用户名: 密码: 验证码:
条形浅基下H-V加筋地基的承载性能和加筋机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加筋地基就是在基础下一定深度范围土体内铺设适当的抗拉材料来改善软弱地基受力性能的一种地基形式。工程实践中,加筋地基的设计内容包括承载力、变形和稳定性计算等。伴随工程实践的增多,加筋地基的设计理论和方法也在发展。但总体来说,加筋机理的研究和加筋效果的评价还不够完善。同时,目前加筋地基的理论还远远落后于实践,描述加筋地基的设计方法也比较少。
     本文以新型水平-竖向加筋(horizontal-vertical,简称H-V)加筋地基为主要研究对象,通过室内模型试验、基于非连续性介质的颗粒流数值模拟及理论分析,对H-V加筋地基的承载力、影响H-V加筋地基的加筋效果和H-V加筋地基的加固机理等方面进行了系统研究。论文主要研究工作包括以下三个方面:
     (1)设计了水平及H-V加筋地基的模型试验方案,完成了11种工况的试验,研究了加筋层数和首层加筋深度对水平及H-V加筋地基的影响。模型试验研究结果表明,在地基中加筋能明显提高地基承载力、减小地基沉降、改善地基的受力性能。同等试验条件下,H-V筋的加筋效果较水平筋的好,对于单层H-V加筋地基,加筋效果随加筋深度的增加而减弱;加筋深度超过一定范围后,加筋对地基受力性能的改善不明显;对于多层H-V加筋地基,承载力随加筋层数的增加而增加,沉降随加筋层数的增加而减小。
     (2)利用PFC2D颗粒流程序对模型试验进行了模拟,得到了不同工况下不同类型加筋地基的应力分布图和颗粒位移图,并结合模型试验中观察到的加筋地基砂土滑移面的形状,深入分析了水平加筋地基和H-V加筋地基的加固机理。PFC2D的数值模拟表明,在地基中加水平筋使得地基受力性能改善的主要原因是筋材对土体起到了隔离和约束作用,加筋地基中的应力分布较无筋地基均匀,同时,筋土之间的摩擦力限制了颗粒的运动。而H-V加筋地基使得地基性能得以改善的原因除了水平筋的加强作用外,还增加了竖向筋对土体颗粒的限制和锚固作用。竖向筋约束了地基中砂粒的运动,使得颗粒更难于形成连续的滑移面,从而比水平筋具有更明显的加筋效果。
     (3)结合模型试验和PFC2D颗粒流数值模拟结果,基于水平及H-V加筋对地基加固的机理,以Terzaghi地基承载力理论为基础,提出了水平加筋及H-V加筋地基的承载力计算方法。并将由此计算的地基承载力和试验值进行了对比,结果吻合良好。
This study aims to investigate the potential benefits of using the horizontional and H-V reinforcements to improve the bearing capacity and to reduce the settlement of shallow foundations. To implement this objective, 11 model tests were performed to study the behaviors of reinforced subsoils. The experimental results show that the reinforcement can significantly improve the bearing capacity of the soil and reduce the footing settlement. The bearing capacity of the soil reinforced with H-V reinforcements is higher than that of the soil reinforced with horizontal reinforcements under the same conditions. The effects of the location and the number of reinforcement layers on the behavior of the soil are presented. The test results show that the bearing capacity decreases remarkably by increasing the top spacing. The test results clearly identify a critical zone between 0.3 B and 0.5B (where B is the width of the footing), and thereby maximum benefits of the bearing capacity of the foundation are obtained. Laboratory tests also show an increase of 180, 290, and 410% in bearing capacity of a strip foundation when one, two, and three layers of reinforcement were used, respectively. Good agreement is observed between Terzaghi's bearing-capacity equations and the experimental results. The test results indicate that the reinforced inclusion can redistribute the applied load to a wider area, thus minimizing stress concentration and achieving a more uniform stress distribution.
     Reinforcing mechanism and failure models of the soil reinforced with horizontional and H-V reinforcements were studied using PFC2D (Particle Flow Code in Two Dimensions). PFC2D analysis results indicate that reinforcement mechanisms of horizontional reinforcements are rigid boundary, membrane effect and lateral restraint effect. Furthermore, the confinement effect of vertical inclusions of H-V reinforcement can be developed. As a result, bearing capacity of the H-V reinforced soil is higher than tant using the horizontional one.
