用户名: 密码: 验证码:
济阳坳陷构造反转特征及其与叠合盆地演化关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反转构造的研究是含油气盆地构造分析的重要组成部分。以济阳坳陷盆地构造反转及其所产生的反转构造为研究对象,在对大量地震、录井及测井等资料分析的基础上,准确判识出了济阳坳陷盆地构造反转过程中形成的反转构造;进而依据不整合发育特征、磷灰石裂变径迹以及流体包裹体分析等方法,确定了济阳坳陷盆地构造反转的期次;综合运用平衡剖面恢复、断层活动速率及反转强度系数等方法动态、定量表征了构造反转的运动学特征,明确了各期次反转构造的时空展布规律;结合盆地演化及区域地质背景资料,探讨了济阳坳陷盆地构造反转的形成机制及其对盆地叠合关系的影响;在上述研究的基础上,详细剖析了与反转构造相关的典型油气藏,并就济阳坳陷盆地构造反转对油气成藏条件的控制作用进行了分析。研究结果表明:济阳坳陷中、新生代经历了盆地转型期的T3-K1期负反转、K2期正反转、Ed末正反转以及盆地幕式演化间隙期的Es4末正反转;构造反转存在4种表现形式,即盆地横向拉伸-挤缩的转变、垂向沉降-隆升的转变、断层正断-逆推的转变以及反转构造的形成;盆地在横向与垂向上的反转具有普遍性,反转强度均具有T3-K1期最强、K2期和Ed末次之、Es4末最弱的特点;构造反转过程中形成了正反转和负反转两大类构造样式,具体可细分为断层型负反转、褶皱型正反转、继承断展型正反转和新生逆冲型正反转4小类,共9种表现形式;其中,T3-K1期负反转以断层型为主,表现为NW向断层由逆到正的转换,盆地内广泛发育,反转强度具有自北东向南西降低的趋势;K2期正反转使研究区东北部产生NNE向逆冲断层,主要表现为新生逆冲型正反转;Es4末正反转较弱,仅形成少量的反转挤压背斜,以褶皱型正反转为主;Ed末正反转表现为边界断层由正到逆的转换,形成继承断展型正反转,反转强度具有东强西弱的分布趋势;济阳坳陷构造反转的形成受控于板块运动方式、深大断裂的发育演化、周边造山带的形成及深部地球动力学背景改变,反转构造的发育具有选择性,其发育程度、反转强度及表现形式与不同时期相叠加的拉张和挤压应力场来源、方向、大小及先存断层的产状相关;构造反转影响了盆地的格局及垂向叠合关系,盆地转型期的构造反转使不同性质的盆地发生相干型叠加,而盆地幕式演化间隙期的构造反转仅表现为盆地局部地区沉积中心的迁移;盆地的构造反转滞后了深部源岩的二次生烃、优化了生储盖垂向结构、控制和影响着油气的运聚,有利于伸展断陷盆地形成挤压背斜型油气藏、不整合型油气藏和潜山油气藏。
Inversion structure research is an important component of the petroliferous basin analysis. The structures inversion of Jiyang Depression and those formed inversion structures during the basin inversion were studied. Firstly based on three-dimensional seismic data,drilling and logging data, the inversion structures have been exactly identified and geometric features of inversion tectonics have been analyzed in Jiyang Depression. By comprehensive analysis of the unconformities characteristics, apatite fission track and fluid inclusions, the time of structures inversion in Jiyang Depression were made clear. The kinematic characteristics of structures inversion were quantitatively and dynamically analyzed by using the methods of balanced crossed section, fault activity velocity, inversion intensity coefficient. Spatial distribution of different-stage inversion structures was found out. Combined with the basin evolution and regional geological background, the Formation mechanism and effects on basin superposition of structure inversion in Jiyang Depression were probed. Based on the above study, the structure inversion controlling to hydrocarbon accumulation was studied by analyzing typical the oil and gas reservoirs related to structure inversion. The result show that it developed T3-K1 stage negative inversion, K2 and the end of Ed stage positive inversion during basin transitional stage and the end of Es4 stage positive inversion during interval stage of basin episodic evolution from Mesozoic to now. Structures inversion shows lateral compression-to-extension transformation, vertical uplift-to-subsidence transformation, normal-to-reverse faults transformation and the formation of inversion structures. The lateral and vertical structure inversion has universality and the inversion intensity shows that T3-K1 stage negative inversion is the strongest, K2 and the end of Ed stage inversion are in the second place, and the end of Es4 stage is the weakest. Basin structures inversion generates positive inversion structures and negative inversion structures, which can be subdivided into fault type negative structure, fold type positive structure, inherited propagation type positive structure and newborn thrust fault type positive structure and totally show nine types manifestation. The T3-K1 stage negative inversion shows mainly fault type and experienced from reverse to normal transformation of NW-trending faults. The negative inversion structures well develop in Jiyang Depression and inversion intensity lowers from north east to south west. The