用户名: 密码: 验证码:
塔里木盆地奥陶系碳酸盐岩储集体井下和露头对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着塔里木盆地勘探和开发的不断加深,缝洞型碳酸盐岩储集体逐渐成为塔河油田的研究热点,此类储集体多产于奥陶系碳酸盐岩中,具有地层老、埋藏深、非均质性强和溶洞内充填物复杂的特点,严重的制约了油田的勘探开发。本论文围绕缝洞型碳酸盐岩储集体特征这一主题,综合利用野外露头、岩心、测井、地球物理和多种分析测试等资料,运用塔河油田地下储层和巴楚地区野外露头对比研究的方法,对缝洞型碳酸盐岩储集体进行了系统的研究。
     对塔里木盆地的塔河油田地下奥陶系缝洞型碳酸盐岩储层的研究,认为塔河油田在奥陶系发育碳酸盐岩台地相,储层主要由颗粒灰岩、微晶灰岩、白云石砂屑斑状灰岩、藻(礁)灰岩、白云岩、岩溶岩等六类岩石组成。成岩作用现象复杂多样,早期弱胶结作用、晚期压实压溶作用及相关的缝合线的形成、溶解作用及岩溶作用、表生期的混合白云化作用、破裂作用和多期裂缝的形成都有利于形成物性较好的储层。成岩演化特征复杂,主要经历了海底成岩环境、地表大气淡水成岩环境和深埋藏成岩环境。储集空间类型主要为大型洞穴、溶蚀孔洞和裂缝三种类型。储层可以分为溶洞型、裂缝—孔洞型和裂缝型3种储集体类型,其中,大溶洞型储集体是研究区最重要的一种储层。储层在垂向上,可以按洞穴层顶距T74面距离0-60m、60-150m和大于150m分为3个带,在平面上,可以按距T74面距离60m处分为两层。塔河油田缝洞型储集体受岩溶古地貌和古水系控制,在岩溶台地带和大型断裂、裂缝带以及多组断裂的交汇处溶洞更加发育。
     对塔里木盆地巴楚野外露头奥陶系缝洞型碳酸盐岩储集体的系统研究,认为缝洞型储集体可以分为古溶洞充填体、溶洞口藻(礁)灰岩发育带和受溶洞影响的围岩带3大类。其中,栉壳状弱胶结的搬运型角砾岩、垮塌角砾岩、层状藻(礁)灰岩、海绵状藻(礁)灰岩、颗粒状藻(礁)灰岩、丛状藻(礁)灰岩和层状分布的砂糖状淀积岩等岩石可能形成良好的储集体。缝洞型组合主要可以分为风化壳型和沿断裂分布的断裂型2种模式。
     综合塔河油田地下奥陶系储层和巴楚野外露头奥陶系古溶洞对比研究认为,塔里木盆地缝洞型碳酸盐岩储集体从下到上大致可以分为4个带:①物理沉积带,包括Ⅰ搬运型沉积岩带和Ⅲ垮塌角砾岩堆积带;②淀积岩发育带,包括Ⅳ淀积岩发育带、Ⅴ淀积岩之间的未充填层、Ⅵ含砾砂岩包壳层;③围岩影响带,包括Ⅶ破碎带、Ⅷ破裂带;④未影响围岩层Ⅸ。参照缝洞型碳酸盐岩综合垂向岩石序列,根据岩心缺失段的上下围岩特征,结合单井的的测井曲线特征和古地貌特征能够预测出岩心缺失段的岩石特征。露头古溶洞充填体中藻(礁)灰岩良好储层的发现,以及塔河油田可能存在有藻(礁)灰岩储层的证据表明,塔里木盆地很可能存在有藻(礁)灰岩储集体,这为油田下一步勘探和寻找新的储集体指明了方向。奥陶系露头缝洞型碳酸盐岩储集体岩石孔隙度的系统测试为塔河油田缝洞型碳酸盐岩油藏的储量计算提供了参数依据。
With the deepening of Tarim basin exploration in carbonate reservoir, the importance of the fracture-cave reservoir is obvious. This reservoir often come from the Ordovician carbonate strata, has deeply buried, old, strong heterogeneity and cave complex in filling characteristics. Seriously restricted the oilfield exploration and development. This paper around this topic the characteristics of fracture-cave reservoir in carbonate. Comprehensive utilization of the wild outcrops, core and well logging, geophysical and analysis of test data, research about fracture-cave reservoirs using the comparative study on the underground reservoirs in Tahe oil field and Bachu outcrops.
