用户名: 密码: 验证码:
塔河油田二区奥陶系碳酸盐岩储集体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔河油田2区奥陶系油藏处于岩溶残丘到岩溶洼地过度的斜坡带上。根据奥陶系油藏特点,采取地下与野外相似露头对比研究,应用测井、录井和地震等资料对研究区奥陶系岩石地层重新进行了修定,建立了精确的地层格架。在地层格架内按照单井相—>剖面相—>平面相的研究思路对奥陶系沉积相和沉积演化进行了研究,沉积相对研究区奥陶系储集体发育具有重要的控制作用。
     研究区奥陶系储集体基质的物性总体较差,基质孔隙度和渗透率对储集体的储集性能基本无贡献。决定储集体储集性能的是溶蚀孔缝、裂缝和大型溶蚀孔洞。根据岩心、薄片和扫描电镜等观察结果以及录井、测井等资料将储集空间按成因、几何形态划分为孔、缝、洞三大类和16小类。按构成储集体的储集空间的成因和形态及规模划分为:滩相溶蚀孔隙型、云斑灰岩白云石粒间孔隙型,裂缝型和岩溶洞穴型四类储集体。东南部边缘一间房组发育滩相溶蚀孔隙型储集体,且为多期旋回形成的复合体,多期滩相储集体纵向叠置、横向连片,规模较大;其发育范围和程度受沉积微相控制;此外,构造运动和早期暴露蜂窝状溶蚀也是滩相沉积体形成优质孔隙型储集体的重要因素。上奥陶统尖灭线附近及以北地区中-下奥陶统裂缝和溶洞洞穴均较发育,一起构成了奥陶系复杂的缝洞型油藏;95.6%的溶洞发育在T74以下0~100m。通过碳氧稳定同位素、锶同位素、中子活化稀土元素分析认为主要为海西早期岩溶洞穴。岩溶洞穴中充填物的类型有三种:(1)垮塌角砾充填;(2)砂泥质充填;(3)方解石充填。垮塌角砾充填洞穴储集体物性好于泥质充填和巨晶方解石充填洞穴。裂缝和岩溶洞穴垂向上可以组合为孤立洞,上洞下缝,上缝下洞和缝-洞-缝四种类型;它们的发育程度和范围受构造运动、岩性、古地貌和古水系等多种因素的控制。云斑灰岩白云石粒间孔隙型储集体储集空间主要为埋藏溶蚀作用形成的白云石的粒间孔;白云石成因有两种(1)埋藏溶蚀基础上的白云石交代形成的白云岩颗粒;(2)在构造断裂控制下热液白云石化形成的白云石颗粒;以第一种成因形成的白云石粒间孔最为常见。该类储集体的发育受缝合线、岩性、成岩作用和热液作用等因素的影响,在裂缝的沟通下能形成非常有效的储集体。
     在熟悉井史的基础上,应用生产动态数据、措施作业和示踪剂测试对研究区井组间进行连通性分析。综合奥陶系油藏缝洞分布,地层压力系统,流体性质、储集体连通性等信息,参考奥陶系T74顶面的岩溶地貌和奥陶系油藏的动态生产资料,以利于后续开发动态研究为目的,把奥陶系储集体划分15个缝洞单元;上奥陶统尖灭线附近及以北剥蚀区缝洞单元内部缝洞匹配较好、连通性较好的区域油井产量相对较高;南部缝洞单元内部缝洞匹配较差、连通性较差的区域油井产量也较低。
Ordovician reservoirs of block 2 of Tahe Oilfield are in the transitional slope from high land to depression of the karst. Based on the character of Ordovician reservoirs, the adoption on contrasting study of similar outcrops with underground and the application on well-log information, logging information and seismic data, etc, the paper had a redefinition to the Ordovician strata, and the stratigraphic framework accurately was modified in the research area. According to the thinking of single well facies—section facies—plane facies in the stratigraphic framework, the paper studied on the Ordovician sedimentary facies and evolution. In research area, sedimentary facies had a great significant influence on the development of reservoirs.
