用户名: 密码: 验证码:
致密砂岩气藏储层特征及有效储层识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以苏里格致密气藏为研究对象,针对古生界具有低孔、低渗、埋藏深、厚度薄的河流相沉积砂体储层;储层厚度薄,岩性空间变化大,储层非均质性强;岩性-地层圈闭类为主的气藏隐蔽性强;储层地球物理特征复杂,而地震资料分辨率低等难点。应用层序地层学、沉积学、岩石物理学、储层地质学、地球物理学等多学科理论方法,综合运用钻井、岩心、分析化验、测试、测井、地震资料等,开展层序地层、沉积微相、成岩作用与有效储层发育等研究,应用多种地震新技术新方法,以地质(钻井)标定测井,测井约束地震,地质、地震、测井相结合为纽带,开展远近道及叠后叠前地震资料对比分析研究,综合利用各类属性信息(包括地震反射结构、波形特征、反演信息)进行多属性分析,研究不同地震属性特征与储层及含气性之间的关系,建立其多元映射关系;进而分析有效储层的展布规律,预测相对高产富集区,优选钻探目标。形成一套苏里格致密气藏有效识别方法。
     论文研究取得的主要总结性认识:
     1.研究区山西组-石盒子组可分出四个长期旋回、十个中期旋回(相当于Ⅳ、Ⅴ级旋回、准层序);
     2.区块主力气层为盒8段和山1段,山2段也有一定的气层分布,其中盒8下段沉积体系为沼泽背景下的辫状河沉积,发育辫状河道、心滩、泛滥平原和河间湖泊四种沉积微相;山1、山2段主要为曲流河沉积体系。沉积微相及其水动力条件是控制有效储层分布的主要因素。沉积微相中的心滩、主河道及边滩等微相是有效砂体发育区。
     3.苏20区块盒8、山1段具有典型的煤系地层成岩作用特征。主要表现为压实作用强,碳酸盐胶结物含量低,石英加大和高岭石普遍发育,孔隙类型以颗粒溶蚀形成的次生孔隙为主。主要储集空间为溶蚀孔隙,其次为残余原生粒间孔及高岭石晶间微孔。喉道以弯曲片状和管束状喉道为主,片状喉道有一定量的出现。孔喉连通性差,基本以小孔-微细喉型为主;
     4.研究区盒8段储层总体表现为低孔、低渗的特征。孔隙度分布范围在1.4%-13.8%之间,平均为7.69%,渗透率分布范围在0.0073-1.1088×10-3μm2,平均为0.33×10-3μm2。盒8下比盒8上具有更为有利的沉积条件和成岩条件,盒8下物性明显比盒8上物性好;
     5.研究区砂岩储层目前处于中成岩阶段B期。成岩作用序列为:压实作用→早期粘土膜(绿泥石膜和蒙脱石膜)形成→石英次生加大→方解石沉淀→高岭石形成→方解石溶蚀→伊/蒙混层或绿/蒙混层→孔隙充填伊利石及绿泥石→第二期硅质胶结→天然气充注→凝灰质等易溶组份晚期溶蚀→方解石交代碎屑颗粒;
     6.研究区砂岩原始孔隙度为37%,经机械压实和化学压溶作用后孔隙度损失了26.24%,再经绿泥石、方解石、硅质等胶结物充填后孔隙度损失了7.76%,溶蚀作用使孔隙度增加了4.69%,现今保存的孔隙度平均值为7.69%;
     7.研究区主要成岩相类型:溶蚀成岩相、硅质胶结成岩相、蚀变致密成岩相、强压实致密成岩相。溶蚀成岩相主要分布在粗粒、且成因单元较厚的主河道砂岩;硅质胶结成岩相主要分布小型水道中;蚀变致密成岩相分布比较局限,对储层的影响不大,往往在大段砂岩中呈断续的物性夹层状分布。强压实致密成岩相多发育在河道或心滩顶部的细粒沉积以及漫滩中薄层砂体和泥岩层之中;
     8.以孔隙度、渗透率、孔隙结构参数为主,同时结合储层砂体分布的沉积和成岩相带。将研究区储层划分为四类,其中Ⅰ类、Ⅱ类为有效储层。苏20区块高效储层在岩石学上受粒度和矿物成分的控制,粒度和矿物成分又具有相互依存的关系,最终是粒度起决定作用,仅砂岩中的粗砂岩才可形成有效储层;粒度、砂岩成因单元的大小和沉积序列特征控制了有效储层的分布,在普遍的低渗砂岩背景上寻找高效储层必须从沉积微相的界定入手。有效层分布与河道分布具有很好的一致性;
     9.为获取用于储层预测的高质量地震资料,要做好频率、信噪比、能量、静校正等方面的分析工作,处理流程中注意消除激发、接收和近地表的变化引起的振幅、能量、时差和频率的差异的处理。通过基于模型的噪声压制、地表一致性振幅和频率校正技术、静校正技术、保幅偏移技术、相位分解反褶积技术构成保幅处理的完整流程,可获取有效储层的地震预测的基础数据资料。
     10.盒8段、山1段在常规地震剖面上可划分四类地震微相,即强振幅、连续性好、中高频率(A类);中振幅、中-低频率,连续性差-中(B类);弱-中振幅、低频率,连续性差(C类);空白-弱振幅,低频率,连续性差(D类)。结合沉积相分析,波形特征平面展布上盒8段和山1段表现为:A类型漫滩沉积;D类型泛滥平原沉积;B、C两类分别代表心滩(或边滩)和河道沉积,平面上分布广,是有利砂体的分布区;
     11.近远道上地震叠加剖面上波形的对比分析,认为可划分4种波形变化类型。A类:远道地震剖面相对近道地震剖面,振幅明显增强,即“亮点型”;B类:振幅明显减弱,即“暗点型”;C类:同相轴发生明显的扭曲或连续性变差,为同相轴变化型;D类:基本无变化或变化不大,为无变化型。平面上盒8段和山1段波形变化图上A、B两种类型可以较好地反映含气性的分布范围;
     12.地震属性分析显示,时间厚度、能量半衰、弧长、均方根振幅等属性能大体反映砂体的展布或有利富集区。
     13.AVO属性可以帮助有效储层的定量预测和储层参数估算。岩石物理参数入和μ值分布显示,工区北部值高于南部,高值背景的低值区位物性相对较好的储层分布区。综合多种地震信息认为:中振幅、中高振幅与主频比、中高弧长与主频比、低频、中高(P、G、泊松比、流体因子)、中低入和μ、低入/μ,远近到振幅差异大为有利油气聚集区。
     14.通过对苏20区块地震砂体预测、储层沉积相分析、储层有效厚度分布、及储层分类评价结果的综合分析,优选苏20区块北部,及西南部作为下一步开发目标。
