用户名: 密码: 验证码:
柴达木盆地马北油田变质基岩储层描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界范围内,随着石油天然气勘探和研究程度的不断深化,对各种复杂、非常规油气藏的重视和研究程度越来越高,基岩油气藏就是其中之一。柴达木盆地目前已发现多个基岩油藏并获得高产工业油流,主要分布于盆地北缘和西部,大多都以裂缝性变质岩为储集层。由于裂缝性基岩储层的非均质性极强、预测研究的难度很大,导致勘探开发较为盲目和被动。
     裂缝油气藏目前国内已发现不少,但如何从测井、地震资料识别裂缝储层并描述裂缝的空间分布和定向,目前是石油工业界尚未解决而正在积极研发的关键技术之一。
     本文以柴达木盆地马北油田基岩储层为例,在区域构造背景和盆地演化研究地质研究工作基础上,对变质岩储层进行了描述及预测和方法研究。论文选择了研究难度较大的基底变质岩裂缝性储层,结合岩心、常规测井及成像测井等资料,采用先进的三维地震数据叠前反演技术,综合分析研究,首次探索柴达木盆地基底变质岩储层裂缝的描述及预测方法。
     裂缝油气藏研究难度大,特别是马北油田基岩裂缝油气藏,由于该区基岩埋深较浅,相对而言裂缝宽度小且延伸距离短,增加了预测的难度。目前还缺乏针对基底变质岩裂缝油气藏研究及预测的方法与手段。开展裂缝研究工作,准确识别、预测裂缝的空间展布及发育规律,对于油气勘探以及油气开发中如何确定该区开发井网、开发井位、井距的选择、工艺技术措施等都起着决定性的作用,意义重大。本研究取得的的主要研究成果及进展有:
     (1)马北油田基岩储集层为为变质岩中裂缝集中发育段和井壁严重崩落段,储集空间类型主要包括裂缝、溶孔及溶洞。裂缝的发育为溶孔的形成提供了前提条件,对于改善基岩储层的储渗条件起着重要的作用。裂缝主要在马北三号基岩中的整个变质岩段集中发育,大体可分为低角度缝、高角度缝和微细不规则网状缝三种类型。裂缝倾向优势方位为NNE和SSW两个方向,裂缝倾角以低角度为主,多在30°-40°左右。马北三号地区钻井基岩井段井壁崩落较为普遍,崩落优势方位为NW-SE向,反映现今最大水平主应力方向为NE-SW向。
     (2)马北油田基岩储层以变质岩为主,埋藏深度不大,对三维地震资料的保幅处理要求高。分析地震数据的方位角和偏移距的分布,对提取方位角地震数据体有实际的意义,也是裂缝检测的最重要的第一步。由于储层中声波特征和厚度的差异造成的调谐频率的不同,可以利用频谱成像技术,通过选取不同频率下的振幅能量和相位值在空间的变化识别储层,有效地描述地质在空间的非连续性,并建立起储层的空间地质模型。结合其它的属性剖面,建立储层的垂向地质模型,了解储层的地质特征。正确地建立储层地质模型是我们研究储层内裂缝分布特征的基础。此外,通过建立马北3井的岩石物理模型,模拟了含油、水的裂缝储层的振幅随方位角变化,建立地震反射振幅方位椭园与裂缝定向的关系。结果表明基岩裂缝发育段,振幅椭圆的长轴方向代表了裂缝的走向方向,短轴方向代表了裂缝的法向方向。裂缝定向与储层断裂系统分布有关。
     (3)通过研究平面裂缝发育特征发现,马北三号基岩储层裂缝发育区主要位于马北3井及以南斜坡一带,在马北302井一带裂缝发育较差。各向异性特征在横向上变化较大,尤其是在构造斜坡带及构造端部,开启裂缝表现出更好的发育特征。马北油田基岩储层段开启裂缝发育程度主要是由局部构造的位置及结构特点和岩性成分所决定的,与工区内的构造大断裂的位置关系不大。叠前检测裂缝的研究结果表明,对于裂缝发育带与大断裂远近的关系要重新考虑。实际上,我们研究结果表明了裂缝和断层之间的关系主要表现在断层走向的方向和一组主要裂缝组系的方向是一致的,如北北东向等。
     (4)各类地震属性的计算如吸收衰减、AVO/FVO、叠前弹性波阻抗等,也能较好地反映裂缝储层特性信息,分析结果与方位振幅和方位频率的分析结果基本一致。
     (5)马北油田基底变质岩裂缝方向主要有两组,一组是北北东向,另一组是北西西向,可以认为分别是由印支期和喜山期运动所致,裂缝发育的期次作用对储层有重要的影响。
     马北三号试油成果证明,马北油田三维区基岩裂缝发育区带是寻找裂缝性油气藏的有利地区。本文利用已有的地质、测井、地震资料和各种先进技术,对该区块基岩裂缝储层进行综合分析研究,进一步确定马北三号基岩裂缝储层展布特征及厚度变化规律,为后续勘探开发提供科技支撑。
     随着油气勘探难度越来越大,全世界都越来越重视对非常规油气藏的勘探开发。由于储层非均质性极强及裂缝发育的难以预测性,为此类油藏的勘探开发带来很大困难。本次研究尝试进行基底变质岩裂缝性储层特征及储层描述方面的研究,为探索此类油藏勘探开发的关键——储层预测技术奠定了一定基础。
In the worldwide,with the continuous deepening of exploration and sdudy extent to the oil and gas,the complex and unconventional hydrocrabon reservoirs are being paid much more attention and researched increasingly high.Bedrock reservoir is one of them.A few bedrock reservoirs has been found and confirmed containing high-yileld industrial oil flow in Qaidam Basin.mainly the northern margin of the and the west,most of them are tiththe rractured metamorphic rocks asreservoir. Because of the strong heterogeneity of the fractured metamorphic rock reservoir as well as the difficulty of prediction,the exploration and development is blind and passive.