     Physical properties of Ordovician resevoirs matrixs in the research area were poor in all, and porosity and permeability had basically no contribution to accumulation and permeation.The reservoir properties were decided by dissolution fissure and pore, fracture and sizable dissolution cave and pore. The reservoir spaces determined by the observation of cores, thin sections and SEM and the information of engineering logging and well-logging,etc, was divided into three main types (pore, fissure and cave)and other 16 ones. According to the means that these reservoir spaces formed reservoirs type and scale, the reservoirs could be divided into dissolution pores type of reef-bank facies, fracture type, karst cave type and dolomite limestone type. Dissolution pores type of reef-bank facies was developed in Yijianfang formation in the south, and it belonged to the complex body of multi-cyclicity. The multi-episodic reservoirs of reef-bank facies superimposed vertically and continued laterally. It developed widely along the margin of the southeast, and had a large scale. Its development degree and range were controled by the sedimentary microfacies. Additionally, tectonization and early exposed honeycomb dissolution were also the important factor for reef-bank facies to form the high quality reservoir of pore type. Lower-Middle Ordovician reservoirs of fracture and cave types developed in the north, which formed the complex fractured-cave carbonate reservoir. The 95.6 % of karst cave developed in the depth of 0~100m that was below the T74, and decreased gradually as the increase of depth. By the analysis of C, O stable isotopes, Sr isotope and rare-earth elements of neutron activation, it thought that the karst cave formed mainly in the early Hercynian. The fillings type in the karst cave included: (1)collapse breccia; (2)arenopelitic fillings; (3)calcites. In combination with the collapse breccia, the reservoirs filled with pelite and the giant calcites were poor. The fracture and karst cave could be vertically divided into four combined types: upper-cave and lower-fracture, upper-fracture and lower-cave and fracture-cave-fracture. The range and develop degree are controlled by tectonization, lithology, palaeogeomorphology and palaeodrainagepattern, etc. The reservoir space of dolomitic limestone was inter-granular pores of dolomite formed by burial dissolution. The cause of formation included:(1)metasomatism of dolomite based on the burial dissolution;(2)hydrothermal fluid dolomitization controlled by the structural fracture. The dolomitic sand-clastic block mass formed by the first reason was the most common. Development of the reservoirs was mainly influenced by stylolite, lithology, diagenesis and hydrothermalism, etc.
     Based on the knowledge of well history, the application of dynamic producing data and important changing event of production operation and tracer test data, this paper carried out the connectivity analysis to inter well-groups of research area. According to the synthesis of fracture-cave distribution, the pressure system of strata and reservoir connectivity, referring to the karst topography of T74 top surface and dynamic producing data of Ordovician reservoirs, the research area was divided into 15 units of fracture-cave so that the dynamic research of following development would be more convenient. The matching of fracture-cave was better near the pinch outlines of Upper Ordovician and inside the fracture-cave unit of the north denuded zone, the well yield was higher in the area that had good connectivity. The matching of fracture-cave was worse inside the fracture-cave unit of the south, and the well yield was lower in the area that had worse connectivity.
引文
[1]赵宗举,范国章,吴兴宁等.中国海相碳酸盐岩储层类型、勘探领域及勘探战略[J].海相油气地质,2007,12(1):1-11.
    [2]金之钧,蔡立国.中国海相油气勘探前景、主要问题与对策.石油与天然气地质[J],2006,27(6):722-730.
    [3]鲁新便.缝洞型碳酸盐岩油藏开发描述及评价[D].成都:成都理工大学,2004.
    [4]康志宏.碳酸盐岩油藏动态储层评价——以塔里木盆地塔河油田为例[J].成都:成都大学.2003.
    [5]王建坡,沈安江,蔡习尧等.全球奥陶系碳酸盐岩油气藏综述[J].地层学杂志.2008.32(4).363-373.
    [6]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘。2005.12(3).23-30.
    [7]邹才能,陶士振.海相碳酸盐岩大中型岩性地层油气田形成的主要控制因素[J].科学通报.2007.52.32-39.
    [8]赵路子.碳酸盐岩隐藏滩相储层特征及预测模型[D].成都:成都理工大学.2008.
    [9]王招明,张丽娟,王振宇等.塔里木盆地奥陶系礁滩体特征与油气勘探[J].石油地质.2004.(6).1-7.
    [10]赵宗举,周新源,王招明等.塔里木盆地奥陶系边缘相分布及储层主控因素[J].石油与天然气地质.2004.28(6).738-744.
    [11]张丽娟,李勇,周成刚等.塔里木盆地奥陶纪岩相古地理特征及礁滩分布[J].石油与天然气地质.2004.28(6).731-737.
    [12]顾家裕,方辉,蒋凌.塔里木盆地奥陶系生物礁的发现及其意义[J].石油勘探与开发,2001.28(1).1-3.
    [13]顾家裕,张兴阳,罗平等.塔里木盆地奥陶系台地边缘生物礁、滩发育特征[J].石油与天然气地质.2005.26(3).277-283.
    [14]蔡习尧,吴亚生,姜红霞等.新疆巴楚地区中上奥陶统生物礁群落古生态学[J].地质学报.2008.82(8).1046-1051.