The reaseach object is tight gas reservoirs in Sulige on the paper, according to the difficulties on the characteristic with Paleozoic river facies sandstone reservoir, such as low porostiy, low permeability, deep burial, thin reservoir thickness, rapid space change, strong reservoir heterogeneity; the gas reservoir have strong concealment in mainly with lithology-stratigraphy trap; the reservoir feature of geophysical is complex, and low seismic datum.This study not only applies comprehensively well drilling, cores, analysis assay, testing, well logging, seismics data, but also adopts the latest theories and technique and methods of resolution of Sequence Stratigraphy, Sedimentology, Petrophysics, Reservoir Geology, Geophysics, etc. Exerting the predominance of many subjects jointly tackling key problem, developing the research on sequence stratigraphy, sedimentary micro-facies, diagenesis and the growth of effective reservoir, etc, apply with multi-seismic new technology and new method, based on geology (drilling) calibrate logging, integrating a tache with logging constrained seismic, geology, logging that carrying out comparative and analytic research on seismic datum of far&near and post-stack & pre stack, comprehensive utilization of kinds attribute information (including seismic reflection structure, waveform characteristic, retrieval information) do multi-attribute analysis, study on the connection of different sesimic attribute characteristic and gas reservoirs, found its multivariate mapping relationship, and then analyse spread rules of effective reservoir, predict comparative high enrichment area, optimization for drilling object, It formed a good recognition way aimed at tight sandstone gas reservoirs in Sulige area.
     Mainly sumarize cognitive on this paper:
     1.From Shanxi group to Shihezi group dispart 4 secular cycle and 10 medium cycle (equivalent toⅣ,Ⅴgrade cycle, subsequence) in study area;
     2.Major pay are He 8 and Shan 1 section in this block, and also distributing some gas pay in Shan 2section, the kind of depositional system is braided-rive under the swamp background in the He 8 lower, develop four kinds of microfacies:braided channel, mid-channel bar, flood plain and interchannel lake; Shan 1 and Shan 2 section mainly belong to meandering river depositional system. the effective reservoir are controlled by microfacies and its hydrodynamic condition which is main factor, the effective sandbody mostly develop in mid- channel bar, main channel and point bar microfacies, etc
     3.He 8 and Shan 1 section have typical characteristic on diagenesis of coal formation that mainly presented as strong compaction, low in carbonate cement, quartz secondary and Kaolinite developping generally, secondary pore formed with particles dissolution is the main pore type. primary reservoir space is dissolution pore, secondly is primary intergranular pore and kaolinite intergranular microporous.Throat is mostly bending flake and tube bunchiness, and also appearing flake throat.bad connectivity of hole and throat, give priority to the type of small hole-fine throat.