     Based on the tests and PFC2D results and using the limit equilibrium theory, foumlars of bearing capacity of horizontional and H-V reinforced foundations are developed for horizontional and H-V reinforced foundations. The results of proposed foumlars were compared with those obtained from the model tests. Good agreement was obtained.
引文
[1]刘飞禹.加筋地基强度及极限承载力分析.中南大学硕士学位论文, 2001.
    [2]王协群.土工合成材料加筋地基的极限平衡设计与加筋材料的研究.武汉理工大学博士学位论文, 2003.
    [3] Khing, K.H., Das, B.M., Puri, V.K., et al. The bearing capacity of a strip foundation on geogrid-reinforced sand. Geotextiles and Geomembranes, 1993, 12(4): 351-361.
    [4] Nishigata, T., Yamaoka, I. Ultimate bearing capacity of unpaved road reinforced by geotextile. Proceedings of the International Symposium on Earth Reinforcement Practice, 1992, 1: 659-664.
    [5] Ochiai, H., Hayashi, S., Yang, J., et al. Bearing capacity of geogrid reinforced foundation soils. Proceedings of the 10th Southeast Asian Geotechnical Conference, 1990, 107-110.
    [6] Shen Zhujiang (沈珠江). Limit analysis of soft ground reinforced by geosynthetics. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 82-86.
    [7] Shin, E.C., Das, B.M., Lee, E.S., et al. Bearing capacity of strip foundation on geogrid-reinforced sand. Geotechnical and Geological Engineering, 2002, 20(2): 169-180.
    [8] Binquet, J., Lee, K. L.. Bearing capacity tests on reinforced earth slabs. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(GT12): 1241-1255.
    [9] Ju, J.W., et al. Bearing capacity of sand foundation reinforced by geonet.1996, Proceedings of International Symposium on Earth Reinforcement. Rotterdam: Balkema A. A., 1996: 6032608.
    [10] Akinmusuru, J.O., and Akinbolade, J.A.. Stability of loaded footing on reinforced soil. Journal of Geotechnical Engineering, ASCE, 1981, 107(6): 819-827.
    [11] Guido, V.A., Chang, D.K., and Sweeny, M.A.. Comparison of geogrid and geotextile reinforced slabs. Canadian Geotechnical Journal, 1986, 20: 435-440.
    [12]林小玲,周连民,吴建东等.土工织物加筋垫层的应用研究.岩土力学, 2000, (3).
    [13] Basset, R.H., Last, N.C. Reinforcing earth below footings and embankments. Proceedings of the Symposi um on Earth Reinforcement, Pittsburgh, 1984 : 202.
    [14] Verma, B.P., Ha, J.. Three dimensional model footing tests for improving subgrades below existing footings. Earth Reinforcement Practice. Rotterdam, 1992 : 707.
    [15] Ha, J., Tiwari, B., Verma, B.P. Soil reinforcement for improving subgrades below existing footings. Proceedings of Indian Geotechnical Conference. Bombay , 1990 : 33.
    [16] Shimizu, M. Reinforcement of soil ground with thin vertical wall. Earth Reinforcement Practice. Rotterdam , 1992 : 683.
    [17] Verma, B.P., Char, A.N.R.. Bearing capacity tests on reinforced sand subgrade. Journal of the Geotechnical Engineering, 1986 , 112: 701.
    [18]杨果林,王永和.钢筋(煤矸石)混凝土网格式加筋土挡土结构强度特性与试验研究.岩土工程学报. 1999, 21(5): 534-539.
    [19]谢文东.加筋土挡墙的改革设想.有色矿山, 2003, 32(3): 46-48.
    [20] Lawton, C.E., Khire, M.V., Fox, N.S., Reinforcement of soil by multioriented geosynthetic inclusions. Journal of Geotechnical Engineering. 1993, 119 (2): 257-275.
    [21] Zhang, M.X., Javadi, A.A., Min, X. Triaxial tests of sand reinforced with 3D inclusions.Geotextiles and Geomembranes, 2006, 24(4): 201-209.
    [22] Zhang, M.X., Zhou, H., Javadi, A.A., et al. Experimental and theoretical investigation of strength of soil reinforced with multi-layer horizontal-vertical orthogonal elements. Geotextiles and Geomembranes, 2008, 26(1): 1-13.
    [23]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究.岩土工程学报, 2006, 28 (8): 931-936.
    [24]张孟喜,王振武.双层立体加筋砂土的强度特性.岩石力学与工程学报, 2006, (s1): 3289-3298.