K2 stage positive inversion generates NNE-trending thrust faults in the northeast area and shows newborn thrust fault type positive structure. The end of Es4 stage positive inversion only produces a few of fold type positive structures and inversion intensity is weaker. The end of Ed stage positive inversion shows from normal to reverse transformation of boundary faults, which forms inherited propagation type positive structures and inversion intensity of the east area is stronger than west area. The interaction between the plates movement mode, development of deep faults, the formation of surrounding mountains and deep geodynamic setting result in structure inversion in Jiyang Depression. The development of inversion structure has selective. The development degree, inversion intensity and manifestation of inversion structures are related to direction, source and strength-weakness of superimposed extensional and compressional stress field of different stages and the occurrence of pre-existent faults system. Structure inversion affects basin pattern and vertical superposition. The structure inversion during basin transitional stage made the basin with different properties coherently superimposed. But the structure inversion during interval stage of basin episodic evolution only made the partial depocenter migrated. The basin structure inversion delayed secondary hydrocarbon generation of deeply buried source rocks, optimized source-reservoir-cap vertical assemblages and controlled hydrocarbon migration. It was favorable to form compressed anticline reservoir, unconformity reservoir and Buried hill reservoir in extensional faulted depression basin
引文
[1] Li S G, Xiao Y L, Liou D L. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chem. Geol, 1993,109:89-111
    [2] Lin J L, Fuller M, Zhang W. Preliminary phanerozoic polar wander paths for the north and a south China block[J]. Nature, 1985, 313:444-449.
    [3] Ren J, Tamaki K, Li S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent area[J]. Tectonophysics, 2002, 344(3-4):175-205.
    [4] Lamplugh G.W. Structure of the weald and analogues tracts[J]. Quarterly Journal geological Society, 1920,75: LXXIII-XCT(Anniversary Address of the President)
    [5] Stille H. Grundf ragen der Vergleichenden Tektonik[M]. Berlin:Brontrager, 1924:443
    [6] Prouvost P. Sedimentatio et subsidence, centensire de La societe geologique de France livre jubilaire, 1930, 1820-1990.V.II.qaris.545-564
    [7] Glennie K W, Boegner P L E. Sole pit inversion tectonics[C]. // Illing L V, Hobson G D. Petroleum Geology of the Continental Shelf of Northwest Europe. London: institute of Petroleum, 1981:110-120.
    [8] Bally A W de. Seismic expression of structural styles[J]. Journal of Applied Geophysics, 1983, 3:13-18.
    [9] Harding T.P. Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures and Positive structural Inversion[J].AAPG. 1985, 63:1016-1058.
    [10] De Graiansky P C. The inverted margin of the French Alps and forland basin inversion[C]. // Cooper M A, Williams M, eds. Inversion Tectonics. London: Geol Assoc Lond Spec Pub, 1989, 44:41-59.
    [11] Williams G D, Powell C M, Cooper M A. Geometry and Kinematics of inversion tectonics[C]. // Cooper M A, Williams G P. Inversion tectonics. London: Geological Society Special Publication, 1989:3-15.
    [12] McClay K R. Glossary of thrust tectonic terms[C]. // McClay K R. Thrust Tectonics. London: Chapman & Hall, 1992, 419-433
    [13] Mitra S. Geometry and Kinematic evolution of inversion structures[J]. AAPG Bulletion,1993,77(7):1159-1191.
    [14]张功成.中国东北-华北中生代盆地结构构造[J].石油学报,1997,18(4):7-13.
    [15]陈昭年,陈发景.反转构造与油气圈闭[J].地学前缘,1995,2(3):96-99.
