用户名: 密码: 验证码:
混合、同轴与乳液静电纺丝方法制备活性组织工程支架
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程学是一门将细胞生物学和材料学相结合的新兴学科。组织工程学通过将种子细胞种植于仿生支架材料上,并在体外培养增殖,在形成新的组织后植入受损部位,从而达到修复和重建原人体组织结构和功能的目的。因此,组织工程学的关键,同时也是具有挑战性的一步就是如何制备具有仿生天然细胞外基质的工程支架。首先,这种组织工程支架要在结构上模拟天然细胞外基质的三维多孔结构;其次,该支架要具有良好的生物安全性和相容性;最后,这种支架要从功能上模拟天然细胞外基质,即能够促进细胞的生长和诱导组织的形成。
     本论文采用静电纺丝方法制备了从材料、结构和功能上仿生天然细胞外基质的纳米纤维组织工程支架。首先,通过混合静电纺丝的方法制备了聚乳酸-已内酯(PLLACL)/壳聚糖的复合纳米纤维膜,系统地研究了该复合纳米纤维的各项性能,包括表面形态、结晶结构、化学结构、力学性能、热力学性能、亲水性和生物安全性。结果表明,当PLLACL占较大比例时,纤维膜的力学性能较好,而亲水性和生物相容性则较差,而且,复合纤维保持了两种物质的化学结构和结晶结构。在对聚已内酯-叶绿素铜钠盐的研究中,分析了叶绿素铜钠盐的质量比对纳米纤维最终形态的影响,当叶绿素铜钠盐质量为聚已内酯的20%时,制备的物质已经失去了原有纳米纤维的形态;并且.,叶绿素铜钠盐的加入也对纤维膜的力学性能有着消极的影响;降解实验和释放实验证明在纤维膜浸入模拟人体环境的溶液中10小时内,叶绿素铜钠盐几乎全部释出,也就为新组织和再生细胞的生长提供了充足的空问。
     采用同轴静电纺丝方法制备负载生物活性因子的功能纳米纤维。将PLLACL溶解于三氟乙醇(TFE)作为同轴静电纺丝的外层溶液,用于形成纳米纤维的壳层;将蛋白质溶解于超纯水中作为内层溶液,并用于形成纤维的芯层。同轴静电纺丝纳米纤维相对于单纺的PLLACL纤维具有较细的直径,并且由于蛋白质的加入和纤维结构的变化,其力学性较差;但是其亲水性基本上没有变化。为更好的研究蛋白质由同轴静电纺丝纳米纤维中释放的行为,本文采用盐酸四环素为模型药物制备了“混纺”和“同轴”两种纳米纤维膜,并使它们在相同的条件下进行释放实验。结果证明,盐酸四环素由混纺纤维中释放时产生了严重的突释现象,而它由同轴纺丝纤维膜中释放时则表现出相对稳定和持续的行为。我们从理论上解释并模拟了蛋白质在纤维中的浓度变化;并且制备了多种不同形状的神经导管支架,特别是螺旋外形的导管支架在抗压和卷曲性能方面非常突出。由于大鼠肾上腺嗜铬神经瘤细胞(PC12)能够在神经生长因子(NGF)的作用下出现形态上的分化,即生长出特有的神经轴突;因此,本文中选用PC12细胞来验证从同轴静电纺丝纳米纤维中释放的NGF的活性。结果证明由同轴静电纺丝纳米纤维膜中释放的NGF具有神经诱导活性。
     采用乳液静电纺丝的方法制备具有神经诱导活性的功能纳米纤维。该种静电纺丝乳液包括PLLACL溶解于三氯甲烷形成的油相溶液、蛋白质溶解于超纯水形成的水相溶液和作为稳定剂的山梨糖醇酐油酸酯(Span80),,对负载蛋白质的PLLACL纳米纤维表面形态的研究发现,负载蛋白质的纳米纤维具有较小的纤维直径;与单纺纤维膜相比,乳液静电纺丝纤维膜由于乳化剂Span80的加入其力学性能较好;而且由于乳化剂在纤维表面的分布,乳液静电纺丝纳米纤维膜的其亲水性大大改善。本文对乳液静电纺丝纳米纤维的形成过程做了理论上的解释,认为部分纤维是由含有水相溶液滴的乳液拉伸而成,并且在电场力的驱动下乳化剂分子按照亲水基在外、憎水基在内的方式排布在纤维的表面。与同轴静电纺丝相似,蛋白质能够从乳液静电纺丝纳米纤维中以较为稳定的方式持续释放。实验结果表明,从乳液静电纺丝纳米纤维中释放的NGF能够成功的诱导PC12细胞生长出神经轴突,这就证明了通过乳液静电纺丝可以包覆NGF等蛋白质并保持其生物活性。
     对乳液静电纺丝方法制备负载双组分药物/蛋白质纳米纤维做了尝试性研究。在乳液的油相溶液中混合罗丹明B、水相溶液中混合BSA,分别研究药物和蛋白质的负载和释放情况。实验结果表明,载药后的纳米纤维膜的热稳定性几乎没有改变,而由于药物或蛋白的加入,影响了纤维的结晶性。释放实验表明,位于纤维壳层的药物会以较快的速度释放,且伴有突释现象发生;而包裹于纤维芯层的药物或蛋白则会在长时间内(2周)稳定并持续释放。
     本文对凝胶静电纺丝聚已内酯做了尝试性研究,并期望对带有珠状或块状物质的静电纺丝纤维做出理论上的解释。通过对凝胶溶液凝胶点的确定和分析,得知在静电纺丝过程中如果出现凝胶的现象则会使纺丝液提前固化,从而在纤维上出现珠状或块状物质。
     本文采用三种静电纺丝方法(即混合、同轴和乳液电纺丝)制备活性纳米纤维做了系统的研究和比较,并首次提出了负载“双组分药物/蛋白”纳米纤维的概念。本研究为活性纳米纤维组织工程支架的制备提供了参考,并为进一步开展组织工程化人工器官的研究以及临床应用提供了重要的实验数据和科学依据。