     We researched the underground fracture-cave reservoir in Ordovician carbonate of Tahe oilfield in Tarim base.Tahe oilfield developped carbonate platform facies in the Ordovician, mainly by grainstone reservoir, limestone, baiyun ShiSha crumbs erythema shape limestone, algae (reef) limestone, dolomite, karst rock composed of six rock. The diagenesis phenomenon is complicated, weak cementation, late early compaction pressure and related to dissolve the formation, dissolve seam and karstification, mixed dolomitization in uplift period, broken and the formation of crack are conducive to the formation of good reservoir. Main diagenetic evolution characteristics of complex, the experience of subsea diagenesis, freshwater surface diagenesis environment and deeply buried diagenetic environment. There are mainly three types of reservoir spaces, inclued large cave, solution pores and crack. Fracture-cave reservoir can be divided into the hole, crack-type and fractured reservoir type. The big cave reservoir is the most important research area of fracture-cave reservoir. According to the distance form the top of cave to the surface layer of T74, three belts in vertical, including 0-60m, 60-150m and greater than 150m, and on the plane, reservoir can be divided into two layers. The fracture-cave reservoir in Ordovician carbonate of Tahe oilfield be controled by karst paleogeomorphology , palaeodrainage system and fault. In ancient landform and fault fracture zone and the fracture-cave reservoirs are more development.
     Through researched the fracture-cave reservoir in Ordovician carbonate of Bachu field outcrops in the Tarim basin in detail.We found that cave fillings can be divided into four types by lithology and causes,including Mechanical sediments, algal limestones (reef), chemical deposition and breccia landslide. Among them, seven kinds of cave fillings may be devoleped good reservoirs,including weakly cemented breccia, layered algae (reef) limestone, cavernous algae (reef) limestone, granular algae (reef) limestone, luminal algae (reef) limestone, layer distribution of sugar shape deposition. There are two kinds of combination patterns in fracture-cave reservoi mainly.One is devoleped be controlled by weathering profile, the other is devoleped along the fracture.
     The comprehensive the comparative study on cave in Ordovician carbonate in Tahe oilfield underground reservoir and Bachu field outcrop, we found there are four zones from bottom to top in fracture-cave reservoirs in Ordovician carbonate of Tarim basin, including①Physical and biological chemical interaction with sedimentary belt,including mechanical deposition belt(Ⅰ), algal limestones and (reef) belt (Ⅱ),and collapse breccia accumulation(Ⅲ).②Chemical deposition rocks, including deposition rocks(Ⅳ), the empty layer between deposition (Ⅴ) and gravel sandstone containing calcite shell (Ⅵ).③the surrounding rocks belt be influenced by caves, including rupture zone(Ⅶ) and fracture zone(Ⅷ).④Normal surrounding rock strata(Ⅸ). In a reference type carbonate rocks, comprehensive vertical sequence according to surrounding rock of the core of the missing interval, combined with the characteristics of well logging curves and topographical features can predict the rock characteristics of the core of the missing interval. The found that algal limestones (reef) is a good reservoir in the cave filling of outcrops, and some evidence about algal limestones reservoirs (reef) in Ordovician carbonate reservoir in Tahe oilfield, these might mean that algal limestones (reef) is a good reservoir in Tarim basin, there are probably guidance the further exploration and find new oil reservoir. The date of rock porosity testing in Outcrop fracture-cave reservoir in Ordovician can provide good parameters for oil reserves evaluation and calculation.
引文
[1] Clyde H.Moore著,姚根顺,沈安江,潘文庆等著.碳酸盐岩储层-层序地层格架中的成岩作用和孔隙演化(M).石油工业出版社,2008:1-393.
    [2] G.Michael Grammer, Paul M“Mitch”Harris, Gregor P.Eberli编,蔡希源,李思田,郑和荣,马永生等译,储层模拟中露头和现代沉积类比的综合研究,AAPG论文集80(C),地质出版社,2008:1-367.
    [3]钟建华,温志峰,李勇等.生物礁的研究现状与发展趋势[J].地质论评,2005,51(3):288-300.