    [16]朱文斌,马瑞士,郭令智等.吐哈盆地中央构造带正反转演化特征.大地构造与成矿学,2003,27(2):125-131.
    [17]王同和,蔡希源.中国含油气区反转构造[M].北京:石油工业出版社,2001.
    [18]任安身,杜公仪.济阳坳陷构造特征及油气勘探[J].中国含油气区构造特征.北京:石油工业出版社,1989.
    [19]苏应雪,张秉政.济阳坳陷孤北古潜山逆断层的发现及其地质意义[J].石油勘探与开发,1987,14(4):42-47.
    [20]宗国洪.济阳盆地中生代构造特征与油气[J].地质论评,1995,44(3):3-9.
    [21]潘元林,张善文,肖焕钦等.济阳断陷盆地隐蔽油气藏勘探[M].北京:石油工业出版社,2003.
    [22]董冬,陈洁.断陷盆地潜山油气藏体系的形成、分布和勘探-以济阳坳陷为例[J].石油勘探与开发,2000,27(6):26-27.
    [23]李丕龙.陆相断陷盆地油气地质与勘探[M].北京:石油工业出版社,2003.
    [24]谭明友,邴进营,金学新.山东北部滨海地区负反转断层及古生界负反转结构成因分析[J].石油地球物理勘探,1996,31(6):25-34.
    [25]陈洁,董冬,邱明文.济阳坳陷内的负反转构造及其石油地质意义[J].石油实验地质,1999,21(3):201-206.
    [26]郝雪峰,宗国洪,李传华,等.济阳坳陷正反转构造初步分析[J].油气地质与采收率,2001,8(3):8-10.
    [27]杨品荣,陈洁.济阳坳陷构造转型期及其石油地质意义[J].油气地质与采收率,2001,8(3):5-7.
    [28]常国贞,毕彩芹,林红梅,等.低潜山反转构造演化、成藏体系与勘探—以胜利油区孤北潜山为例[J].断块油气田,2002,9(5):19-23.
    [29]李丕龙,张善文,王永诗,等.多样性潜山成因、成藏与勘探—以济阳坳陷为例[M].北京:石油工业出版社,2003.
    [30]胡望水.松辽盆地北部正反转构造与油气聚集[J].天然气工业, 1996,16(5):20-24.
    [31]胡望水,刘学锋,吕新华.论正反转构造的分类[J].新疆石油地质,2000,21(1):5-8
    [32]胡望水,李瑞升,李涛,等.正反转构造动力学成因探讨[J].石油天然气学报, 2007,29(4):23-29
    [33]谭试典.关于反转构造的几个问题—与蔡希泉、王同和先生商榷[J].新疆石油地质,2004,25(1):103-104
    [34]褚庆忠,王长江.反转构造的识别及研究方法[J].重庆石油高等专科学校学报,2003,5(1):37-40.
    [35]褚庆忠.含油气盆地反转构造研究综述[J].西安石油大学学报(自然科学版),2004,19(1):28-32.
    [36]沈华,陈发景.伸展构造体系中反转构造研究[J].特征油气藏,2005,12(1):23-25.
    [37]徐士银,张庆龙,舒良树,等.反转构造的识别及其地质意义[J].江苏地质.2006,30(1):6-9.
    [38]杨克绳.从地震信息划分三种不同程度的正、负反转构造样式[J].海相油气地质,2006,11(1):21-29
    [39]刘新月,常波涛,孙连浦,等.反转构造的反转程度及其与油气聚集的关系[J].油气地质与采收率,2006,13(2):53-55
    [40] Jamison W R. Geometric analysis of fold development in overthrust terraoes[J].Journal of Structural Geology,1987,9:207-219.
    [41]张功成,徐宏,刘和甫,等.松辽盆地反转构造与油气田分布[J].石油学报,1996,17(2):9-14.
    [42]马杏垣,索书田.论滑覆及岩石圈内多层次滑脱构造[J].地质学报,1984,58(3):205-213.
    [43]刘和甫.沉积盆地地球动力学分类及构造样式分析[J].地球科学,1993,18(6):699-724
    [44]宗国洪,施央申,王秉海,等.济阳盆地中生代构造特征与油气[J].地质论评,1998,44(3): 289-294.