     4.The reservoir of He 8 section mainfest the feature of low porostiy, low permeability collectivity in the study area. The porostiy distribution is 1.4%-13.8%, the average value is 7.69%, the permeability distribution is 0.0073-1.1088×10-3μm2, the average value is 0.33×10-3μm2.He 8 lower is more favorable conditions in Sedimentary and diagenesis than He 8 upper, Obviously the physical properties of He 8 lower are better than He 8 upper;
     5.The reservoir is now in middle stage of diagenetic B in the study area.The diagenesis takes turns as follows:compaction→authigenic chlorite clay rim→quartz overgrowths→calcite cementation→kaolinite cementation→calcite dissolution→mixed layer clay→the second quartz overgrowths→hydrocarbon filling→Tuffaceous easy solution components later dissolution→calcite metasomatism.
     6.The primary porosity of sandstone is 37% in the study area, when experienced mechanical compaction and chemical pressure solution, the porosity lose 26.24%, later experienced the cement such as chlorite, calcite, siliceous filling, the porosity lose 7.76%, but dissolution resulted from the porosity increase 4.69%, their present average porosity is 7.69%.
     7.Main diagenetic facies in the study area:dissolution diagenetic facies, siliceous cementation diagenetic facies, alteration dense diagenetic facies, strong compaction dense diagenetic facies. dissolution diagenetic facies mostly distribute in the sandstone of drainage line that own coarse grain and thick genetic unit; siliceous cementation diagenetic facies mainly distribute in the miniature channel; alteration dense diagenetic facies distribute limitation relatively and little influence for reservoir, usually show the distribution of intermittent physical sandwich.strong compaction dense diagenetic facies more develop in fine grained sediments in the top of river or middle channel baras well as sand and mud interstratification in the overbank.
     8.High-efficient reservoirs in Su 20 block are controlled by particle size and mineral composition in petrology, particle size and mineral composition are interdependence, particle size plays a decisive role, only gritstone in sandstone form effective reservoir; particle size, size of genetic unit (sandbody) and Sedimentary Sequence character control the effective reservoir distribution, Finding the definition of high-efficient reservoirs that on the universal low permeability sandstone background must depend on sedimentary micro-facies.
     9.To obtain high quality seismic datum using reservoir predict, must work best in analysing frequency, signal to noise, energy, etc, in processing flows notice the disposal difference that amplitude, energy, time difference and frequence caused by dispelling excitation, receiving andnear-surface variety. By noise suppression basing on model, surface consistent amplitude and frequency correction technique, static correction technique, keep amplitude migration technology, decomposition deconvolution technology, this is a full series flow that keep amplitude process, can catch the basic data with effective reservoir seismic predict.
     10.The waveform characteristics of He8 and Shan 1 reservoir 1 section is divided into 4 categories in seismic general profile, just is A-type: strong amplitude, good continuity, and higher frequency; B categories:medium amplitude, medium-low frequency, poor continuous; C Class: wake-medium amplitude, low frequency and poor continuity; D category: He8 blank-weak amplitude, low frequency, poor continuity; Sh1 paragraphs blank reflex amplitude. B and C types of seismic facies separately on behalf of mid-channel bar (or point bar) and river sediment, is a favorable distribution of sandbody.
     11.Comparative analysis of He8 and Shanl reservoir waveform on the near & far seismic stack profile, think that could be divided into 4 types, type A resprent for increased amplitude from near to far seismic profile, just is "bright-type"; B category amplitude significantly decreased, just is"dark point"; Tpye C show that the co_rotating distorted obviously or continuity being poor, it is just co_rotating axis variational;D category changed little, that is changeless, A and B two types that can give better prediction results which reservoir of gas-bearing, can be used to provide the target block for the forecast;
     12.Analysis of seismic attribute show that, attribute such as time thickness, energy half time, arc length, RMS, etc can reflect the sandbody spread or enrich area generally.the classification figure of seismic predict reservoir througth integrating multi-attribute information with research results, consider that medium amplitude, medium-strong amplitude and dominant frequency ratio, low frequency, medium-high (P, G, poisson ratio, fluid factor), medium-lowλandμ, lowλ/μ, the favor accumulation area come great amplitude difference from near to far seismic profile, which reservoir development and good physical.