    [4]江怀友,宋新民,王元基等.世界海相碳酸盐岩油气勘探开发现状与展望[J].海洋石油,2008,28(4):6-13.
    [5]温志峰,钟建华,张跃中等.柴达木盆地西部生物礁储层的分布特征[J].石油学报,2005,26(6):30-35.
    [6] Bhattacharya, Doveton, Carr. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data[J].American Association of Petroleum Geologists,2005,89(10):1257-1274.
    [7]李勇,钟建华,温志峰等.济阳坳陷古近系湖相生物礁油气藏研究[J].沉积学报,2006,24(1):56-67.
    [8]钟建华,郭泽清,刘卫红等.柴西第三纪湖相生物礁储层特征及意义[J].沉积学报,2004,22(3):425-433
    [9]丁勇,陈冬梅,吕海涛.塔河油田奥陶系碳酸盐岩油气藏流体分布特征与受控因素.见:翟晓先编.塔河油气田勘探与评价论文集(C).北京:石油工业出版社,2006,76-81.
    [10]戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)(M).北京:石油工业出版社.1993:1-10.
    [11]徐春春,李俊良,姚宴波等.中国海相油气田勘探实例之八:四川盆地磨溪气田嘉二气藏的勘探与发现[J].海相油气地质,2006,11(4):54-61.
    [12]费宝生,汪建红.中国海相油气田勘探实例之三:渤海湾盆地任丘古潜山大油田的发现[J].海相油气地质,2005,10(3):43-50.
    [13]康玉柱.中国海相油气田勘探实例之四:塔里木盆地塔河油田的发现与勘探.海相油气地质,2005,10(4):31-38.
    [14]蔡立国,钱一雄,刘光祥,韩燕英,张鹏德.塔河油田及邻区地层水成因探讨.石油实验地质,2002,24(1):57-60
    [15]朱蓉,楼章华,金爱民,等.塔河油田S48缝洞单元流体分布及开发动态响应[J].浙江大学学报(工学版),2009,(7):1344-1348
    [16]胡鹏飞.塔河油田碳酸盐岩缝洞型储集体成像技术研究[J].石油地球物理勘探,2009,44(2):152-157.
    [17]朱蓉,楼章华,牛少凤,等.塔河奥陶系油藏地层水赋存状态及控水对策[J].浙江大学学报(工学版),2008,42(10):1843-1848.
    [18]朱蓉,楼章华,鲁新便,等.塔河油田缝洞单元地下水化学特征及开发动态[J].石油学报,2008,29(4):567-572.
    [19]刘存革,李国蓉,朱传玲,等.塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征[J].地球科学(中国地质大学学报),2008,33(3):377-386.
    [20]梁狄刚.塔里木盆地轮南—塔河奥陶系油田发现史的回顾与展望[J].石油学报,2008,29(1):153-158.
    [21]王光付.碳酸盐岩溶洞型储层综合识别及预测方法[J].石油学报,2008,29(1):47-51.
    [22]邓小江,李国蓉,徐国强,等.塔河油田南部中奥陶统一间房组沉积相精细划分[J].石油学报,2007,28(5):57-62.
    [23]朱东亚,胡文瑄,张学丰,金之钧.塔河油田奥陶系灰岩埋藏溶蚀作用特征[J].石油学报,2007,28(5):57-62.
    [24]陈志海,黄广涛,刘常红,等.烃类流体分布与缝洞储层流动单元的划分[J].石油学报,2007,28(1):92-97.
    [25]李纯泉,陈红汉,张希明,等.塔河油田奥陶系储层流体包裹体研究[J].石油学报,2005,26(1):42-46.
    [26]张希明,杨坚,杨秋来,等.塔河缝洞型碳酸盐岩油藏描述及储量评估技术[J].石油学报,2004,25(1):13-18.
    [27]张抗,王大锐,Bryan G Huff.塔里木盆地塔河油田奥陶系油气藏储集体特征(英文)[J].石油勘探与开发,2004,31(1):123-126.
    [28]张海娜,杜玉山,王善江,等.塔河油田奥陶系潜山碳酸盐岩储层特征及测井评价技术[J].测井技术,2003,27(4):313-316.
    [29]张抗.塔河油田似层状储集体的发现及勘探方向[J].石油学报,2003,24(5):4-9.
    [30]张抗,王大锐.中国海相油气勘探的启迪[J].石油勘探与开发,2003,30(2):9-16.