    [45]吴智平,李伟,任拥军.济阳坳陷中生代盆地演化及其与新生代盆地叠合关系探讨[J].地质学报,2003,77(2):280-286.
    [46]张鹏,王良书,丁增勇,等.济阳坳陷中-新生代断裂发育特征及形成机制[J].石油与天然气地质,2006,27(4):467-474.
    [47]郑德顺,吴智平,李伟,等.济阳坳陷中、新生代盆地转型期断裂特征及其对盆地的控制作用[J].地质学报,2005,79(3):387-393.
    [48]郑天发,傅宜兴.江汉盆地反转构造类型及分布特征[J].石油勘探与开发,1997,24(6):36-38
    [49]潘元林.油气地质地球物理综合勘探技术.北京:地震出版社,1998.
    [50]林松辉,王华,王兴谋,等.断陷盆地陡坡带砂砾岩扇体地震反射特征—以东营凹陷为例[J].地质科技情报,2005,24(4):56-59.
    [51]侯旭波,吴智平,李伟,等.东营凹陷陈南断层构造正反转及其油气成藏关系[J].大庆石油学院学报,2009,33(6):25-29.
    [52]程晓敢,唐其升,陈汉林,等.渤海湾南部埕岛地区中生代变形特征及构造演化[J].石油勘探与开发,2006,33(5):596-599.
    [53]邱以钢,程日辉.沾化凹陷下第三系不整和类型类型及其地质意义[J].吉林大学学报:地球科学版,2002,32(2):146-150.
    [54]陈洁.济阳坳陷第三系构造层序及其演化[J].地球物理学进展, 2003,18(4):700-706.
    [55] Fleischer R L, Price P B. Techniques for Geological Dating of Minerals by Chemical Etching of Fission Fragment Tracks, Ceocbim [J]. Cosmochim Acta, 1964,28:1705-1714.
    [56] Naeser N D, Naeser C W, Mc.Culloh T H. Thermal history of rocks in Southern San Joaquin Valley. California: Evidence from fission track analysis[J]. AAPG, 1990,74:13-29.
    [57] Gleadow A J W, Duddy I R, Lovering J F. Evaluation of thermal histories and hydrocarbon potential[J]. Australian Petroleum Exploration Assoc J, 1983,23:93-102.
    [58] Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite-A quantitative analysis[J]. ChemGeol, 1981,65:1-13.
    [59] Duddy I R, Green P F, Laslctt G M. Thermal annealing of fission t racks in apatite variable temperature behavior [J]. Chemical Geology , 1988,73:25-38.
    [60]周成礼,王世成.磷灰石裂变径迹长度分布数值模拟及地质应用[J].石油实验地质,1994,16(4):409-416.
    [61]薛爱民.利用磷灰石裂变径迹资料反演热演化史的综合分析法[J].地球物理学报,1994,37(3):338-344.
    [62]施小斌,罗晓容.古温标重建沉积盆地地热史的能力探讨[J].地球物理学报,2000,43(3):386-392.
    [63]付明希.磷灰石裂变径迹退火动力学模型研究进展综述[J].地球物理学进展,2003,18(4):650-655.
    [64] Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fastcomputing machines[J]. Chem Phys, 1953,21:1087-1092.
    [65] Corrigan J. Inversion of apatite fission-track data for thermal history information[J]. J Geopys Res, 1991,96:10347-10360.
    [66]施小斌,王良书,郭随平,等.磷灰石裂变径迹数据的热史反演及其局限[J].地质科学,1998,33(2):187-194.
    [67] Dahlstrom C D A. Balanced cross sections [J]. Canadian Journal of Earth Sciences, 1969,6(4):743-757.
    [68]张世奇,纪友亮,高岭.平衡剖面分析技术在松辽盆地构造演化恢复中的应用[J].新疆石油地质,2003,21(4):489-490.
    [69]陈伟.平衡剖面计算机模拟及应用[M].北京:科学出版社,1993.
    [70]梁慧社,张建珍,夏义平.平衡剖面技术及其在油气勘探中的应用[M].北京:地震出版社,2002.
    [71]漆家福,杨桥,王子煜,等.关于编制盆地构造演化剖面的几个问题的讨论[J].地质论评,2001,47(4):388-392.