     A few Fractured hydrocarbon reservoirs have been found in domestic, however, at present one of the key Technologies that has not been solved and positively being researched and developed in petroleum industry is how to recognize the fractured reservoir and describe fractured spatial distribution and orient from well logging and seismic data.
     In this paper, we taken the basement rock reservoir of oil field in Qaidam Basin as example to characterize and peidict reservoir,after researched tectonic setting in this region and basin revolution. we chose to study the basement metamorphic rocks fractured reservoir which is quite challengely,a comprehensive analysis of research combined with core, conventional logging and imaging well logging data, and adopted to advanced three-dimensional pre-stack seismic data inversion techniques, explored the basement metamorphic fractured reservoir of the Qaidam Basin description and prediction methods,at first.
     The studies of fractured reservoir is difficult, especially the fractured reservoir of base rock in Ma Bei oil fields. Because the depth of bedrock is relatively shallow and the width of fracture is small and the fractures extend a short distance, it increases the difficulty of forecasting. It is still lack of methods and means to research and forecast the fractured reservoir of basement metamorphic rocks. It is necessary to carry out the research of fracture, and identify accurately and predict the spatial distribution and law of the development of the fracture, which plays a decisive role and has a great significance in the exploration and development of oil and gas of determining the net of well, projecting the points of wells, and choosing the distance of wells and the technical measure. This paper has carried out mainly in the following research work:
     (1)The reservoir rock of basement of Ma Bei oil field are the segment of metamorphic rocks of the fracture prolifically and the wall of the well which are seriously avalanche. The types of the reservoir space are mainly including cracks, holes and caverns dissolved. Cracks in the formation plays an important role and development of dissolution porosity has provided preconditions for improving the storage reservoir rock permeability conditions.The cracks mainly developed in the metamorphic section, who generally can be divided into low-angle joints, high-angle joints, and fine irregular mesh. Cracks tend to edge direction is NNE and SSW in both directions. The crack inclination angle of the main low, mostly in 30°-40.The caving of drilling bedrock wall of MaBei3 well is common, The avalanche edge of direction is NW-SE, reflecting the present maximum horizontal principal stress direction to the NE-SW.