Tissue engineering (TE) is one of the new subjects which combined Biology and Material Science. The basic concept of TE is aimed to reestablish human tissue and organs by planting the TE scaffolds with functional cells incorporated into the damaged position. Therefore, the key point and the most challenged technique of TE are to fabricate the tissue engineering scaffolds which could mimic the natural extracellular matrix (ECM):a) the TE scaffolds could mimic the 3-Dimensional structure of natural ECM, b) the scaffolds should be provided with biosafety and biocompatibility, and c) the scaffolds should mimic the functions of natural ECM to accelerate the growth of new cells and induce the formation of new tissue.
     In the present studies, TE scaffolds which mimic the natural ECM from materials, structure and functions were fabricated by means of electrospinning.
     The morphology, crystal and chemical structure, mechanical properties, thermodynamic properties, hydrophilicity and biocompatibility of electrospun poly(l-lactide-co-caprolactone) (PLLACL)-Chitosan nanofibers were investigated. The results demonstrated that the mechanical properties get better, the hydrophilicity and biocompatibility get worse with the increasing of PLLACL content in the resultant nanofibers. However, the nanofibers maintained the crystal and chemical structure of PLLACL and Chitosan. Polycaprolactone/Chlorophyllin sodium copper salt (PCL/CSC) nanofibrous mats were successfully prepared by electrospinning from their 2,2,2-trifluoroethanol (TFE) solutions. Systematic investigations were carried out to study the effects of CSC content on the morphology of nanofibrous. The incorporation of CSC with PCL nanofibers resulted in lower strength due to the reason that the CSC could not electrospun into any fibers alone, and the existing of CSC could impact PCL to be fabricated into ultrafine nanofibers. SEM examinations revealed that the PCL/CSC nanofibers with 20%CSC loss their fiber structure. For evaluating of the PCL/CSC nanofibrous mats performance for being the scaffolds which could provide sufficient space for the cells, it was investigated by examination of the weight loss and CSC release tests.