    [25] Zhang, M.X., Javadi, A.A., and Min, X. Triaxial behavior of sand reinforced with 3D reinforcements. ASCE Geotechnical Special Publication, 2006, 152:287-294.
    [26] Zhang, M.X., Min, X., and Javadi, A.A. Triaxial tests on sand reinforced with 3D reinforcing elements. Proceedings of the 8th International Conference on Geosynthetics, Yokohama, Japan, 2006, 4: 1677-1680.
    [27] Zhang, M.X., Zhang, S.L., Peng, J., et al. Strength and interaction of soil reinforced with three-dimensional elements. Key Engineering Materials, 2007, 341: 1285-1290.
    [28]张孟喜,张石磊,黄瑾.低超载下条带式带齿加筋界面特性.岩土工程学报, 2007, 29(11): 1623-1629.
    [29] Zhang, M.X., Zhang, S.L. Ultimate pullout forces of orthogonally horizontal-vertical geosynthetic reinforcement. Proceedings of 5th International Symposium on Earth Reinforcement, Fukuoka, Japan, 2007: 289-292.
    [30]张孟喜,周淮.条带式带齿加筋砂土挡墙的模型试验. 2008,中国科学E辑, 2009, 39(1): 48-56..
    [31] Zhang, M.X., Zhou, H. Model test on sand retaining wall reinforced with denti-strip inclusions. 2008, Science in China Series E: Technological Sciences.
    [32]张孟喜,赵飞,侯娟.条形荷载下H-V加筋砂土地基模型试验研究.土木工程学报, 2008, 41 (2): 94-99.
    [33] Yamanouch, T., Gotoh, K. A proposed practical formula of bearing capacity for earthwork method on soft clay ground using a resinous mesh. Technology Report of Kyushu University, 1979, 52 (3): 201-207.
    [34] Shin, E.C., Das, B.M., Puri, V.K., et al. Bearing capacity of strip foundation on geogrid-reinforced clay. Geotechnical Testing Journal, ASTM, 16(4): 534-541.
    [35] Patra, C.R., et al. Bearing capacity of embedded strip foundation on geogrid- reinforced sand. Geotextiles and Geomembranes, 2005, 23(5): 454-462.
    [36] Das, B.M., and Omar, M.T.. The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement. Geotechnical and Geological Engineering, 1994.12: 133-141.
    [37] Das, B.M., Shin, E.C., and Omar, M.T.. The bearing capacity of surface strip foundations on geogrid reinforced sand and clay-a comparative study. Geotechnical and Geological Engineering, 1994, 12(1): 11-14.
    [38] Yetimoglu, T., Wu, J.T.H., and Saglamer, A.. Bearing capacity of rectangular footings on geogrid-reinforced sand. Journal of Geotechnical Engineering, ASCE, 1994, 120(12): 2083-2099.
    [39] Omar, M.T., Das, B.M., Yen, S.C., et al. Ultimate bearing capacity of rectangularfoundations on geogrid-reinforced sand. Geotechnical Testing Journal, ASTM, 16(2): 246-252.
    [40] Omar, M.T., Das, B.M., Puri, V.K., et al.. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement. Canadian Geotechnical Journal, 20(3): 435-440.
    [41] Fragaszy, J.R., and Lawton, E.. Bearing capacity of reinforced sand subgrades. Journal of Geotechnical Engineering, ASCE, 1984, 110(10): 1500-1507.
    [42] Lee, K.M., Manjunath, V.R., Numerical and model studies of strip footing supported by a reinforced granular fill-soft soil system. Canadian geotechnical journal, 1999: 793-806.
    [43]彭芳乐,希迪克,龙冈文夫.砂土地基中加筋深度效果研究.岩石力学与工程学报, 2005, 24 (9): 1512-1521.
    [44]李驰,王建华.加筋风积砂地基承载力试验研究及计算分析.岩石力学与工程学报, 2005, 24 (4): 687-691.
    [45]杨庆,张克,栾茂田等.土工格栅加筋砂土地基性能模型试验研究.大连理工大学学报, 2006, 46(3): 390-394.
    [46]梁波,杨有海.加筋砂土地基承载力理论与试验分析研究.岩土工程学报, 2008, 30(1): 123-127.
    [47]黄仙枝,白晓红.加筋带布置对地基承载力的影响.岩土力学, 2004, 25(9): 1475-1479.
    [48] Chung, W., Cascante, G., Experimental and numerical study of soil-reinforcement effects on the low-strain stiffness and bearing capacity of shallow foundations. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2007, 25: 265–281.