    [15]邓小江,梁波,莫耀汉等.塔河油田奥陶系一间房组滩相储层特征及成因机制新认识[J].地质科技情报,2007.26(4).63-69.
    [16]翟晓先,余仁连,何发岐等.塔河地区奥陶系一间房组微裂隙颗粒灰岩储集体的发现与勘探意义[J].石油实验地质,2002.24(5).387-392.
    [17]闫相宾,张涛.塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J].地质论评.2004.50(4).370-376.
    [18]张涛,闰相宾,王恕一等.塔河油田奥陶系一间房组滩相溶蚀孔隙型储层特征与成因[J].石油与天然气地质.2004.25(4).462-471.
    [19]于慧玲,傅恒,黄海平等.塔河油田奥陶系中统一间房组沉积特征及储集特征[J].矿物岩石.2008.28(2)95-101.
    [20]王兴志,穆署光.四川资阳地区灯影组滩相沉积及储集性研究[J].沉积学报,1999,17(4):578-583.
    [21]郭泽清,钟建华,刘卫红等.柴西第三纪湖相生物礁储层特征及意义[J].沉积学报,2004,22(3):425-433.
    [22]钟建华,温志峰,李勇等.生物礁的研究现状与发展趋势[J].地质论评,2005,51(3):283-300.
    [23]李勇,钟建华,温志峰等.济阳坳陷古近系湖相生物礁油气藏研究[J].沉积学报,2006,24(1):56-67.
    [24]温志峰,钟建华,王冠民等.柴达木盆地古近纪—新近纪湖相叠层石玉藻礁的沉积组合特征与意义[J].地质学报,2005,79(4):444-452.
    [25]方少仙,候方浩,李凌等.四川华蓥山以西石炭系黄龙组沉积环境的再认识[J].海相油气地质,2000,5(1):158-166.
    [26]王兴志,王一刚等.四川盆地东部晚二叠世——早三叠世飞仙关期礁、滩特征与海平面变化[J].沉积学报,2002,20(2):249-254.
    [27]王兴志,田军等.塔里木盆地中部生物屑灰岩滩体特征及储集性[J].石油天然气地质,2002,23(1):58-62,95.
    [28]温志峰,钟建华,跃中等.柴达木盆地西部生物礁储层的分布特征[J].石油学报,2005,26(6):30-35.
    [29]郭泽清,刘卫红,钟建华等.柴达木盆地跃进二号构造生物礁储层特征及其形成条件研究[J].地质论评,2005,51(6):656-664.
    [30]高志前,樊太亮,王惠民等.塔中地区礁滩储集体形成条件及分布规律[J].新疆地质,2005,23(3):283-287.
    [31]曾云贤,刘微,杨雨.罗家寨西南地区飞仙关早期沉积古地貌研究[J].西南石油大学学报,2007,29(1):10-11.
    [32]谭秀成,邹娟,李凌等.磨溪气田嘉二段陆表海型台地内沉积微相研究[J].石油学报,2008,29(2):219-225.
    [33]马永生,郭旭升,凡睿.川东北普光气田飞仙关组鲕滩储集层预测[J].石油勘探与开发,2005,32(4):60-64.
    [34]马永生.四川盆地普光超大型气田的形成机制[J].石油学报,2007 ,28(2):9-14,21.
    [35]赵文智,汪泽成,王一刚.四川盆地东北部飞仙关组高效气藏形成机理[J].地质论评, 2006,52(5):708-718.
    [36]张涛,闰相宾,王恕一等.塔河油田奥陶系一间房组滩相溶蚀孔隙型储层特征与成因[J].石油与天然气地质.2004.25(4).462-471.
    [37]郑和荣,刘春燕,吴茂炳等.塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J].石油学报.2009.30(1).9-15.
    [38]叶德胜.塔里木盆地北部寒武一奥陶系碳酸盐岩的深部溶蚀作用[J].沉积学报1994.12(1).66-71.
    [39]王恕一,陈强路,马红强.塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003.25(增刊).557-561.
    [40]钱一雄,陈跃,陈强路等.塔中西北部奥陶系碳酸盐岩埋藏溶蚀作用[J].石油学报.2006.27(3).47-52.
    [41]徐世琦,洪海涛,张光荣等.四川盆地下三叠统飞仙关组鲕粒储层发育的主要控制因素分析[J].天然气勘探与开发,2004,27(1):1-3.
    [42]俞仁莲,傅恒.构造运动对塔河油田奥陶系碳酸盐岩的影响[J].天然气勘探与开发.2006.29(2).1-5.