    [72]颜丹平,田崇鲁,孟令波,等.伸展构造盆地的平衡剖面及其构造意义-以松辽盆地南部为例[J].地球科学-中国地质大学学报,2003,28(3):275-280.
    [73]刘学锋,孟令奎.松辽盆地北部深层构造的平衡剖面研究[J].西安石油大学学报(自然科学版),2004,19(5):11-15.
    [74] Elliott D. The construction of balanced cross sections[J]. Journal of Structural Geology, 1983,5(2):101.
    [75]宋来亮,李鸿文,黄永玲.平衡剖面技术在伊朗Kashan地区的应用[J].油气地质与采收率,2003,10:3-5.
    [76]尹天放.多种信息综合计算剥蚀厚度方法[J].石油勘探与开发,1992,19(5):42.
    [77] Magara K. Thickness of removed sediments, paleoporepressure, and paleotemperature, southwestern part of Western Canada Basin[J]. AAPG Bulletin, 1976,60(4):554-565.
    [78] Athy L F. Density porosity and compaction of sedimentary rock. AAPG Bulletin,1930,14:1-24.
    [79] Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953,37(8):1954-2026.
    [80]张博全.压实在油气勘探中的应用[M].北京:中国地质大学出版社,1992.
    [81]李明诚,李伟.利用平衡浓度研究天然气的扩散[J].天然气工业,1996,16(1):1-5.
    [82] Dow W G. Kerogen studies and geological interpretation[J]. Journal of Geochemical Exploration,1977,7(2):79-99.
    [83] Van Hinte J T. Geohistory analysis: application of micropaleontology in exploration geology[J]. AAPG, 1978,62(2):201-220.
    [84] Guidish T M. Basin evaluation using burial history calculations: an overview[J]. AAPG Bulletin,1985,69(1):92-105.
    [85]郝石生,贺志勇,高耀斌,等.恢复地层剥蚀厚度的最优化方法[J].沉积学报,1988,6(4):93-99.
    [86]周瑶琪,吴智平.地层间断面的时间结构研究[M].北京,地质出版社,2000.
    [87]汤良杰,金之钧.塔里木盆地北部隆起牙哈断裂带负反转过程与油气聚集[J].沉积学报,2000,18(2):302-309.
    [88]夏邦栋,李培军.中国东部扬子板块同华北板块在中-晚三叠世拼接的沉积学证据[J].沉积学报,1996,14(1):12-21.
    [89]李培军,夏邦栋.走滑挤压盆地--以中晚三叠世下扬子沿江盆地为例[J].地质科学,1995,30(2):130-137.
    [90]吕洪波,章雨旭,夏邦栋,等.南盘江盆地中三叠统复理石中的同沉积挤压构造[J].地质论评,2003,49(5):449-454.
    [91]李伟.渤海湾盆地区中生代盆地演化与前第三系油气勘探[D].山东东营:中国石油大学(华东),2007.
    [92] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750Ma to the present. Island Arc, 1997,6:124-142.
    [93]田在艺.中国含油气沉积盆地论[M].北京:石油工业出版社,1996.
    [94]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾[J].地质论评,1992,18(4):316-324.
    [95]徐嘉炜,朱光.中国东部郯庐断裂带构造模式讨论[J].华北地质矿产杂志,1995,10(2):121-134.
    [96]张功成.渤海海域构造格局与富生烃凹陷分布[J].中国海上油气(地质),2000,14(2):93-98.
    [97]杜旭东,李洪革,陆克政,等.华北地台东部及邻区中生代(J-K)原型盆地分布及成盆模式探讨[J].石油勘探与开发,1999,26(4):5-9.
    [113]周祖翼.反转构造[J].地质科技情报,1994,13(1):3-10.
    [114]胡望水,吕炳全,毛治国,等.中国东部中、新生代含油气盆地的反转构造[J].同济大学学报,2004,32(2):183-186.
    [115] Sibson R H. Fluid flows accompanying faulting: Field evidence and models[C]. In: Simpson D W, Richard P G, eds. Earthquake Prediction-An international Revies. Maurice Ewing: American Geophysical Union, 1981:593-603.
    [116]陈世悦.华北地块南部晚古生代至三叠纪沉积构造演化[J].中国矿业大学学报,2000,29(5):536-540.
    [117]刘绍龙.华北地区大型三叠纪原始沉积盆地的存在[J].地质学报,1986,60(2):128-137.
