, Academic Press, San Diego, 1992.
    [278] Simonovski I, Boltezǎr M. The norms and variances of the Gabor, Morlet and general harmonic wavelet functions. Journal of Sound and Vibration, 2003, 264: 545-557.
    [279] Lin J, Qu L. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 2000, 234: 135-148.
    [280] Joseph Lardies, Stephane Gouttebroze. Identification of modal parameters using wavelet transform. International Journal of Mechanical Sciences, 2002, 44: 2263-2283.
    [281] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. & Cook, M. F., A mathematical basis for the random decrement vibration signature analysis technique, Journal of Mechanical Design, 1982,104:307–13.
    [282] Kijewski, T. & Kareem, A. On the reliability of a class of system identification techniques: insights from bootstrap theory, Structural Safety, 2002d, 24(2–4): 261–80.
    [283] Q.S.Li, Y.Q.Xiao.J.Y.Fu, Z.N.Li. Full-scalle measurements of wind effects on the Jin Mao building. Journal of Wind Engineering and Industrial Aerodynamisc.2007, 95: 445-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700