     (2)The main base rock reservoir in Mabei Oilfield is metamorphic rock,with little deep buried depth,but need high requirements on three-dimensional seismic data processing. Analysing the azimuth and offset distribution of seismic data,which plays an important part in extracting the azimuth of seismic data volume, and is also the most important first step in fracture detection.Due to the different tuning frequencies caused by the differences of the reservoir acoustic wave characteristics and the thickness, we can use spectral imaging technology. Using the changes in space of amplitude and phase in different frequencies, we can identify reservoir, describe the discontinuous change of geological body, and establish a space geological model of reservoir. Combining with other attribute profiles, we establish the vertical reservoir geological model and understand the geological characteristics of the reservoir. Establishing correct geological model of reservoir is the base to study the reservoir characteristics of fracture distribution.We simulate the changes in amplitude of the oil, water fractured reservoir with azimuth changes, and establish the relationship between seismic reflection amplitude with azimuth elliptical and fracture orientation, though rock physics model of Mabei 3 well. The results show that the long axis of the amplitude ellipse represents the strike direction of fracture, and the short axis represents the normal direction of fracture in bedrock fracture segment. Fracture orientation is related to the distribution of reservoir fracture systems.
     (3)The developmental characteristics of the planar transverse crack:there are lot of fractures, the matrix storage capacitu is well.. The fractures are more appear at Mabei No3 well and the neighborhood slope of Mabei No3 well southern, the fractures are little at the neighborhood of Mabei 302 well. The anisotropic characteristics have great change in horizontal. Especially, the propped fractures are well in the tectonic slope and the trending tectonics.By the developmental degree of the propped fractures, the local structural position and lithologic character are main control factors in the matrix, Mabei oil field. The structural faults have little effect in the degree of fractures. The study of pre-stack detected fractures shows that the relation between the fracture-developed zone and the great fault should be reconsideration. In fact, The results show that fault strike and the direction of main fracture set are consistent. For example, north north-east.
     (4)The fracture reservoir characteristics is well reflected by seismic attribution preprocessing, for example, intrinsic attenuation, AVO/FVO, prestack elastic wave impedance inversion, and so on. The analsis results of its is consistent with the analsis results of azimuthal amplitude and bearing-frequency
     (5)there are two sets of fractures in basement metamorphic rock, Mabei oil field. One is north north-east and the other is west northwest. They are controlled by the Indo-china movement and the Himalayan movement. The stage of fracture formation is a important information to impove resevoirs physical property.
     The successful results of well testing in MaBei No.3 prove that, the 3D basement rock fracture bearing area is profitable for exploring fracture reservoir. Using preexisting data of geology logging seismic and various advanced technology this thesis, multidisciplinary analyze and study the basement rock fracture in this block, ascertain the distribution characteristics and variation in thickness of regularity of the basement rock reservoir in MaBei No.3, to provide technical evidence for the successor exploring and development.
     Owning to the exploration activity is becoming more and more difficult, unconventional hydrocarbon reservoirs have been given more and more significances all over the word. Because of the heterogeneous reservoir sands and the difficulty of predicting of fracture bearing, so it is becoming difficulty for the exploratory development of this style hydrocarbon reservoir. In this paper, we try to study the characteristics of basement metamorphic rock fracture reservoir and the reservoir description, to provide some references for the exploring the key factor—predicting reservoirs technology.
引文
[1](苏)E.M.斯麦霍夫.裂缝性油气储集层勘探的基本理论与方法[M].北京:石油工业出版社,1985.
    [2]赵文智等.中国海相石油地质与叠合含油气盆地[M].北京:地质出版社,2002.
    [3]丁贵明,张一伟,吕鸣岗,金之钧,等.油气勘探工程[M].北京:石油工业出版社,1997.
    [4]丁中一,钱祥麟,霍红,杨友卿.构造裂缝定量预测的一种新方法—二元法[J].石油大学学报(自然科学版),1998,19(1):1-7.
    [5]万天丰.古构造应力场[M].北京:地质出版社,1988.
    [6]梅廉夫,徐思煌.沉积盆地沉积物天然水力压裂理论及意义[J].地质科技情报,1997,16(1):39-45.
    [7]中国石油天然气总公司勘探局编.储层沉积学[M].北京:石油工业出版社,1998.
    [8]石油测井情报协作组编.测井新技术应用[M].北京:石油工业出版社,1998.
    [9]中国石油学会物探专业委员会短训班教材.开发地震[M].石油勘探开发科学研究院地球物理研究所汇编,1999.
    [10]中国石油天然气集团公司西北地质研究所科技信息中心编.裂缝性储层研究文集,1999.