    [43]周刚,郑荣才,王炯等.川东-渝北地区长兴组礁、滩相储层预测[J].岩性油气藏,2009,21(1):15-21.
    [44]张兵,郑荣才,文华国等.开江-梁平台内海槽东段长兴组滩相储层识别标志及其预测[J].高校地质学报,2009,15(2):273-284.
    [45]陈汉军,吴亚军.川北阆中-南部地区茅口组滩相储层预测[J].天然气工业, 2008,28(11):22-25.
    [46]敬朋贵.川东北地区滩相储层预测技术与应用[J].石油物探,2007,46(4):363-369.
    [47]刘殊,唐建明,马永生等.川东北地区长兴组-飞仙关组滩相储层预测[J].石油与天然气地质,2006,27(3):332-339,347.
    [48]陈祖庆,谭代英,方祖华.宣汉-达县地区滩相储层精细预测方法分析[J].南方油气,2007,20(1):45-48,51.
    [49]陈祖庆,杨鸿飞,王涛.川东北宣汉-达县地区滩相储层地震预测研究[J].南方油气,2005,18(4):31-36.
    [50]蒲勇.宣汉-达县地区飞仙关组鲕滩相储层地震预测技术[J].南方油气, 2005,18(2):15-17.
    [51]温志峰,钟建华,王芳等.柴西生物礁储集层的测井响应特征与最优判别[J].新疆石油地质,2005,26(1):17-20.
    [52] Saller, A. H., D. A. Budd, and P. M. Hartris. Unconformities and porosity development in carbonate strata: ideas from a Hedberg Conference:AAPG Bulletin,78:857-872.
    [53] Moore, C. H. Carbonate Diagenesis and Porosity: New York, Elsevier,p,1989,338.
    [54] Loucks, R. G.., and C. R. Handford. Origin and recognition of fractures, Breccias, and sediment fills in paleocave-reservoir networks, in M.P. Candelaria, and C. L. Reed, eds., Paleokarst, Karst-Related Diagenesis and Reservoir Development: Examples from Ordovician-Devonian Age Strata of West Texas and the Mid-Continent, Midland, TX, Permian Basin Section-SEPM Publication,1992,92-93:31-44.
    [55] Saller, A. H., J. A. D. Dickson, and S. A. Boyd. Cycle Stratigraphy and Porosity in Pennsylvanian and lower Permian shelf Limestones, Eastern Central Basin Platform: AAPG Bulletin,1992,78:1820-1842.
    [56] Morse, J. W., and F. T. Mackenzie. Geochemistry of Sedimentary Carbontes: New York , Elsevier Scientific Publ. Co.,1990:696.
    [57] Budd, D. A. and E. E. Hiatt. Mineralogical stabilization of high-magnesium calcite: Geochemical evidence for intracrystal recry stallization within Holocene porcellanecous foraminifer. Journal of Sedimentary Petrology,1993,63:261-274.
    [58] Matthews, R. K. A process approach to diagenesis of reefs and reef-associated limestone, In L. F. Lapovate, ed., Reefs in Time and Space, Tulsa, OK, SEPM Special Pulication,1974,18:234-256.
    [59] Lucia, F.J. Rock-frabric/Petrophysical Classification of carbonate pore space for reservoir characterization:AAPG Bulletin, 1995, 79:1275-1300.
    [60] James, N. P. , and P. W. Choquette. Diagenesis 9. Limestones-the meteoric diagenetic enviorment:Geoscience Canada,1984,11:161-194.
    [61] Kerans, C. Karst-controlled reservoir heterogeneity and an example from the Ellenburger (Lower Ordovician) of west Texas, University of Texas, Bureau of Economic Geology Report of Investigations, 1989,186:40.
    [62] Murray, R. C. Origin of porosity in carbonate rocks:Journal of Sedimentary Petrology,1960,30:59-84.
    [63] Roehl, P. O. and P. W. Choquette. Carbonate Petroleum Reservoir. New York, Springer-Veriag,1985:622.
    [64] Lucia, F. J. Carbonate Reservoir Characterization:Berlin Heidelberg, Springer-Verlag,1999:226.
    [65] Fairbridge, R. W. The dolomite question, in R. J. Leblanc, and J. G. Breeding, eds., Regional Aspects of Carbonate Deposition, Tulsa, OK,SEPM Special Publication 1957,5:124-178.
    [66] Wey1, P. K. Porosity through dolomitization:conservation- of mass requirements: Journal of Sedimentary Petrology, 1960,30:85-90.
    [67] Lucia, F. J. and R. P. Major. Porosity evolution through hypersaline reflux dolomitization. International Association of Sedimentologists Special Publication,1994,21:325-341.