    [31]王家豪,王华,赵忠新,等.层序地层学应用于古地貌分析—以塔河油田为例[J].地球科学—中国地质大学学报,2003,28(4):425-430.
    [32]林忠民.塔河油田奥陶系碳酸盐岩储层特征及成藏条件[J].石油学报,2002,23(3):23-27.
    [33]赵靖舟,田军,廖涛,等.塔里木盆地哈得逊隆起的发现及其勘探意义[J].石油学报,2002,23(1):27-31.
    [34]王根久,王桂宏,余国义,等.塔河碳酸盐岩油藏地质模型[J].石油勘探与开发,2002,29(1):109-111.
    [35]阎相宾.塔河油田下奥陶统古岩溶作用及储层特征[J].江汉石油学院学报,2002,24(4):23-25.
    [36]阎相宾,张涛,李铁军.塔里木盆地碳酸盐岩油气藏勘探潜力及方向探讨[J].江汉石油学院学报,2002,24(4):7-9.
    [37]张抗.塔河油田性质和塔里木碳酸盐岩油气勘探方向[J].石油学报,2001,22(4):1-6.
    [38]张希明.新疆塔河油田下奥陶统碳酸盐岩缝洞型油气藏特征[J].石油勘探与开发, 2001,28(5):17-22.
    [39]肖玉茹,王敦则.新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质,2003,17(1):92-98.
    [40]肖玉茹,何峰煜.古洞穴型碳酸盐岩储层特征研究——以塔河油田奥陶系古洞穴为例[J].石油与天然气地质,2003,24(1):75-80.
    [41]史其安,马宝林.新疆巴楚—柯坪地区上石炭统碳酸盐岩的沉积环境与成岩作用[J].沉积学报,1990,8(4):59-67.
    [42]赵孟军,张水昌.塔里木盆地石炭系巴楚组碳酸盐岩烃源岩及其原油特征[J].海相油气地质,2000,5(1):23-28.
    [43]段宏亮,钟建华,马锋等.柴达木盆地西部侏罗系油气勘探前景[J].西南石油大学学报,2007,(1):15-24.
    [44] Zhong Jian-hua. A peculliar sedimentary structure In Yellow River delta-silt stalactite. Chinese Science Bulletin.1997,42(23):1131-1137.
    [45] Zhong Jian-hua.On the Genesis of the Superlarge Baguamiao Gold Deposit In Fengxian County,Shanxi Province.Acta Geologia Sinica.1997,71(2):153-172.
    [46]钟建华.黄河断流对河道垂向异常发育及演化的影响.地质论评,2003,49(6):31-36.
    [47]钟建华,王国壮,高祥成等.东营凹陷北部陡坡带丰1扇背斜的特征、成因及其与油气的关系[J].地质科学,2008,(4)22-29.
    [48]陈鑫,钟建华,袁静.渤南洼陷古近系高岭石发育特征及转化机理[J].石油勘探与开发,2009,(4):456-462.
    [49]陈鑫,钟建华,袁静等.渤南洼陷深层碎屑岩储集体中的黏土矿物特征及油气意义[J].石油学报,2009,(2):201-207.
    [50]陈鑫,袁静,钟建华等.东营凹陷古近系深部碎屑岩储层中的黏土矿物,中国石油大学学报:自然科学版,2009,33(2):29-33,48.
    [51] Zou, B., McCool, C.S., Green, D.W., and Willhite, G.P. A study of the chemical interactions between brine solutions and dolomite. Reservoir Evaluation and Engineering, 2000,3 (3), 209-215.
    [52] Zou, B., McCool, C.S., Green, D.W., Willhite, G.P and Michnick, M.J. Precipitation of chromium acetate solutions. SPE Journal, 2000,5 (3), 324-330.
    [53] Wang, G.T. and Chen, S. A new modl describing convective-dispersive phenomena derived by using the mixing-cell concept, Applied Mathematical Modelling,1996,20(4): 309-320.
    [54] Pokrovsky, O.S. and Schott, J. Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. American Journal of Science, 2001,301(3): 597-626.
    [55] Pokrovsky, O.S. and Schott, J.1999. Rocesses at the magnesium-bearingcarbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution. Geochimica et Cosmochimica Acta, 63(6):881-897.