    [11]中国石油天然气股份有限公司勘探与生产分公司编.储层预测技术及应用实例[M].北京:石油工业出版社,2000.
    [12]尚作源主编.地球物理测井方法原理[M].北京:石油工业出版社,1985.
    [13]王尚文主编.中国石油地质学[M].北京:石油工业出版社,1983.
    [14]王允诚等编著.裂缝性致密油气储集层[M].北京:石油工业出版社,1992.
    [15]王允诚编著.油气储层评价[M].北京:石油工业出版社,1999.
    [16]梅廉夫,徐思煌.裂缝油气藏综合分析系统[J].石油学报,1995,16(1):38-43.
    [17]梅廉夫,徐思煌,等.江汉盆地王场地区泥岩储层裂缝演化及模拟[J].地球科学—中国地质大学学报,1995,20(3):256-263.
    [18]梅廉夫,徐思煌,等.江汉盆地王场地区裂缝作用与烃类运移[J].科学通报,1994,39(14):1312-1315.
    [19]王永刚,刘礼农.利用相干数据体检测断层与特殊岩性体石油大学学报,2000,24(1):69-72.
    [20]王永刚,李振春,邵雨.利用地震资料预测储层裂隙发育带[J].石油大学学报,2000,24(4):79-82.
    [21]王贵文,郭荣坤编著.测井地质学[M].北京:石油工业出版社,2000.
    [22]文华川.电阻率测井在裂缝性地层中的应用[M].北京:石油工业出版社,1988.
    [23]刘企英编著.利用地震信息进行油气预测[M.北京:石油工业出版社,1994.
    [24]刘宪斌.石油地质学理论新进展综述,石油地球物理勘探(参考资料),252(3):2-5.
    [25]刘宪斌,林金逞,韩春明,穆剑.地震储层研究的现状及展望望.地球学报2002,23(1),73-78.
    [26]刘雯林.灰岩储层裂缝预测方法[J].石油地球物理助探,1990,25(4).
    [27]刘震,张万选.地震分辨率对古火山识别的影响[J].石油物探,1993,32(1):105-112.
    [28]刘震编著.储层地震地层学[M].北京:地质出版社,1997.
    [29]刘雯林.灰岩储层孔缝预测方法[J].石油地球物理勘探,1990,25(4):429-443.
    [30]刘雯林.油气田开发地震技术[M].北京:石油工业出版社,1996.
    [31]刘毓荃.石油物探新技术系列调研成果[M].北京:石油工业出版社,1996.
    [32]林金逞,邓宏文,田世澄,刘宪斌,潘坚.应用深度域高分辨率地震反演识别低渗透薄互层储层研究[J].地学[33]前缘,2001,Vol8.No.4,Oct.
    [34]杜世通,利用地震资料研究油藏参数的技术.《油藏描述技术》[M],王捷主编,北京:石油工业出版社,1996.
    [35]李四光.地质力学概论.北京:地质力学研究所,1972.
    [36]李玲,冯许魁.用地震相干数据体进行断层自动解释[J].石油地球物理勘探,1998,33(增刊1):105-111.
    [37]李德同,文世鹏.储层构造裂缝的定晕描述和预测方法[J].石油大学学报(自然科学版),1996,20(4):6-10.
    [38]李志明,张金珠等.地应力与油气勘探开发[M].北京:石油工业出版社,1997.
    [39]李道品等著.低渗透砂岩油田开发[M].北京:石油工业出版社,1997.
    [40]张子枢.裂缝性油气藏的勘探方法[J].石油地质情报,1990(1).
    [41]张厚福,张万选.石油地质学(第二版)[M].北京:石油工业出版社,1989.
    [42]颜丹平.裂缝性岩石裂缝扩展的光弹构造物理模拟[J].石油大学学报,2005.
    [43]张学汝,陈和平,张吉昌,伊万泉编著.变质岩储集层构造裂缝研究技术[M].北京:石油工业出版社,1999.
    [44]张德林著.地震资料油气显示研究原理与实际[M].北京:石油工业出版社,2000.
    [45]张亚中等译.地球物理和地质资料应用中的新事物.石油地球物理勘探(参考资料),1997,(9):10-13.