    [68] Purser, B. H., A. Brown, and Aissaoui. Origins and evelotion of porosity in dolomites. International Association of Sedimentologists Special Publication, 1994,21:283-308.
    [69]赵雪凤,朱光有,刘钦甫等.深部海相碳酸盐岩储集孔隙发育的主控因素研究[J].天然气地质科学,2007,18(4):514-521.
    [70]陈强路,钱一雄,马红强等.塔里木盆地塔河油田奥陶系碳酸盐岩成岩作用与孔隙演化[J].石油实验地质.2003.25(6).729-734.
    [71]牛永斌,钟建华,王培俊等.成岩作用对塔河油田2区奥陶系储集空间发育的影响[J].中国石油大学(华东),待刊.
    [72] Langhorne B.Smith Jr.Graham R.Davies.碳酸盐岩储层的构造控制热液蚀变[J].石油地质科技动态.2006(11).1-4.73
    [73]金之钧,朱东亚,胡文瑄等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006.80(2).245-253.
    [74]吴茂炳,王毅,郑孟林等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学,2007.37(增刊I).83-92.
    [75] Price N J. Fault and joint development in brittle and semi-brittle rock[M]. London:Pergamon Press, 1966.
    [76] Murry G H. Quantitative fracture study;Sanish pool,McKenzie County,North Dakota[J]. AAPG Bulletin, 1968(1).
    [77] Murry G H. Quantitative fracture study, Sanish Poo,lFracture-controlled[J]. AAPG, Bulletin,1977(21).
    [78] Narr W LERCHE L. A method for estimating subsurface fracture density in core[J]. AAPG Bulletin, 1984(5) .
    [79] Narr W. Fracture density in the deep subsurface:Techiques with application to point Arguello oil field[J]. AAPG Bulletin, 1991.
    [80]苏培东,秦启荣,黄润秋.储层裂缝预测研究现状与展望[J].西南石油大学学报,2005,27(2):14-17
    [81] Barton C C. Fractals in the Earth Sciences[M]. New York: R La Pointe Plenum Press,1995.
    [82] Velde B, Duboes J. etc. Fractal analysis of fracture inrocks: the Cantors' Dustmethod[J]. Tectonphysics, 1990,57(3): 61-78.
    [83] Velde B. Structure of surface fractures in soil and muds[J].Tectonphysics, 1999, 93(1-2): 101-124.
    [84] Peck L,Barton C C,Gordon R B.Microstructure and theresistance of rock to fracture[ J]. Journal of Geophysical Research, 1985, 90(13): 533-546.
    [85] Peck L,Barton C C,Gordon R B.Microstructure and theresistance of rock to fracture[ J]. Journal of Geophysical Research, 1985, 90(13): 533-546.
    [86] Barton C C.Fractal analysis of scaling and spatial clustering of fracture[M].Fractal in the earth sciences, lenum Press,New York, 1995.
    [87] THirata.Fractaldimension of faultsystem in Japan: fractal structure in rock geometry at various scales, Journal of Pure and Appl[J].Geophysics, 1989, 131: 131-157.
    [88] QIN Qirong.Quantitative prediction of fracture distribution in volcanic reservoir in 7th area, Karamay Oilfield[C]. 15thWorld Petroleum Congress, 1997.
    [89]苏培东.贵州赤水地区二、三叠系储层构造解析及裂缝预测研究[D].四川成都:西南石油学院硕士论文.2004.
    [90]秦启荣.川中油气区东缘大安寨储层裂缝成因机制初探[J].天然气工业, 1998, 18(3): 90-92.
    [91]秦启荣,黄润秋.构造应力场数值模拟在哈密凹陷四道沟地区T2k储层裂缝预测中的应用[ J].山地学报,2000, 18(3): 117-122.
    [92]秦启荣.塔中I号断裂带O2+3灰岩储层裂缝特征[J].石油与天然气地质, 2001, 23(2): 183-185.
    [93]秦启荣.塔中地区O2+3灰岩裂缝期次研究[J].天然气工业,2002, 22(6): 117-118.
    [94]秦启荣.裂缝孔隙度数值评价技术[ J].天然气工业,2004, 24(2): 47-51.
    [95]颜其彬,秦启荣.碳酸盐岩裂缝预测[M].北京:石油工业出版社, 1999.
    [96]张宗命,胡明,秦启荣.应用有限元法预测碳酸盐岩裂缝发育区[J].天然气工业, 13(3): 21-27.
    [97]陈太源,曾锦光.应用构造面主曲率研究油气藏裂缝的方法[A].石油开发论文集[C].北京:石油工业出版社, 1980.