    [49] Ghosh, A., Bera, A.K., Bearing capacity of square footing on pond ash reinforced with jute-geotextile. Geotextiles and Geomembranes, 2005, 23(2): 144–173.
    [50] Michalowski, R.L., Shi, L. Deformation patterns of reinforced foundation sand at failure. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6):439-449.
    [51] Yamamoto, K., Otani, J. Bearing capacity and failure mechanism of reinforced foundations based on rigid-plastic finite element formulation. Geotextiles and Geomembranes, 2002, 20(X): 367-393.
    [52] Yamamoto, K., Kusuda, K., Failure mechanisms and bearing capacities of reinforced foundations. Geotextiles and Geomembranes, 2001, 19 (3): 127-162.
    [53]朱湘,黄晓明.加筋路堤的室内模拟试验和现场沉降观测.岩土工程学报, 2002, (3).
    [54] Guido, V.A., Biesiadecki, G.L., and Sullivan, M.J.. Bearing capacity of a geotextile reinforced foundation. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985(3): 1777-1780.
    [55] Wayne, M.H., Han, J., Akins, K. The design of geosynthesis reinforced foundations. Geosynthetics in foundation reinforcement and erosion control systems: Proceedings of sessions of geo-congress, 1998, 1-18.
    [56] Wilson, C., Giovanni, C. Experimental and numerical study of soil-reinforcement effects on the low-strain stiffness and bearing capacity of shallow foundations. Journal of Geotechnical and Geological Engineering. 2007, 25: 265–281.
    [57] Adams, M.T., Collin, J.G. Large model spread footing load tests on geosynthetic reinforced soil foundations. Journal of Geotechnical and Geoenviromental Engineering. 1997, 123(1): 66–72.
    [58]魏丽敏,华祖煜等.加筋土地基筋带内力量测与分析.岩土工程学报, 1997 (1): 15-21.
    [59]王伟.有纺土工织物加筋软土地基的模型试验和机理研究.岩土工程学报, 2000, 22(6): 750-753.
    [60] Huang, C.C., and Tatsuoka, F. Prediction of bearing capacity in level sandy ground reinforced with strip reinforcement. Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, Fukuoa, Kyushu, Japan, 1988, 191-196.
    [61] Huang, C.C., Tatsuoka F. Bearing capacity of reinforced horizontal sandy ground. Geotextiles and Geomembranes, 1990, 9 (1): 51-82.
    [62] Huang, C.C., Menq, F.Y. Deep-footing and wide-slab effects in reinforced sandy ground. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(1): 30-36.
    [63] Gabr, M.A., Dodson, R., and Collin, J.G.. A study of stress distribution in geogridreinforced sand. Proceedings of geosynthetics in foundation reinforcement and erosion control systems. ASCE Geotechnical Special Publication, 1998, 76: 62-76.
    [64]王钊,王协群.土工合成材料加筋地基的应用研究现状.地基处理, 2001, 11(1): 9-11.
    [65] Takemura, J., et al. Bearing Capacities and Deformations of Sand Reinforced with Geogrids Proc. Int Symposium on Earth Reinforcement. Fukuoka, Japan,1992, 695-700.
    [66] Hirao, K., et al. Laboratory model tests on the application of composite fabrics to soft clay. Proc. Int Symposium on Earth Reinforcement Fukuoka, Japan, 1992, 601-605.
    [67] Love, J.P., et al. Analytical and Model Studies of Reinforcement of a layer of Granular Fill on a soft clay Subgrade. Canadian Geotechnical Journal, 1987, 24: 611-622.
    [68] Hausmann, M.R., Discussion on "Behavior of fabric-versus fiber-reinforced sand". Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1988, 114(3): 381-383.
    [69]王钊,土工织物的拉伸蠕变特性和预拉力加筋堤.岩土工程学报, 1992, (2).
    [70]周健,贾敏才.土工细观模型试验与数值模拟,科学出版社, 2008.
    [71] Cundall, P.A. A computer model for simulating Progerssive large scale Movements in Bloeky Rock Systems. Porceeding of the symposium of the international society of rock mechanics, Nancy, France, 1971, 1(8).
    [72]秦付仁,静荷载和独立基础地基土承载力的标准试验规程.土工基础, 1997, 2.
    [73]曾远.土体破坏细观机理及颗粒流数值模拟.同济大学博士论文, 2006.