     The core-shell nanofibers with bioactive factors incorporated in the core part were fabricated with the method of coaxial electrospinning. PLLACL was dissolved into TFE as the outer solution to form the shell part; and the proteins were dissolved into distilled water as the inner solution to form the core part. The coaxial electrospun nanofibers have thinner diameter than plain PLLACL nanofibers and the mechanical properties of coaxial electrospun nanofibers are worse than plain PLLACL nanofibers. To investigate the behaviors of small molecules releasing from coaxial electrospun nanofibers, the blend and coaxial electrospun nanofibers were produced and the release profiles were determined under the same conditions. The results showed that Tetracycline Hydrochloride (TCH, used as model drug) released from coaxial electrospun nanofibers sustainedly and stably, while it releasing from blend electrospun nanofibers showed a "burst" behavior in the initial stage. The concentrations of proteins in coaxial electrospun nanofibers were simulated. In addition, nanofibrous tubes with spiral form were fabricated. The bioactivity of released protein were tested and convinced by testing the neurite outgrowth of a rat pheochromocytoma cell (PC 12).
     The biofunctional nanofibers with nerve induced bioactivity were produced by means of emulsion electrospinning. Nanofibrous mats which electrospun from a emulsion made of PLLACL solution, Phosphate buffered saline (PBS, pH 7.4) solution contained proteins and Sorbitan Monooleate (Span-80, an emulsifier/surfactant widely used in food products and oral Pharmaceuticals) were investigated. The morphologies of the fabricated nanofibrous mats were examined by scanning electron microscopy (SEM); Span80 was used as surfactant in the emulsion electrospinning, and the distribution of the surfactant in nanofibers was studied. The cell viability on emulsion electrospun nanofibrous mats was evaluated. The release behavior of proteins from core-shell nanofibrous was measured; the bioactivity of released NGF from nanofibrous mats was confirmed by PC 12 neurite outgrowth assay. Furthermore, the forming process of emulsion electrospun nanotibers and the distribution of Span80 in nanofibers were discussed.
     In this work, a novel type of tissue engineering scaffold or drugs delivery carrier with the capability of encapsulation and controlled release drugs were fabricated by emulsion electrospinning. Rhodamine B and Bovine Serum Albumin (BSA) were successfully incorporated into nanofibers. The morphology of composite nanofibers was studied by SEM. The composite nanofibrous mats made from emulsion electrospinning were characterized by water contact angle measurement and X-ray diffraction. In vitro dual drugs release behaviors from composite nanofibrous mats were investigated. The results indicated that the incorporated drug and/or proteins in composite fibrous mats made from electrospinning could be control released by adjusting the processes of emulsions preparation.
     Bead/block-type nanofibers were prepared by electrospinning of a ternary system consisting of water, acetone, and PCL. The phase diagram for the ternary H_2O-acetone-PCL system was determined from the cloud point data. The ternary phase diagram can be used to investigate the mechanism of fiber formation, which is unlike that of traditional electrospun fibers. And the formation of bead or block-like nanofibers was caused by the solidification of gelation.
     In this work, nanofibers for the applications of TE scaffolds were successfully fabricated by blend, coaxial and emulsion electrospinning. The nanofibrous system for duel-drugs (or proteins) incorporation and release was also prepared and investigated.
引文
1. Ashammakhi N, Ndreu A, Nikkola L, Wimpenny I, Yang Y. Advancing tissue engineering by using electrospun nanofibers. Regen Med 2008;3(4):547-574.
    2. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Review of Medical Devices 2006;3:835-851.