    [46]张景廉,刘全新,梁秀文,王斌婷.有关自然伽马能潜测井在储层预测中的应用讨论[J].石油地球物理助探,2000,(3):395-400.
    [47]单俊峰,高险峰等.辽河油区油气资源潜力及重点区带选择[J].特种油气藏,20007(2)
    [48]朱庆杰,王波.轮南奥陶系裂缝研究的综合定量方法[J].石油地球物理勘探,1999.34(2):180-189.
    [49]汪涵明,张庚骥,李善军等.单一倾斜裂缝的双侧向测井响应[J].石油大学学报(自然科学版),1995,19(6):21-24.
    [50]宋惠珍,欧阳健等.裂缝性储层定量研究的一套新方法[J].地震地质,1994,16(3).
    [51]陈丽华,王家华,李应,田崇鲁等编著.油气储层研究技术[M].北京:石油工业出版社,2000.
    [52]陈遵德编著.储层地震属性优化方法[M].北京:石油工业出版社,1998.
    [53]周家尧.裂缝性油气勘探文集[M].北京:石油工业出版社,1991.
    [54]牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    [55]曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982.
    [56]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社,1998.
    [57]林金逞,邓宏文,田世澄,刘宪斌,潘坚.应用深度域高分辨率地震反演识别低渗透薄互层储层研究[J].地学前缘,2001,8(4).
    [58]赵澄林,刘孟慧等.特殊油气储层[M].北京:石油工业出版社,1997.
    [59]郑晓东.AVO异常检测技术及其应用[J].石油地球物理勘探,1991,26,643-649.
    [60]郑晓东.AVO理论和方法的一些新进展[J].石油地球物理勘探,1992,27,305-317.
    [61]高如增.用地震动力学信息寻找微小断层的尝试[J].石油地球物理勘探,1988,23(4)
    [62]谭廷栋.裂缝性地层侧向测井解释新方程[J].地球物理学报,1983,26(6).
    [63]谭廷栋.识别裂缝性油层及水淹层的特殊解释方法[J].测井技术,1984,No.4.
    [64]谭廷栋.裂缝性油气藏测井解释模型与评价[M]. 北京:石油工业出版社,1991.
    [65]R.A.纳尔逊.天然裂缝性储层地质分析[Z].北京:石油工业出版社,1988.
    [66]靳久强.地震异常有助于探测裂缝性产油区[J].石油物探译丛,1989,5,32-35.
    [67]袁秉衡主编.应用地震技术研究储层[M].北京:石油工业出版社,1992.
    [68]管守锐,赵澄林.岩浆岩及变质岩简明教程[M].山东:石油大学出版社,1992.
    [69]裘亦楠,薛叔浩,应凤祥主编.中国油气储层研究论文集(续一)[M].北京:石油工业出版社,1993.
    [70]欧阳健等著.石油测井解释与储层描述[M].北京:石油工业出版社,1994.
    [71]欧阳健,王贵文,吴继余,宋惠珍等著.测井地质分析与油气层定量评价[M].北京:石油工业出版社,1999.
    [72]童亨茂,钱祥麟.储层裂缝的研究和分析方法[J].石油大学学报(自然科学版),1994,18(6):14-20.
    [73]裘亦楠,薛叔浩主编.油气储层评价技术[M].北京:石油工业出版社,1994.
    [74]陆基孟.地震勘探原理[M].山东:石油大学出版社,1993.
    [75]尚作源,欧阳健,冯启宁著.测井新技术与油气层评价进展[M].北京:石油工业出版社,1997.
    [76]徐怀大等主编.从地震地层学到层序地层学[M].北京:石油工业出版社,1997.
    [77]揭克常等编著.东胜堡变质岩油藏[M].北京:石油工业出版社,1997.
    [78]潘元林,孔凡仙,等主编.中国隐蔽油气藏[M].北京:石油工业出版社,1998.
    [79]倪逸,杨慧珠,郭玲萱,王倩,张冲.储层油气预测中地震属性优选问题探讨[J].石油地球物理勘探.1999,34(6):614-626.
    [80]戴弹中,欧振洲.裂缝圈闭及其勘探方法[J].天然气工业,1990(4).
    [81]傅强编著.裂缝性基岩油藏的石油地质动力学[M].北京:地质出版社,2002.