     13.According to the integration analysis of seismic sandbody predicting, reservoir sedimentary facies analysis, distribution of reservoir effective thickness and reservoir value class results, evaluate typeⅠ+Ⅱas effective reservoir and avail gas enrich area, determine the southwest and northern area of Su 20 block for further exploration object.
引文
[1]Masters J A. Resource Pyramid (circa 1980)
    [2]Michael E. McCracken, Dale Fitz, Tom Ryan.Tight gas surveillance and characterization: impact of production logging[J]. SPE Unconventional Reservoirs Conference,2008 (2), Keystone, Colorado, USA.
    [3]谷江锐,刘岩.国外致密砂岩气藏储层研究现状和发展趋势[J].国外油田工程.2009,25(7):1-5.
    [4]王涛.中国天然气地质理论基础与实践[M].北京:石油工业出版社,1997.
    [5]李剑.中国重点含气盆地气源特征与资源丰度.江苏徐州:中国矿业大学出版社,2000.
    [6]田昌炳,于兴河,徐安娜等.我国低效气藏的地质特征及其成因特点[J].石油实验地质,2003,25(3):235-238
    [7]付金华,段晓文,姜英昆.鄂尔多斯盆地上古生界天然气成藏地质特征及勘探方法[J].中国石油勘探,2001,6(4):68-75.
    [8]何自新,付金华等.苏里格大气田成藏地质特征[J].石油学报,2003,24(2):6-12
    [9]杨华,魏新善.鄂尔多斯盆地苏里格地区天然气勘探新进展[J].天然气工业,2007,27(12):6-11.
    [10]Law B E. Geologic characterization of low-permeability gas reservoirs in selected wells, Greater Green River Basin, Wyoming, Colorado, and Utah[A]. AAPG Studies in Geology#24,1986.253-269.
    [11]Spencer C W. Geologic aspects of tight gas reservoirs in the Rocky Mountain region [J]. Journal of Petroleum Technology,1985,37 (8):1308-1314.
    [12]Stephen A Holditch. Tight gas sands[J]. SPE J,2006, (1):86-93.
    [13]关德师,牛嘉玉.中国非常规油气地质[M].北京:石油工业出版社,1995.60-85.
    [14]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:4-8.
    [15]王允诚,孔金祥,李海平.气藏地质[M].北京:石油工业出版社,2004
    [16]杨晓宁.致密砂岩的形成机制及其地质意义-以塔里木盆地英南2井为例[J].海相油气地质.2005,10(1):31-36.
    [17]Law B E. Basin-centered gas system[J]. AAPG Bulletin,2002,86 (11):1891-1919.
    [18]Charles W S.Review of characteristics of low-permeability gas reservoirs in Western United States [J]. AAPG Bull,1989,73 (5):613-629.
    [19]Williams K E, Lerche I, Maubeuge F. Unconventional gas traps:low permeability sands and gas accumulations[J]. Energy Exploration &Exploitation,1998,16(1):1-87.
    [20]刘民中.美国、加拿大深层致密砂岩气藏勘探:现状、地质特征及主要勘探技术[J].国外油气勘探,1990,2(4):10-15.
    [21]Masters J A. Deep basin gas trap, Western Canada [J]. AAPG Bulletin,1979,63 (2): 152-181.
    [22]Sehmoker J W, Fouch T D, Charpentier R R. Gas in the Uinta Basin, Utah resources in continous accumulations [J]. Mountain Geology,1996,33 (4):95-104.
    [23]张金川,金之钧.阿尔伯达盆地深盆气成藏条件与基本特征[J],国外油气勘探,1999,11(24):400-407.
    [24]袁政文,许化政,王百顺等.阿尔伯达深盆气研究[M].北京:石油工业出版社,1996.
    [25]王允诚,吕运能,曹伟著.气藏精细描述[M].成都:四川科学技术出版社;乌鲁木齐:新疆科技卫生出版社,2003.
    [26]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245.
    [27]李士伦,孙雷,杜建芬等.低渗透致密气藏、凝析气藏开发难点与对策[J].新疆石油地质,2004,25(2):156-159.