    3. Boland ED, Bowlin GL, Simpson DG, Wnek GE. Electrospinning of tissue engineering scaffolds. Abstracts of Papers of the American Chemical Society 2001;222:U344-U344.
    4. Langer R, Vacanti JP. TISSUE ENGINEERING. Science 1993;260(5110):920-926.
    5. Chen F, Li XQ, Mo XM, He CL, Wang HS, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. Journal of Biomaterials Science-Polymer Edition 2008; 19(5):677-691.
    6. Chen ZG, Mo XM, Qing FL. Electrospinning of chitosan collagen complex:To mimic the native extracellular matrix. Tissue Eng 2006; 12(4):1074-1074.
    7. Kitazono E, Kaneko H, Miyoshi T, Miyamoto K. Tissue engineering using nanofiber. Journal of Synthetic Organic Chemistry Japan 2004;62(5):514-519.
    8. Zhong SP, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 2006;79A(3):456-463.
    9. Hosseinkhani H, Hosseinkhani M, Tian FR, Kobayashi H, Tabata Y. Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng 2007; 13(1):11-19.
    10. Li L, Hsieh YL. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 2006;341(3):374-381.
    11. Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun 2004;25(18):1600-1605.
    12. Sindelar T, Nikkola L, Ashammakhi N, van Griensven M, Redl H. Electrospinning of fibrinogen nanofibers. Cytotherapy 2006;8:45-45.
    13. Morton T, Nikkola L, Ashammakhi N, Wolbank S, Peterbauer A, van Griensven M, et al. Electrospun fibrinogen and fibrin nanofibers for angiogenesis in vitro. Wound Repair Regen 2007; 15(2):A48-A48.
    14. Park K, Jung HJ, Kim JJ, Ahn KD, Han DK, Ju YM. Acrylic acid-grafted hydrophilic electrospun nanofibrous poly(L-lactic acid) scaffold. Macromolecular Research 2006;14(5):552-558.
    15. Li XQ, Su Y, He CL, Wang HS, Mo XM. A Study of the Electrospinning of an H2O-Acetone-PCL Ternary System. Polymers & Polymer Composites 2009;17(1):37-40.
    16. Li XQ, Su Y, Chen R, He CL, Wang HS, Mo XM. Fabrication and Properties of Core-Shell Structure P(LLA-CL) Nanofibers by Coaxial Electrospinning. J Appl Polym Sci 2009;111(3):1564-1570.
    17. Vacanti CA, Langer R, Schloo B, Vacanti JP. SYNTHETIC-POLYMERS SEEDED WITH CHONDROCYTES PROVIDE A TEMPLATE FOR NEW CARTILAGE FORMATION. Plast Reconstr Surg 1991;88(5):753-759.
    18. Bolgen N, Vargel I, Korkusuz P, Menceloglu YZ, Piskin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B 2007;81B(2):530-543.
    19. Stitzel J, Liu L, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomateriais 2006;27:1088-1094.
    20. C RBK, Kim CK, Khil MS, Kim HY, Kim IS. Synthesis of hydroxyapatite crystals using titanium oxide electrospun nanofibers. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2008;28:70-74.
    21. Chew SY, Mi RF, Hoke A, Leong KW. Aligned protein-polymer composite fibers enhance nerve regeneration:A potential tissue-engineering platform. Adv Funct Mater 2007; 17(8):1288-1296.
    22. Lee CB, Chung DJ, Choung PH, inventors; Univ Seoul Nat Ind Found, assignee. Method for fabricating bio-degradable polymer nerve conduit by using electrospinning, particularly in connection with realizing porous support structure having diameter of tens of nm Patent No. KR2005095250-A,2006.
    23. Mo XM, Weber HJ. Electrospinning P(LLA-CL) nanofiber:A tubular scaffold fabrication with circumferential alignment. Macromolecular Symposia 2004;217:413-416.
    24. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitze J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res A 2007;83A:999-1008.