    [82]Chaoyang Zha,Zhirang Zhang,Deying Zhong,Shaoguo Yang and Feng Shen. Application of Fractured Reservoir Modeling Technology to Sandstone Reservoirs in Songliao Basin,China,2004 EAGE,Z-99,Paris.2004.
    [83]Li,X.-Y.,Kuhnel,T. and MacBeth.C, Mixed mode AVO response,66th Ann. Internat. Mtg.,Soc. Expl. Geophys.,Expanded Abstracts,1996,1944-1947.
    [84]Li,X.-Y., Fractured reservoir delineation using multicomponent seismic data:Geophys. Prosp.,1997a,45,39-64.
    [85]Li,X.-Y, Viability of azimuthal variation in P-wave moveout for fracture detection:67th Annual Internat. Mtg.,Soc. Expl. Geophys.,Expanded Abstracts,Ⅱ,1997b,1555-1558.
    [86]Li,X-Y, Fracture detection using P-P and P-S waves in multicomponent sea-floor data,68th Ann. Internat. Mtg.,Soc. Expl. Geophys.,Expanded Abstracts,1998,2056-2059.
    [87]Li,X-Y., Processing PP and PS waves in multicomponent sea-floor data for azimuthal anisotropy:theory and overview,Procedding of the Eighth International Workshop on seismic Anisotropy (Revue De L'institut francia du petrole),1998,53,607-620.
    [88]Li,X-Y.,Fracture detection using azimuthal variation of P-wave moveout from orthogonal seismic survey lines,Geophysics,1999,64,No.4 1193-1201.
    [89]Liu,E. and Li,X.Y.,Seismic detection of fluid saturation in aligned fractures,70th Annual International SEG Meeting,Calgary, Canada,6-11 August,2000,2373-2375.
    [90]Liu,E, Li,X-Y and Queen,J, Discrimination of pore fluids from P and converted shear-wave AVO analysis,Proceedings of 9IWSA, Published by SEG,,2000,(see www.seg.org/9iwsa).
    [91]Liu,Y.J.,Li,X.Y. and MacBeth.C.M., Analysis of azimuthal variation in P-wave signature from orthogonal streamer lines,69thth Annual International SEG Meeting,2000, 1959-1962.
    [92]Liu,Y.J.,Li,X.Y and Anderton.P.,Can we extract fracture information from 3-D marine streamer data? 70th Annual International SEG Meeting,Calgary,Canada,6-11 August,2000, 1655-1958.
    [93]Shen,F. and Toksoz.N., Scattering Characteristics in Heterogeneous Fractured Reservoirs From Waveform Estimation,Geophysical Journal International,2000,Vol 140,251-265.
    [94]Shen,F.,Wu,R.-S., and Gao,J., Scattering of P-S converted waves in fractured reservoirs,70th Ann. Internat. Mtg.,Soc. Expl. Geophys,2000,2365-2368.
    [95]Shen,F.,Sierra,J. and Toksoz,N., Offset-dependent attributes (AVO and FVO) applied to Fracture detection:69th Ann. Internat. Mtg.,Soc. Expl. Geophys,1999,776-779.
    [96]Shen,F. and Toksoz.N., Scattering Characteristics in Heterogeneous Fractured Reservoirs From Waveform Estimation:68th Ann. Internat. Mtg.,Soc. Expl. Geophys., 1998,1636-1639.
    [97]Shen,F.,Zhu,X. and Toksoz,N., Anisotropy of aligned fractures and P-wave azimuthal AVO response, Geophysics.2002,Vol.67,No.2.
    [98]A.Karaman and P.J.CarPenter. Fracture density estimates in glaciogenic deposits from P-wave velocity reductions[J].Geophysics.1997,62(1):138-148.