    [98]曾锦光.应用构造面主曲率研究油气藏裂缝问题[J].力学学报, 1982.
    [99]曾锦光.构造裂缝的理论分析研究[A].中国南方油气勘查新领域探索论文集[C].北京:地质出版社,1988.
    [100]曾锦光,苏雅琴.断层裂缝系统分布的预测方法研究[A].中国南方碳酸盐岩油气勘查研究论文集[C] .南京:江苏科技出版社, 1994.
    [101]殷有泉.有限单元方法及其在地学中的应用[M].北京:地震出版社, 1987.
    [102]宋惠珍,黄立人.地应力场综合研究[M].北京:石油工业出版社, 1990.
    [103]张帆,贺振华.预测裂缝发育带的构造应力场数值模拟技术[ J].石油地球物理勘探, 2002, 35(2): 154-163.
    [104]谭成轩,王连捷.三维构造应力场数值模拟在含油气盆地构造裂缝分析中应用初探[J].地球学报, 1999, 20(4): 392-394.
    [105]陈波,田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报, 1998, 19(4): 50-54.
    [106]练章华,徐进.裂缝宽度预测的有限元数值模拟[J].天然气工业, 2001, 21(3): 47-50.
    [107]胡志水.川南下二叠统构造断层应力数值模拟与裂缝分布[J].新疆石油地质, 1994, 15(2): 158-161.
    [108]李定龙.四川威远地区构造应力场模拟及阳新统裂缝分析[J].石油勘探与开发, 1994, 21(3): 33-38.
    [109]丁中一.构造裂缝定量预测的一种新方法—二元法[J].石油与天然气地质, 1998, 19(1): 1-7.
    [110]戴弹申,欧振海.裂缝圈闭及其勘探方法[J].天然气工业, 1990, 10(4): 1-6.
    [111]李理,戴俊生.埕岛地区构造应力场数值模拟及中、古生界裂缝分析[J].石油大学学报, 2000, 24(1): 6-9.
    [112]王允诚.裂缝性致密油气储集层[M].北京:地质出版社, 1988.
    [113]王志章.裂缝性油藏描述及预测[M].北京.石油工业出版社, 1999.
    [114]陈钟祥译.裂缝油藏工程基础[M].北京:石油工业出版社, 1989.
    [115]颜其彬.碳酸盐岩储集层裂缝预测(译文集)[M].成都:成都科技大学出版社, 1992.
    [116]周家尧.裂缝性油气藏勘探文集[M].北京:石油工业出版社, 1991.
    [117]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状与进展[J].地球科学进展, 2003,18(3):398-404.
    [118]周新桂,邓宏文.储层构造裂缝定量预测研究及评价方法[J]. 2003,24(2):175-180.
    [119]周新桂,操成杰,袁嘉音等.油气盆地储层构造裂缝定量预测研究方法及其应用[J].吉林大学学报:地球科学版,2004,34(1):79-84.
    [120]周新桂,张林炎,范昆.油气盆地低渗透储层裂缝预测研究现状及进展[J].地质论评,2006,52(6):777-782.
    [121]周新桂,张林炎,范昆.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然气地球科学,2007,18(3):328-333.
    [122]周新桂,张林炎,屈雪峰等.沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测[J].石油学报, 2009,30(2):195-200.
    [123]张向东.利用FMI成像测井资料解释地层沉积特征的典型事例[J].测井技术,1996,20(3):219-225.
    [124]李建良.成像测井新技术在川西致密碎屑岩中的应用[J].测井技术,2005,29(4):325-327.
    [125]许同海.致密储层裂缝识别的测井方法及研究进展[J].油气地质与采收率,2005,12(3):75-78.
    [126] Maria Verbnica, Paul Mann,李嘉琳等.委内瑞拉马拉开波盆地南部深埋的下白垩统古岩溶体[J].石油地质科技动态,2007,4:42-51.
    [127]李德生,刘友元.中国深埋古岩溶[J].地理科学, 1991,11(3):234-243.
    [128]康玉柱.中国古生代碳酸盐岩古岩溶储集特征与油气分布[J].天然气工业,2008,28(6):1-12.
    [129]方向清,傅耀军,华解明.我国古岩溶分布特征研究[J].中国煤田地质,2007,19(2):10-14,64.
    [130]陈学时易万霞卢文忠.中国油气田古岩溶与油气储层[J].沉积学报,2004,22(2):244-253.
    [131]陈学时,易万霞.中国油气田古岩溶与油气储层[J].海相油气地质, 2002,7(4):13-25.