    25. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin:Preliminary vascular tissue engineering. Front Biosci 2004;9:1422-1432.
    26. Branham K, Stadelman BJ, Serra L, Koenig DW, inventors; Kimberly-Clark Worldwide Inc, assignee. Method for forming a composite nonwoven web configured to deliver skin wellness agents, comprises forming an aqueous system of a hydrophilic polymer and a skin wellness agent, and electrospinning nanofibers from the aqueous system Patent No. WO2008149248-A2,2009.
    27. Baker DA, Brown PJ. Crosslinked electrospun PET webs. Aatcc Review 2005;5(7):28-33.
    28. Casper CL, Yang W, Farach-Carson MC, Rabolt JF. Coating electrospun collagen and gelatin fibers with perlecan domain Ⅰ for increased growth factor binding. Biomacromolecules 2007 Apr;8(4):1116-1123.
    29. Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds:Preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 2006;7(2):635-643.
    30. Corey JM, Gertz CC, Wang B-S, Birrell LK, Johnson SL, Martin DC, et al. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomater 2008;4(4):863-875.
    31. Cho WJ, Kim JH, Oh SH, Lee JH. Characterization of hydrophilized PCL electrospun sheet as an effective guided bone regeneration membrane. Asbm7: Advanced Biomaterials Vii 2007;342-343:293-296.
    32. Chen ZG, Mo XM, Qing FL. Electrospinning of collagen-chitosan complex. Mater Lett 2007;61(16):3490-3494.
    33. Zhao PC, Jiang HL, Pan H, Zhu KJ, Chen W. Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning. J Biomed Mater Res A 2007;83A:372-382.
    34. Xu X, Chen X, Lu T, Wang X, Yang L, Jing X. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Control Release 2006 Sep 12;114(3):307-316.
    35. Chen ZG, Mo XM, He CL, Wang HS. Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr Polym 2008 May 16;72(3):410-418.
    36. Gong HJ, Yang XP, Chen GQ, Liu TQ, Zhang SM, Deng XL, et al. Study on PLA/MWNT/HA hybrid nanofibers prepared via electrospinning technology. Acta Polymerica Sinica 2005(2):297-300.
    37. Stitzel JD, Bowlin GL, Mansfield K, Wnek GE, Simpson DG. Electrospraying and electrospinning of polymers for biomedical applications. Poly(lactic-co-glycolic acid) and poly(ethylene-co-vinylacetate). Revolutionary Materials:Technology and Economics 2000;32.205-211.
    38. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004;25(10):1883-1890.
    39. Vaz CM, van Tuijl S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 2005 Sep;1(5):575-582.
    40. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(epsilon-caprolactone) nonwoven mats via electrospinning. Polymer 2003;44(4):1287-1294.
    41. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24(12):2077-2082.
    42. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 2005;26(19):4139-4147.
    43. Bhattarai N, Li ZS, Edmondson D, Zhang MQ. Alginate-based nanofibrous scaffolds:Structural, mechanical, and biological properties. Adv Mater 2006; 18(11):1463-+.
    44. Xin XJ, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325.
    45. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004;25(10):1891-1900.
    46. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dal ton P, et al. Guidance of glial cell, migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 2007;28(19):3012-3025.
    47. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers:Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27(8):1452-1461.
    48. Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008;313:183-188.
    49. Li J, He A, Zheng J, Han CC. Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 2006 Jul;7(7):2243-2247.
    50. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005;6:2017-2024.
    51. Chu B, Hsiao BS, Hadjiargyrou M, Fang D, Zong X, Kim K, inventors; Univ New York State Res Found, assignee. Cell delivery system useful for storing and delivering viable cells for treating defective tissue e.g. bone comprises biodegradable and/or bioabsorbable fibrous matrix and viable cells physically associated with the matrix Patent No. US2005014252-A1; US7323190-B2,2005.