    [56] Meister, J.J. A porous permeable carbonatefor use in oil recovery experiments. Journal of Petroleum Technology, 1978,30(11): 1632-1634.
    [57] McCool, C.S., Green, D.W., and Willhite, G.P.Fluid / rock interactions between xanthan / chromium(III) gel systems and dolomite core materials. SPE Production&Facilities, 2000,15(3):159-167.
    [58] Luttge, A., Winkler, U., and Lasaga, A.C. Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution. Geochimica et Cosmochimica Acta, 2003,67(6):1099-1116.
    [59] Liu, Z.H. and Dreybrodt, W. Kinetics nd rate-limiting mechanisms of dolomite dissolution at various CO2 partial pressures. Science in China (series B), 2001,44(5):500-509.
    [60] Fredd, C.N. and Fogler, H.S. The kinetcs of calcite dissolution in acetic acid solutions. Chemical Engineering Science, 1998,53 (22), 3863-3874.
    [61] Jones, G. D., and Y. Xiao. Dolomitization, anhydrite cementation and porosity evolution in a reflux system: Insights from reactive transport models. AAPG Bulletin, 2005,89(4):577-601.
    [62] Jones G. D. and Y. Xiao. Geothermal convection in the Tengiz carbonate platform, Kazakhstan: Reactive transport models of diagenesis and reservoir quality. AAPG Bulletin, 2006,90(8):1251-1272.
    [63] Borgomano, J.R.F. The Upper Cretaceous carbonates of the Gargano-Murge region southern Italy: a model of platform-to-basin transition: AAPG Bulletin, 2000, 84(11): 1561-1588.
    [64] Borgomano J., Masse J. P.Y and Maskiry S. A. The lower Aptian Shuaiba carbonate outcrops in Jebel Akhdar, northern Oman: Impact on static modeling for Shuaiba petroleum reservoirs. AAPG Bulletion, 2002,86(9): 1513-1529.
    [65] Eichenseer, H. Th., Walgenwitz, F. R. andBiondi P. J. Stratigraphic control on facies and diagenesis of dolomitized oolitic siliciclastic ramp sequences (Pinda Group, Albian, offshore Angola) : AAPG Bulletin, 1999,83(11): 1729-1758.
    [66] Michael P., M. A.Balzarini, P. D. Sousa et al. Structural control on sweet-spot distribution in a carbonate reservoir: Concepts and 3-D models (Cogollo Group, Lower Cretaceous, Venezuela) AAPG Bulletin, 2005,89(12): 1651-1676.
    [67] David A.K., Gregor P.E., Peter K.S et al. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming. AAPG Bulletin, 2006, 90(11): 1803-1841.
    [68] N.P James and P.W. Choquette. Paleokarst. Springer-Verlag, 1985,83(11):1-16.
    [69]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展,2003,18(3):398-404.a
    [70]苏培东,秦启荣,黄润秋.储层裂缝预测研究现状与展望[J].西南石油学院学报,2005,27(5):20-25.
    [71] G H Murry.Quantitative fracture study—Sanish pool Mckenzie county, North Dakota. AAPG Bulletin, 1968, 52(1) :57
    [72] G H Murry. 1977. Quantitative fracture study, Sanish pool, fracture controlled . AAPG, Bulletin Reprint Series 21.
    [73] Velde B, Duboes J. 1990. Fractal analysis of fracture in rocks the cantors, Dust method[J], Tectonphyics, 57(3):61-68.
    [74] Velde B. 1999. Structure of suface cracks in soil and muds [J].Tectonphysics, 93(1-2):101-124.
    [75] Peck L, Barton C C, Gord on R B. 1985. Microstructure and the resistance of rock to fracture [J]. Journal of Geophysical Research, 90(13):533-546.
    [76] T H irata. 1989. Fracture dimension of fault system in Japanic fracture structure in rock geometry at various scales, Journal of Pure and Appl[J]. Geophics, 131:131-157.,175.
    [77] Price N J. 1966. Faultand joint development in brittle and semi brittle rock. London: Pergam on Press.
    [78] Kerans,C.,1988.Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of West Texas.AAPG Bulletin,72(10):1160-1183.
    [79] Choquette,P.W .,James,N.P.,1988.Paleokarst.Springer- Verlag,New York.3-23.