    [99]Bahorich.M.S and Farmer.S.L..3-D seismic discontinuity for faults and stratigraphic feathers:The coherence cube[J].The Leading Edge.1995,14(10):1053-1058
    [100]Rebecca Saltzer* and Chris Finn, Predicting vshale and porosity using cascaded seismic and rock physics inversion, Expanded Abstracts of 75th Annual International SEG Meeting
    [101]Larry Lines*, Ying Zou, Albert Zhang, et al. VP/VS Characterization of a Heavy-Oil Reservoir, Expanded Abstracts of 75th Annual International SEG Meeting
    [102]P rucha M, Biondi B, W. Angle-domain common image gathers by wave-equation migration [J] Annual Meeting Abstracts,Society of Exploration Geophysicists,1999,824-827
    [103]MarCo Antonellini and AtillaAydin.Effect of Faulting on Fluid Floeing Porous Sandstones: Petrophysical Propertis.AAPG.1994,78(3):355-377
    [104]Mallick, S., A simPle approximation to the P-wave reflection coefficients and imPlication in the inversion of amplitude variation with offset data, Geophysics.58,542-552,1993
    [105]Marfurt Kurt J and Kirlin R L.3-Dseismic attributes using a semblance-based coherency algorithm [J].Geophysics,1998,63(4):1150-1176
    [106]McCormack, M.D.Neural computing in geophysics[J].The Leading Edge.1991,10:11-15
    [107]Michael C, Mueller.Using shear waves to predict lateral variability in vertical fracture intensity seismic interpretation series[J[.Society of Exploration Geophysicists,1992, 3:25-36
    [108]Murray R.C.Quantitative Fracture Study-Sanish Pool, McKenzie County, North Dakota, AAPG,1968,52(1):57-65
    [109]Narr W., and J.B.Currie. Origin of fracture porosity-example from Altamont field, Utah]J].AAPG,1982,66(9):1231-1247
    [110]Narr W.Fracture Density in the Deep Subsurface:Techniques with Application to Point Arguello Oil Field.AAPG,1991,75(8):1300-1323
    [111]Narr W, Lerche L. A method for estimating subsurface fracture density in core.AAPG, 1984,68(5):637-648
    [112]Nelson R.A.Geologic analysis of Naturally fractured reservoirs.Houston:Gulf Publishing ComPany,1987:167-188
    [113]Qin Huang, Angelier J.Fracture spacing and its relation to bed thickness.Teclonophysics. 1989,124(4),355-362
    [114]Paillet F L.Qualitative and quantitative interpretation of fracture permeability using acoustic full-waveform logs.The Log Analyst,1991, (May-June):256-270
    [115]Robert L Kranz. Comment on "Fractal and length analysis of fractures during brittle to ductile changes" [J].Journal of Geophysical Research,1994,99(B8)
    [116]Roberto Aguilera.Geologic aspects of naturally fractured reservoirs[J]. The Leading Edge, 1998,17(12):1667-1670
    [117]Robert J.Paul. Seismic detection of overpressuring and fracturing:an example from the Qaidam Basin, People's Republic of China[J].Geophysics,1993,58(10)
    [118]Rutger Gras. Automated 3-D software interprets fault systems[J].World Oil,1998, 29(5):81-83
    [119]Schultz,P.S.,Ronen,S.,Hattori,M,and Corbett, C.Seismic guided estimation of log Properties, parts 1,2,and3 [J].The Leading Edge.1994,13:305-310,674-678 and 770-776
    [120Tsingas, C., and Kanascwich, E.R., Seismic reflection amplitude versus angle variation over a thermally enhanced oil recovery site, Geophysics,56,291-301,1991
    [121]Yielding G, Walsh J and Watterson J. The prediction of small-scale faulting in reservoirs[J].First Break,10(12):449-460
    [122]Hudson J A. Overall properties of a cracked solid. Math Proc Camb Phil Soc,1980,88: 371-384
    [123]Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Roy Astr Soc,1981,64:133-150
    [124]Connolly P.Elastic impedance,The Leading Edge,1999,18:438-452
    [125]Cambois G, AVO and elastic impedance [R],70th SEG Annual Meeting, Expanded Abstracts,2000, AVO,2,4
    [126]Hsu K J.1988. Relic back-arc basins and:Principles of recognition and possible new examples from China,in Kleinspehn K K. and Paola C. (eds.), Frontiers in Sedimentary Geology:New Perspectives in Basin Ana-lysis. Springer-Verlag:245-263
    [127]Hsu K J.1989. Origin of sedimentary basins of China. In Zhu X (eds.), Chinese Sedimentary Basins:207-227
    [128]Hsu K J.1994. Buried-euxenic-basin model sets Tarim Basin potential:Oil and Gas Journal., Special vol.92:51-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700