    52. Matsuda A, Kagata G, Kino R, Tanaka J. Preparation of chitosan nanofiber tube by electrospinning. Journal of Nanoscience and Nanotechnology 2007;7(3):852-855.
    53. Lu MC, Hsiang SW, Lai TY, Yao CH, Lin LY, Chen YS. Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration. Journal of Biomaterials Science-Polymer Edition 2007;18(7):843-863.
    54. Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed 2008;19(5):677-691.
    55. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29:653-661.
    56. Bini TB, Gao SJ, Wang S, Ramakrishna S. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering:an in vitro study. JMatS 2006;41(19):6453-6459.
    57. M.F. Meek, P.H. Robinson, I Stokroos, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly (DLLA-co-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials,2001(22):1177-1185.
    58.刘世清,李皓桓,彭昊,等.吡咯喹啉醌充填导管诱导外周神经再生的实验研究.中华显微外科杂志,2005,28(2):145-147.
    59. Wang KK, Costas PD, Bryan DJ, et al. Inside-out vein graft promotes improved nerve regeneration in rats. Microsurgery,1993(14):608-612.
    60. Chen YS., C. L. Hsieh, C. C. Tsai, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 2000,21,1541-1547.
    61. Yoshii S, Oka M. Collagen filaments as a scaffold for nerve regeneration. J Biomed Mater Res,2001(5):400-405.
    62. McDaniel, Jr. HE. Tissue engineered collagen nerve guidance channels. In:Stark GB, Horch R, Tanoszos Eeditors. Biological matrices and tissue reconstruction. Heidelberg:Springer,1998(32):237-242.
    63. Sieminski AL, Gooch KJ. Biomaterial-microvasculature interactions. Biomaterials,2000(21):2233-2241.
    64. M.Rafiuddin Ahmed, U.Venkateshwarlu, R.Jayakumar,et al. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials, 2004(25):2585-2594.
    65. Chen YS, Chang JY, Cheng CY. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005(26):3911-3918.
    66. Chang JY, Lin JH, Yao CH, et al. In Vivo Evaluation of a Biodegradable EDC/NHS-Cross-Linked Gelatin Peripheral Nerve Guide Conduit Material. Macromol. Biosci,2007(7):500-507.
    67. Eugene Khor, Lim LY. Implantable applications of chitin and chitosan. Biomaterials,2003 (24):2339-2349.
    68. Thomas Freier, Rivelino Montenegro, Hui Shan Koh, et al. Shoichet et al. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials,2005 (26):4624-4632.
    69. Wang AJ, Ao Q, Cao WL, et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J Biomed Mater Res,2006,(79)A:36-46.
    70. Ana Paula Pego, Andre A. Poot, Dirk W. Grijpma,et al. Biodegradable elastomeric scaffolds for soft tissue engineering. J Contro Release,2003 (87):69-79.
    71. Wang SG, Cai Q, Hou JW,et al. Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J Biomed Mater Res,2003 (66) A:522-531.
    72. F. J. Rodriguez, N. Go mez, G. Perego, et al. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials,1999(16):1489-1500.
    73. Yodthong Baimarkl and Robert Molloy. Synthesis and characterization of poly(L-lactideco-caprolactone) (B)-poly(L-lactide) (A) ABA block copolymers. Polym. Adv. Technol,2005(16):332-337.
    74. M.F. Meek, P.H. Robinson, I. Stokroos, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials,2001 (22) 1177-1185.
    75. Cathryn A.Sundback, Jeffery Y.Shyu, Wang YD, et al. Biocompatibility analysis of poly (glycerol-sebacate) as a nerve guide material. Biomaterials,2005(26): 5454-5464.
    75. T B Bini, Gao SJ, Tan TC, et al.Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotech, 2004(15):1459-1464.
    76.金国华,田美玲,秦建兵,等.BDNF、NGF对体外长期培养的胚基底前脑胆碱能神经元的影响.神经解剖学杂志,2001,17(4):337-341.