    [28]刘吉余,马志欣,孙淑艳.致密含气砂岩研究现状及发展展望[J].天然气地球科学,2008,19(3):316-319.
    [29]郑浚茂著,碎屑储层的成岩作用研究[M].武汉:中国地质大学出版社,1989.
    [30]郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997(18):19-24.
    [31]郑浚茂,吴仁龙.黄骅坳陷砂岩储层的成岩作用与孔隙分带性[J].石油与天然气地质,1996(17):268-275.
    [32]裘怿楠,应凤祥等,中国陆相油气储集层[M].北京:石油工业出版社,1999.
    [33]王卓飞、蒋宜勤、祝嗣全.准噶尔盆地侏罗系低渗透油气储层特征及成因探讨[J].断块油气田,2003,9(10):23-27.
    [34]马文杰、陈丽华、王雪松,我国致密碎屑岩天然气储层特征[J].低渗透油气田,1997,4(2):8-13.
    [35]王鑫,合肥盆地侏罗系低渗透致密砂岩储层的成因与优质储层发育的潜力[J].石油实验地质,1996,1(9):47-51.
    [36]曾大乾,李淑贞,中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,1(15):39-47.
    [37]Frederic Leder, Won C Park. Porosity reduction in sandstone by quartz ver growth[J]. AAPG Bulletin,1986,70 (11):1713-1727.
    [38]Scherer M. Parameters influencing porosity in sandstone:A model for sandstone porosity predication[J]. AAPG Bulletin,1987,71 (5):485-490.
    [39]杨晓萍,裘怿楠.低渗透储层成因机理及其优质储层的形成与分布[C].第二届中国石油地质年会.2006.
    [40]贺静,黄月明.鄂尔多斯盆地镇北地区延长组长1-8低渗透储层的成因机制[M//低渗透油气田研究与实践.北京:石油工业出版社,1997:43-46.
    [41]何东博,苏里格气田复杂储层控制因素和有效储层预测,中国地质大学(北京)博士论文,2005.
    [42]Lewis D J.对致密含气砂岩评价方法的改进-以威尔科克斯组为例[J].周惠生译.四川石油普查,1991,(1):72-82.
    [43]柴细元,韩成,舒卫国等.深层特殊岩性致密高阻薄层油气层测井解释[J].测井技术,1999,23(5):350-354.
    [44]杨正明,张英芝,郝明强等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67.
    [45]刘吉余,李艳杰,于润涛.储层综合定量评价系统开发与应用[J].物探化探计算技术,2004,26(1):33-36.
    [46]孟祥水,何长春,郭玉芬.核磁共振测井在致密含气砂岩储层评价中的应用[J].测井技术,2003,27(增):1-4.
    [47]周守信,徐严波,李士伦等.致密泥质砂岩储层的物性预测方法及应用[J].天然气工业,2004,24(1):40-43.
    [48]张连元.安塞油田坪北区低渗透储层评价[J].江汉石油职工大学学报,2005,18(4):8-11.
    [49]尹昕,应文敏.鄂尔多斯盆地大牛地气田上古生界低孔渗砂岩储层评价[J].矿物岩石,2005,25(2):104-109.
    [50]文龙,刘埃平,钟子川等.川西前陆盆地上三叠统致密砂岩储层评价方法研究[J].天然气工业,2005,25(增):49-53.
    [51]胡明毅,李士祥,魏国齐等.呈上西前陆盆地上三叠统须家河组致密砂岩储层评价[J].天然气地球科学,2006,17(4):456-458.
    [52]赵政璋,赵贤正等.储层地震预测理论与实践[M].北京:科学出版社,2005.
    [53]孙建国.勘探地球物理技术最新进展[J].勘探地球物理进展,2003,26(2).
    [54]赵政璋,赵贤正,王英民等,储层地震预测理论与实践[M].科学出版社,2005.
    [55]李明,侯连华,邹才能等.岩性地层油气藏地球物理勘探技术与应用[M],石油工业出版社,2005.
    [56]熊翥.21世纪初中期油气地球物理技术展望[M].石油工业出版社,2006.
    [57]贾承造,赵文智,邹才能等.岩性地层油气藏地质理论与勘探技术.北京:石油工业出版社.2008.35-48.
    [58]Chen, Q.and Sidney, S., Seismic attribute technology for reservoir forecasting and monitoring[J]. The Leading Edge,1997,16 (5):445-456.
    [59]Chen, Q.and Sidney, S., Advances in seismic attribute technology,67th Ann. Internat. Mtg: Soc. of Expl. Geophys.,1997,730-733.