    [118]彭兆蒙,吴智平.华北地区三叠纪地层发育特征及原始沉积格局分析[J].高校地质学报,2006,12(2):343-352.
    [119]许化政,周新科,高金慧等.华北早中三叠世盆地恢复与古生界生烃[J].石油与天然气地质,2005,26(3):329-336.
    [120]朱炎铭,秦勇,范炳恒,等.渤海湾盆地三叠系沉积厚度恢复及其意义[J].中国矿业大学学报,2001,30(2):195-200.
    [121]李伟,吴智平,周瑶琪.济阳坳陷中生代地层剥蚀厚度、原始厚度恢复及原型盆地研究[J].地质论评,2005,51(5):507-516.
    [122]宋明水,张学才.济阳坳陷渤南洼陷深层天然气的地球化学特征及成因探讨[J].天然气地球科学,2004,15(6):646-649.
    [123]吴智平,李伟,郑德顺,等.沾化凹陷中、新生代断裂发育及其形成机制分析[J].高校地质学报,2004,10(3):405-417.
    [124]郑礼全,李贤庆,钟宁宁.华北地区上古生代煤系有机质热演化与二次生烃探讨[J].煤田地质与勘探,2002,30(3):21-25.
    [125]蒋有录,刘华,张乐.东营凹陷油气成藏期分析[J].石油与天然气地质,2003,24(3):215-218.
    [126]朱光有,金强,张水昌.东营凹陷沙河街组湖相烃源岩的组合特征[J].地质学报,2004,78(3):416-425.
    [127]钟延秋,李勇,郭洪金.济阳坳陷古近系同沉积背斜构造及其与油气的关系[J].大地构造与成矿学,2006.30(1):28-40.
    [128]张升平,吕宝凤,夏斌.东营凹陷新生代构造转型及其控油意义[J].大地构造与成矿学,2007,31(3):281-287.
    [129]张厚福,孙红军,梅红.多旋回构造变动区的油气系统[J].石油学报,1999(1):38-44.
    [130]付广,陈章明,王朋岩,等.松辽盆地三肇凹陷青山口组泥岩盖层封闭能力形成时期[J].地质论评,1998,44(3):295-300.
    [131]冯向阳,沈淑敏,刘文英.应力驱动油气运移势场的剖面研究[J].地质力学学报,1996,2(2):26-30.
    [132]马寅生.地应力在油气地质研究中的作用、意义和研究现状[J].地质力学学报,1997,3(2):41-45.
    [133]张明利,万天丰.含油气盆地构造应力场研究新进展[J].地球科学进展,1998,13(1):38-43.
    [134]吴巧生,王华,吴冲龙,等.沉积盆地构造应力场研究综述[J].地质科技情报,1998,17(1):8-10.
    [135]李传亮,杜文博.油气藏岩石的应力和应变状态研究[J].新疆石油地质,2003,24(4):351-352.
    [136]孙雄,洪汉净.构造应力场对油气运移的影响[J].石油勘探与开发,1998,25(1):3-6.
    [137]葛云龙,逯径铁,廖保方.构造应力场与油气运移关系的研究[J].石油勘探与开发,1999,26(1):84-87.
    [138]张乐,姜在兴,郭振延.构造应力与油气成藏关系[J].天然气地球科学,2007,18(1):32-35.
    [139]隋风贵,赵乐强.济阳坳陷不整合结构类型及控藏作用[J].大地构造与成矿学,2006,30(2):161-167.
    [140]刘华,吴智平,张立昌,等.辽河盆地东部凹陷北部地区ES1+2/ES3不整合面与油气运聚的关系[J].石油大学学报(自然科学版),2003,27(6):8-16.
    [141]郭良川,刘传虎,尹朝洪,等.潜山油气藏勘探技术[J].勘探地球物理进展,2002,25(1):19-25.
    [142]刘传虎,王军.济阳坳陷古潜山油气藏体系及勘探技术[J].特种油气藏,2002,9(2):1-5.
    [143]彭传圣.济阳坳陷孤北低潜山煤成气成藏条件及特征[J].中国海洋大学学报,2005,35(4):670-676.
    [144]李红梅.孤北斜坡带煤成气成藏条件分析[J].天然气工业,2006,26(2):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700