    [132]夏日元,唐健生.油气田古岩溶与深岩溶研究新进展[J].中国岩溶,2001,20(1):76-76.
    [133]俞仁连.塔里木盆地塔河油田加里东期古岩溶特征及意义[J].石油实验地质,2005,27(5):468-472,478.
    [134]程绪彬,洪海涛,张荫本等.塔里木盆地奥陶系古风化壳储层空隙类型及其成因分析[J].天然气勘探与开发,2000.23(1).36-42.
    [135]王黎栋,万力,于炳松.塔中地区T74界面碳酸盐岩古岩溶发育控制因素分析[J].大庆石油地质与开发,2008,27(1):34-38.
    [136]王振宇,李凌,谭秀成.塔里木盆地奥陶系碳酸盐岩古岩溶类型识别[J].西南石油大学学报,2008,30(5):11-16.
    [137]舒志国,朱振道,何希鹏等.塔中隆起奥陶系3个构造带中古岩溶发育模式[J].西北大学学报, 2008, 38(5):790-794.
    [138]艾合买提江.塔河油田碳酸盐岩缝洞系统成因及模式研究.东营:中国石油大学(华东),2009.
    [139]蓝江华.四川盆地大池干井构造带石炭系古岩溶储层成因模式[J].成都理工学院学报, 1999,26(1):23-27.
    [140]王兴志,刘仲宣.四川资阳及临区灯影组古岩溶特征与储集空间[J].矿物岩石,1996,16(2):47-54.
    [141]汪华,刘树根,王国芝等.川中南部地区中三叠统雷口坡组顶部古岩溶储层研究[J].物探化探计算机技术, 2009,31(3):264-270.
    [142]郑荣才,郑超,胡忠贵等.川东石炭系古岩溶储层锶同位素地球化学特征[J].天然气工业, 2009,7:4-8.
    [143]王宝清,章贵松.鄂尔多斯盆地苏里格地区奥陶系古岩溶储层成岩作用[J].石油实验地质,2006,28(6):518-522,528.
    [144]王宝清,王凤琴,魏新善.鄂尔多斯盆地东部太原组古岩溶特征[J].地质学报,2006,80(5):700-704.
    [145]李振宏,郑聪斌,李林涛.鄂尔多斯盆地奥陶系古岩溶类型及分布[J].低渗透油气田,2004,9(1):15-21.
    [146]姜平,王建华.大港地区千米桥潜山奥陶系古岩溶研究[J].成都理工大学学报:自然科学版, 2005,32(1):50-53.
    [147]夏日元,唐健生.黄骅坳陷奥陶系古岩溶发育演化模式[J].石油勘探与开发, 2004,31(1):51-53.
    [148]齐振琴,程昌茹,孙秀会等.千米桥古潜山岩溶地貌演化及占岩溶洞穴发育特征[J].海相油气地质, 2008,13(4):37-43.
    [149]张家政,郭建华,赵广珍等.南堡凹陷周边凸起地区碳酸盐岩古岩溶与油气成藏[J].天然气工业, 2009,7:123-128.
    [150] F. Jerry Lucia. Carbonate Reservoir Characterization. Springer-Verlag Berlin Heidelberg, 2007.
    [151]李宗杰,王勤聪.塔河油田奥陶系古岩溶洞穴识别及预测[J].新疆地质, 2003,21(2):181-184.
    [152]丁勇.塔河油田奥陶系岩溶型储层特征及对开发的影响[D].成都:成都理工大学.2009.
    [153]王良俊,李桂卿.塔河油田奥陶系岩溶地貌形成机制[J].新疆石油地质.2001.22(6).480-482.
    [154]鲁新便,高博禹,陈姝媚.塔河油田下奥陶统碳酸盐岩古岩溶储层研究--以塔河油田6区为例[J].矿物岩石.2003.23(1).87-92.
    [155]康志宏,魏历灵,鲁新便.流动单元在塔河缝洞型碳酸盐岩油藏的定义和划分[J].试采技术.2006.27(4).4-7.
    [156]陈景山,李忠,王振宇.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报.2007.25(6)858-868.
    [157]徐国强.塔里木盆地早海西期风化壳岩溶洞穴层研究[D].成都:成都大学.2007.
    [158]肖玉茹,何峰煜,孙义梅.古洞穴型碳酸盐岩储层特征研究——以塔河油田奥陶系古洞穴为例[J].石油天然气地质, 2003.24(1).75-80.
    [159]肖玉茹,王敦则,沈杉平.新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质.2003.17(1).92-98.
    [160]邬兴威,苑刚,陈光新等.塔河地区断裂对奥陶系古岩溶的控制作用[J].断块油气田.2005.12(3).8-9.