    [80]郭建华,1993.塔里木盆地轮南地区奥陶系潜山古岩溶及其所控制的储层非均质性.沉积学报,11(1):56-64.
    [81] Loucks,R.G.,1999.Paleocave carbonate reservoirs:Origins, burial-depth modification,spatial complexity,and reservoir im plications.AAPG Bulletin,83(11):1795-1834.
    [82]陈学时,易万霞,卢文忠,2004.中国油气田古岩溶与油气储层.沉积学报,22(2):244-253.
    [83] M cM echan,G.A.,Loucks,R.G.,M Escher, P.,et a1.,2002. Characterization of a coalesced.collapsed paleocave reservoir analog using GPR and well-core data.Geophyscs,67(4):l148-l158.
    [84] Loucks,R.G.,M escher,P.K.,M cM echan,G.A.,2004.Three-dimensiona1 architecture of a coalesced,collapsed-paleocave system in the Lower Ordovician Ellenburger Group,Central Texas.AAPG Bulletin,88(5):545-564.
    [85]康志宏, 2006.塔河碳酸盐岩油藏岩溶古地貌研究.新疆石油地质,27(5):522-525.
    [86] Stochdale P B. Stylolites: their nature and origin [J].Indiana Univ. Studies, 1922, 6:1-97.
    [87] Stochdale P B. Stylolites: primary or secondary? [J].Jour. Sedimentary Petrology, 1943, 13:3-12.
    [88] Brown W W . The origin of Stylolites in the light of a petrofabric study[J]. Sedimentary Petrology, 1959, 29:254-259.
    [89] Sinha R S. Kinetics of differentiated stylolite Formation [J].Current Science, 2002, 82(8): 1038-1046.
    [90] Park W C, Schot E H. Stylolite:Their nature and origin [J].Journal of Sedimentary Petrology, 1968, 38(1):175-191.
    [91] Daniel K, Fran?ois R, Renaud T, et al. Growth of stylolite teeth patterns depending on normal stress and finite compaction [J]. Earth and Planetary Science Letters, 2007, 257(3), 582-595.
    [92] John V S. Three-dimensional morphology and connectivity of stylolites hyperactivated during veining [J].Journal of Structural Geology, 2000, 22: 59-64.
    [93] Alexandre B, Francois R, Jean P G., et al. Variety of stylolites morphologies and statistical characterization of the amount of heterogeneities in the rock [J].Journal of Structural Geology, 2007, 29: 422-434.
    [94] Peacock D C, Azzam. Development and scaling relationships of a stylolite population [J].Journal of Structural Geology, 2006, 28:1883-1889.
    [95] Deelman J C . Lithification analysis : experimental observations [J]. Geologische Rundschau, 1976, 65:1055-1078.
    [96] Merino E, Orioleva p, Strickholm P. Generation of evenly spaced pressure solution seems during late digenesis a kinetics theory [J]. Contributions to Mineralogy and Petrology, 1983, 82:360-370.
    [97] Railsback L B. Evaluation of spacing of stylolites and its implication for self-organizations of pressure dissolution [J] . Journal of Sedimentary Petrology, 1989, 68:2-7.
    [98] Railsback L B, Andrews L M. Tectonic stylolites in the under-formed Cumberland Plateau of southern Tennessee [J]. Journal of Structural Geology, 1995, 17:911-915.
    [99]张荫本.缝合线.石油知识[J].2003,( 2):15~16.
    [100] Shaub B M. The origin of satellites [J].Journal of sedimentary Petrology, 1939, 9(2):47-61.
    [101]高岗,郝石生,王晖.碳酸盐岩基质与缝合线的生烃和排烃特征[J].中国科学D辑,2000.3(2):175-179.
    [102]李国蓉.碳酸盐岩中缝合线的形成机制及其储集意义讨论[J].矿物岩石, 1997,17(2):49~54.
    [103] Wanless H R . Limestone response to stress : pressure solution and dolomitization [J].Journal of Sedimentary Petrology. 1979,49:437-462.
    [104]艾合买提江,钟建华,陈鑫等.塔河油田奥陶系缝合线特征及石油地质意义.中国石油大学学报(自然科学版),2010,34(1):7-12.
    [105] Brouste A, Renard F, Gratier J P, et al. Variety of stylolites’morphologies and statistical characterization of the amount of heterogeneities in the rock[J]. Journal of structure geology,2007,29(3):422-434.