    77.张玉波,伍亚民,杨恒文,等.NGF促周围神经再生过程中对血管生成的影 响.第三军医大学学报,2005,14(27)1463-1466.
    78. Fine, Martin Hoss, Reynolds, et al. Microarry technology GEM microarrys and drug discovery. [J].J Ind. Microbiol Biotechnol.2002,285(3):180-185.
    79. He K, Nukada H, Urakami T, et al. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ):implications for its function in biological systems Biochemical Pharmacology,65,2003,67-74.
    80.廖文,张庆富,赵永歧,等.复方丹参对周围神经再生的影响.中国康复,2004,19(3):131-133.
    81. Fatima Rosalina Pereira Lopes, Lenira Camargo de Moura Campos, Jose Dias Correa Jr et al. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Experimental Neurology,2006(198):457-468.
    1. Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed 2008;19(5):677-691.
    2. Chen ZG, Mo XM, Qing FL. Electrospinning of collagen-chitosan complex. Mater Lett 2007;61(16):3490-3494.
    3. Dong C, Duan B, Yuan X, Yao K. [Electrospinning and morphology of ultrafine poly (D, L-lactide) fibers]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005;22(6):1245-1248.
    4. Atala A, Yoo J, Lim G, Czerw R, Soker S, Stitzel J, inventors; Atala a; Yoo J; Lim G; Czerw R; Soker S; Stitzel J; Univ Wake Forest Health Sci, assignee. Electrospun matrix for tissue engineering, has natural components and synthetic polymer components, and three-dimensional ultrastructure of interconnected fibers and pores to permit cell attachment and mechanical strength Patent No. US2006204539-A1; WO2006099315-A2,2006.
    5. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 2004;45(15):5361-5368.
    1. Han XJ, Huang ZM, He CL, Liu L, Wu OS. Coaxial electrospinning of PC(shell)/PU(core) composite nanofibers for textile application. Polym Compos 2008;29(5):579-584.
    2. Han XJ, Huang ZM, He CL, Liu L. Preparation and characterization of core-shell structured nanofibers by coaxial electrospinning. High Perform Polym 2007; 19(2):147-159.
    3. Li XQ, Su Y, Chen R, He CL, Wang HS, Mo XM. Fabrication and Properties of Core-Shell Structure P(LLA-CL) Nanofibers by Coaxial Electrospinning. J Appl Polym Sci 2009; 111 (3):1564-1570.
    4. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005;6:2017-2024.
    1. Li XQ, Su Y, Zhou X, Mo XM. Distribution of Sorbitan Monooleate in poly(L-lactide-co-epsilon-caprolactone) nanofibers from emulsion electrospinning. Colloids and Surfaces B-Biointerfaces 2009;69(2):221-224.
    2. Qi H, Hu P, Xu J, Wang A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning:morphology characterization and preliminary release assessment. Biomacromolecules 2006 Aug;7(8):2327-2330.
    3. Wang LY, Gu YH, Zhou QZ, Ma GH, Wan YH, Su ZG. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step soliditication process. Colloids and Surfaces B-Biointerfaces 2006;50(2):126-135.
    4. Xu XL, Zhuang XL, Chen XS, Wang XR, Yang LX, Jing XB. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 2006;27(19):1637-1642.
    5. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, et al. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Relea 2005;108(1):33-42.
    1. Shenoy SL, Bates WD, Wnek G. Correlations between electrospinnability and physical gelation. Polymer 2005:46(21):8990-9004.
    2. Wan YQ, He JH, Yu J Y, Wu Y. Electrospinning of high-molecule PEO solution. J Appl Polym Sci 2007; 103(6):3840-3843.
    3. Li XQ, Su Y, He CL, Wang HS, Mo XM. A Study of the Electrospinning of an H2O-Acetone-PCL Ternary System. Polymers & Polymer Composites 2009;17(1):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700