    [74]罗勇.土工问题的颗粒流数值模拟及应用研究.浙江大学博士论文, 2007.
    [75]李洋溢.条形基础加筋砂土地基室内模型试验的分析研究.同济大学硕士论文, 2006.
    [76] Walton, O.R., Braun, R.L.. Stress caleulations for assemblies of inelastic spheres in uniform shear. Acta Mechanica, 1985, 63(4): 73-86.
    [77] Williams, J.R., Rege, N. The development of circulation cell struetures in granular materials undergoing compression, PowderTeehnology, 1997, 90: 187-194.
    [78] Williams, J. R., Rege, N. Granular vortices and shear band formation. ASCE Proc. of Meehanies of Deformation and Flow of Particulate Materials,Evanston,lllinois,1997, 62-76.
    [79] Oda, M. Miero-fabric and couple stress in shear bands of granular materials. Proc. Second Int. Conf. on Micromechanics of Granular Media, Birmingham, Balkema, Rotterdam, Netherlands, 1993, 161-166.
    [80] Oda, M. Amiero-deformation model for dilatancy of granular materials. Symposium on Mechanics of Particulate Materials in McNu Conference, ASCE, 1997, 24-37.
    [81] Oda, M., Iwashita, K. Couple stress developed in shear bands, Particle rotation and couple stressing ranular media. Engineering Mechanies. Proeeedings of the 12th Engineering. Mechanics conference, 1998. 1283-1286.
    [82] Oda, M., Kazama, H.. Micro-structure of shear band and its relation to the mechanism of dilatancy and failure of granular soils. London, UK. Geotechnique 48(4), 1998, 465-81.
    [83] Oda, M., Konishi, J.. Microscopic deformation mechanism of granular material in simple shear. Soil and Foundations, Tokyo, JaPan, 1974, 14(4): 25-38.
    [84]周健,池毓蔚,池永等.砂土双轴试验的颗粒流模拟.岩土工程学报, 2000, 22(6): 701-704.
    [85]刘文白,周健.上拔荷载作用下扩展基础的颗粒流数值模拟.水利学报, 2004, 12: 69-76.
    [86] Powrie W., Ni Q., Harkness R., et al. Numerical modeling of plane strain tests on sands using a particulate approach. Geotechnique, 2005, 55(4), 297-306.
    [87]周健,贾敏才等.土工细观模型试验与数值模拟.中国:科学出版社, 2008.
    [88]王钊,王协群.加筋地基的极限分析.清华大学学报, 2001, 41(6): 112-114.
    [89] Qi, M.C. An experimental study on characteristics and behavior of reinforced soil foundation. Doctor thesis of of the Louisiana State University and Agricultural and Mechanical College, 2007.
    [90] Matsui, T., San, K.C., Nabeshima, Y., et al. Bearing mechanism of steel grid reinforcement in pullout test. Earth reinforcement, ochial, yasufuku & omine (eds), 1996 balkema, Rotterdam.
    [91]王孝存,周健.加筋地基的应用研究进展.地下空间与工程学报, 2006, 2(2): 320-324.
    [92]王伟,王俭,薛剑豪等.土工格栅加筋垫层加固软土地基模型试验分析.岩土力学,2005, 26(12): 1885-1891.
    [93]周建,孔祥利,王孝存.加筋地基承载力特性及破坏模式的试验研究.岩土工程学报, 2008, 30(9): 1265-1269.
    [94]张孟喜. H-V筋.立体加筋土:中国, zl200510028241.8. 2005.
    [95]雷胜友,现代加筋土理论与技术.中国,人民交通出版社, 2006.
    [96] Neilsen, M.P., Anderson, L.R. Pullout resistance of wire mats embedded in soil. Report for hilfiker Co. department of civil engineering, Utah state university, 1984.
    [97] Jewell, R.A., Milligam,G. W. E., Sarsby, R. W., et al. Interaction between soil and grids. Polymer grid reinforcement, London, Thomas telford, 1985.
    [98]周晖,吴建奇.加筋土技术研究现状及发展趋势.矿业工程, 2005, 3(6): 17-18.
    [99]王钊,王协群.土工合成材料加筋地基的应用研究现状.地基处理, 2000, 11(1): 9-19.
    [100]李新国,王元战,张连福.土工合成材料加筋技术研究及工程应用.港工技术, 2004, 6(2): 19-22.
    [101]王协群.土工合成材料加筋地基的极限平衡设计与加筋材料的研究.武汉理工大学博士论文. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700