    [106] Karcz Z,Scholz C. The fractal geometry of some stylolites from the Calcare Massiccio Formation,Italy[J]. Journal of Structure geology, 2003,25(8):1301-1306.
    [107] Shaub B M. The origin of stylolites [J].Journal of sedimentary Petrology, 1939, 9(2):47-61.
    [108] Tondi E, Antonellini M, Aydin A, et al. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy[J]. Journal of Structure geology, 2006, 28(3): 376-391.
    [109] BORGEN D V, CAROZZI A V. Experimentally-simulated Stylolite Porosity in Carbonate Rocks [J].Journal of Petroleum Geology, 1990; 13 (2): 179-192.
    [110]高岗.缝合线对碳酸盐岩油气生排运聚的作用[J].西安石油学院学报(自然科学版),2007,15(4):32-34.
    [111] Leythaeuser D. Quantification of effect of carbonate redistribution by pressure solution in organic-rich carbonates [J]. Marine and Petroleum Geology, 1994, 12 (7): 735-740.
    [112] Leythaeuser D. Pressure solution in carbonate source rocks and its control petroleum generation and migration [J]. Marine and Petroleum Geology, 1995, 12 (7): 717-733.
    [113]周书欣.我国湖相碳盐酸岩研究现状[J].石油与天然气地质, 1992,13(4):337-411.
    [114]艾合买提江,钟建华.塔河油田碳酸盐岩缝洞系统成因及模式研究[D],中国石油大学(华东),2009.12:1-212.
    [115]夏义平,柴桂林,汪昌贵,等.塔里木盆地轮南地区下奥陶统碳酸盐岩储层的控制因素分析[J].现代地质,2000,14(2):185-189.
    [116] Brita R, Graham W, Radu G,Agim M,Atilla A. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J].AAPG Bulletin,2006,90(8):1227-1249.
    [117] Douchko R, Wolfgang D, Franci G. Interaction of fracture and conduit flow in the evolution of karst aquifers[J]. Karst Waters Institute Special Publication,2002,7: 38-43.
    [118] Davies G R, Smith L B. Structurally controlled hydrothermal dolomitereservoir facies: An overview[J]. AAPG Bulletin,2006, 90(11): 1641 -1690.
    [119] Yaacov A . Fractures and karst in hard carbonates in northern Israel[J]. Geological Survey of Israel,1996,10:90-94.
    [120] Julia F W, Robert M R. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J] . AAPG Bulletin,2007,91(4):603-622.
    [121] Brita R, Graham W, Radu G,Agim M,Atilla A. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J].2006,AAPG Bulletin,90(8):1227-1249.
    [122] Laubach S E. Subsurface fractures and their relationship to stress history in east Texas basin sandstone[J]. Tectonophysics,1988,156:37-49.
    [123] Graham B, Antonellini M, Aydin A. Formation and growth of normal faults in carbonates within a compressive environment[J].2003,Geology,31:11-14.
    [124] James R M, John M S. Fracture control of regional ground-water flow in a carbonate aquifer in a semi-arid region[J].GSA Bulletin,1998,110(2): 269 - 283.
    [125]马永生等.碳酸盐岩储层沉积学[M],北京:地质出版社,1999.1-152.
    [126]强子同.碳酸盐岩储层地质学[M].山东东营:中国石油大学出版社,2007.189-196.
    [127]翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7.
    [128]邱中建,康竹林,何文渊.从近期发现的油气新领域展望中国油气勘探发展前景[J].石油学报,2002,23(4):1-6.
    [129]陈清华,刘池阳等.碳酸盐岩缝洞系统研究现状与展望[J].石油与天然气地质,2002,23(2):196-201.
    [130]夏日元.油气田古岩溶与深岩溶研究进展[J].中国岩溶,2001,6(1):76-81.
    [131]彭苏萍,何宏,邵龙义,等.塔里木盆地C-O碳酸盐岩碳同位素组成特征[J].中国矿业大学学报,2002,31(4):353-357.
    [132]赵靖舟.塔里木盆地烃类流体包裹体与成藏年代分析[J].石油勘探与开发,2002,29(4):21-25.
    [133]李阳,鲁新便,胡向阳等.碳酸盐岩缝洞型数学表征研究[R].中石化勘探开发研究院,2010,11.12:1-97.