    [161]闫相宾韩振华,李永宏.塔河油田奥陶系油藏的储层特征和成因机理探讨.地质论评, 2002, 48(6):619-626.
    [162]饶丹,马绪杰,贾存善等.塔河油田主体区奥陶系缝洞系统与油气分布[J].石油实验地质. 2007,29(6):589-592.
    [163]兰朝利,吴俊,李继亮等.靖安油田长6段层序地层分析.石油与天然气地质,2001,22(4):362-366,371.
    [164]俞仁连,傅恒.构造运动对塔河油田奥陶系碳酸盐岩的影响.天然气勘探与开发,2006,29(2):1-6.
    [165]朱东亚,胡文碹,张学丰等.塔河油田奥陶系灰岩埋藏溶蚀作用特征[J].石油学报,2007,28(5):57—62.
    [166]郑和荣,刘春燕,吴茂炳等.塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J].石油学报,2009,30(1):9-15.
    [167]朱东亚,金之钧,胡文瑄等.塔里木盆地深部流体对碳酸盐岩储层的影响[J].地质论评,2008,54(3):348-357.
    [168]司马立强,疏壮志.碳酸盐岩储层测井评价方法及应用[M].北京:石油工业出版社,2009.
    [169]张琼.基于贝叶斯方法的高考成绩类别预测.太原师范学院学报,2009,8(2):41-43. [ 170]艾合买提江,钟建华,陈鑫等.塔河油田奥陶系缝合线特征及石油地质意义.中国石油大学学报(自然科学版),2010,34(1):7-12.
    [171] John W.Snedden,Peter J.Vro I i jk,Larry T.Sumpter,等.储层连通性:定义、实例与对策[J].国外石油动态,2008.(9)22-38.
    [172]杜宗君,姜萍.利用储层连通性评价剩余油分布[J].国外测井技术,2005.20(1).25-27.
    [173]杨敏.塔河油田4区岩溶缝洞型碳酸盐岩储层井间连通性研究[J].新疆地质.2004.22(2).196-199。
    [174]张林艳.塔河油田奥陶系缝洞型碳酸盐岩油藏的储层连通性及其油(气)水分布关系[J].中外能源,2006.11(5).32-36.
    [175]吕明胜,杨庆军,陈开远.塔河油田奥陶系碳酸盐岩储集层井间连通性研究[J].新疆石油地质,2006.27(6).731-732.739.
    [176]邬光辉,岳国林,师骏等.塔河奥陶系碳酸盐岩裂缝连通性分析及其意义[J].中国西部油气地质,2006.2(2).156-159.
    [177]周波,菜忠贤,李启明.应用动静态资料研究岩溶型碳酸盐岩储集层连通性——以塔河油田四区为例[J].新疆石油地质,2007,28(6).770-772.
    [178]张剑,陈明强,高永利.应用示踪技术评价低渗透油藏油水井间连通关系[J].西安石油大学学报,2006,21(3),48-51.
    [179]陈志海,马绪杰,黄广涛.缝洞型碳酸盐岩油藏缝洞单元划分方法研究——以塔河油田奥陶系油藏主力开发区为例[J].石油与天然气,2007.28(6).847-855.
    [180]康志宏,魏历灵,鲁新便.流动单元在塔河缝洞型碳酸盐岩油藏的定义和划分[J].试采技术,2006.27(4).4-7.
    [181]闫长辉,周文,王继成.利用塔河油田奥陶系油藏生产动态资料研究井间连通性[J].石油地质与工程,2008.22(4).70-72.
    [182]朱蓉,楼章华,金爱民等.塔河油田S48缝洞单元流体分布及开发动态响应[J].浙江大学学报,2009.43(7).1344-1348.
    [183]杨宇,康毅力,张凤东等.塔河油田缝洞型油藏流动单元的定义和划分[J].大庆石油地质与开发.2007.26(2).31-37.
    [184]张希明,朱建国,李宗宇等.塔河油田碳酸盐岩缝洞型油气藏的特征及缝洞单元划分[J].海相油气地质,2007,12(1).21-24.
    [185]魏历灵,康志宏.碳酸盐岩油藏流动单元研究方法探讨[J].新疆地质.2005.23(2).169-172.
    [186]朱蓉,楼章华,鲁新便等.塔河油田缝洞单元地下水化学特征及开发动态[J].石油学报,2008,29(4).567-572.
    [187]陈姝媚,吴铭东,李宗宇等.塔河油田2区奥陶系油藏开发初步方案油藏地质特征和储量评估.塔河采油一厂内部资料,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700