    [134]陈元壮,刘洛夫,陈利新,等.塔里木盆地塔中、塔北地区志留系古油藏的油气运移[J].地球科学-中国地质大学学报,2004,29(4):473-482.
    [135]沈安江,郑剑锋,顾乔元等,塔里木盆地巴楚地区中奥陶统一间房组露头礁滩复合体储层地质建模及其对塔中地区油气勘探的启示[J].地质通报,2008,27(1):137-148.
    [136]杨明慧,金之钧,吕修祥等.塔里木盆地基底卷入扭压构造与巴楚隆起的形成[J].地质学报,2007,81(2):158-165.
    [137]郑民,孟自芳,罗慎超等.塔里木盆地鸟山构造带构造演化时序及油气勘探意义[J].地质学报,2009,83(1):16-24.
    [138] Frank, E.F., Mylroie, J.E., Troester, J.W., Alexander, E.C., and Carew, J.L., Karst development and speleogenesis, Isla de Mona, Puerto Rico[J].Journal of Cave and Karst Studies, 1998, 60: 73–83.
    [139] Mylroie, J.E., and Carew, J.L., Karst development on carbonate islands[J] .American Association of Petroleum Geologists, 1995,63:55–76.
    [140] Palmer A N. Origin and morphology of limestone caves[J].Geological Society of America, 1993, 103: 1–21.
    [141] Statham I S, Baker M S. Foundation problems on limestone: a case history from the Carboniferous Limestone at Chepstow, Gwent[J].Quarterly Journal of Engineering Geology, 19 1986. 61: 191–201.
    [142] Waltham T A. The pinnacle karst of Gunung Api, Mulu, Sarawak[J].Cave and Karst Science, 1995, 22: 123–126.
    [143] Waltham T A.Gypsum karst near Sivas, Turkey[J].Cave and Karst Science,2002,29:39–44.
    [144] Back, W S, Hanshaw, B B, Herman, J S, et al. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan [J]. Mexico: Geology, 1986, 14:137–140.
    [145] Bakalowicz M J, Ford D C, Miller TE. Thermal genesis of dissolution caves in the Black Hills, South Dakota[J].Geological Society of America, Bulletin, 1987,99:729–738.
    [146] Dublyansky Y V. Speleogenetic history of the Hungarian hydrothermal karst[J].Environmental Geology, 1995, 25: 24–35.
    [147] Fleitman N D, Burns S W, Neff U A, et al. Changing moisture sources over the last 330,000 yrs in northern Oman from fluid inclusion evidence in speleothems[J].Quaternary Research, 2003, 60: 223–232.
    [148] Dreybrodt W G. The role of dissolution kinetics in the development of karst aquifers in limestone; a model simulation of karst evolution[J].Journal of Geology, 1990, 98(5):639-655
    [149] Klimchouk, A B, Ford D C. Evolution of Karst Aquifers[J] . National Speleological Society, 2000. 234–237
    [150] Choquette P W.Diagenesis in limestone: the deep birial environment [J].Geoscience of Canada, 1987, 14:3-35.
    [151] Tinker, S.W., Ehrets J R, Brondos M D. Multiple karst events related to stratigraphic cyclicity: San Andres formation, Yates field, west Texas [J]. Unconformities and Porosity in Carbonate Strata: American Association of Petroleum Geologists, 1995, 63: 213-237.
    [152]郑聪斌,贾疏源.陕甘宁盆地中部奥陶系风化壳岩溶岩及岩溶相模式[J].中国岩溶,1997,16(4):351-361.
    [153]任美锷.岩溶学概论[M].北京:商务印书馆,1983.1-3.
    [154]夏日元,唐健生,罗伟权等.油气田古岩溶与深岩溶研究新进展[J].中国岩溶,2001,1:75-77.
    [155]李定龙.古岩溶和古岩溶地球化学概念与研究展望[J].高校地质学报,1999,5(2):232-240.
    [156]袁静,张善文,陈鑫等.东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J].沉积学报,2007.25(6):840-846.
    [157]袁静.东营凹陷下第三系深层成岩作用及次生孔隙发育特征[J].煤田地质与勘探,2003,31(3):20-23.
    [158]钟建华,孔凡亮,陈鑫等.塔河油田四区奥陶系碳酸盐岩油藏中的缝合线的研究[J].地质论评,2010.(待刊)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700