    [60]Brown, A. R., Seismic attributes and their classification[J]. The Leading Edge,1996, 15 (10) 1090-1091.
    [61]Brian R., Dan H., Jim S., John Q. Mult-attribute seismic analysis [J]. The Leading Edge, 1997,16 (10):1439-1443.
    [62]刘企英.利有地震信息进行油气预测[M].北京:石油工业出版社,1994.
    [63]孙家振,李兰斌.多信息储层预测和油气判别仁[M].武汉:中国地质大学出版社,1997.
    [64]LAWRENCE P, ARAMCO S, DHAHRAN and ARABIA S.Seismic attributes in the characterization of small scale reservoir in Abqaiq Field[J].The Leading Edge,1998,17 (4):521-525.
    [65]A. E.Barnes, Seismic attribute:past, present, and future [J], 1999,69th ANNU SEG INT MTG EXPANDED ABSTR BIOGR V 1:892-895.
    [66]Hilterman, F., J., Seismic Amplitude Interpretation [J]. SEG, Distinguished instructor Short Course,2001.
    [67]刘文岭,牛彦良等.多信息储层预测地震属性提与有效性分析方法[J].石油物探,2002.
    [68]穆星,罗红梅.能量吸收分析技术在油气预测中的应用[J].油气地质与采收率.2006.13(5):50-52.
    [69]夏步余,居春荣.地震属性技术在黄任油田储层预测中的应用[J].石油物探,2004,43.
    [11]姜岩,周再林,秦月霜.地震属性分析的神经网络岩性识别技术及应用[J].大庆石油地质与开发,2000,19(5):39-41.
    [70]刘金平.叠前地震属性在薄互层储层预测中的应用[J].天然气工业,2007.27(增刊A):262-264
    [71]高林,杨勤勇.地震属性技术的新进展[J].石油物探.2004.43(增刊):10-16.
    [72]高建虎,雍学善,刘洪.叠后地震油气检测技术与应用[J].石油物探.2006.45(4):385-389.
    [73]王永刚,乐友喜,刘伟,曹丹平.地震属性与储层特征的相关性研究[J].石油大学学报(自然科学版),2004,28(01):26-30.
    [74]陈遵德.储层地震属性优化方法[M].北京:石油工业出版社,1998.
    [75]于建国,姜秀清.地震属性优化在储层预测中的应用[J].石油与天然气地质,2003,24(3):291-296.
    [76]倪逸,杨慧珠,等.储层油气预测中地及属性优选问题探讨[J].石油地球物理勘探,1999,34(6):614-626.
    [77]曹辉.关于地震属性应用的几点认识[J].勘探地球物理进展,2002,25(5):18-22.
    [78]王永刚.地震属性的GA-BP优化方法[J].石油地球物理勘探,2002,37(3):606-611.
    [79]于建国等.地震属性优化在储层预测中的应用[J].石油与天然气地质2003,24(3):291-294.
    [80]印兴耀,周静毅.地震属性优化方法综述[J].石油地球物理勘探,2005,(4):482-489.
    [81]刘文岭,李刚,夏海英.地震波形特征分析定量描述方法[J].大庆石油地质与开发,1999,18(2):44.
    [82]邓传伟.利用波形建立地震相[J].石油地球物理勘探.2004,39(5):539-542.
    [83]董立生,陈恭洋,刘书会.王长江波形分析技术在梁108地区沙四段薄层储层预测中的应用[J].江汉石油学院学报,2004,26(增刊):20-21.
    [84]朱剑兵,地震相划分方法研究新进展[J].油气地球物理,2008,6(3):6-9.
    [85]朱剑兵,赵培坤,国外地震相划分技术研究新进展[J].勘探地球物理进展,2009,32(3):167-171.
    [86]张延章,石倩茹,崔树清等.相干分析在地震地质精细层位标定中的应用[J].现代地质,2004,22(1):80-82.
    [87]苏朝光,刘传虎,王军.相干分析技术在泥岩裂缝油气藏预测中的应用[J].石油物探,2002,41(2):197-201.
    [87]胡中平.AVO正反演技术[J].勘探地球物理进展2003,26(5-6):382-386.
    [88]David M. Markowitz.利用AVO技术预测岩性(邬杨夫译)[J].勘探地球物理进展,1990,(4):24-26.
    [89]Patrick Connolly. Elastic impedance. The Leading Edge,1999,18 (4):438-452.
    [90]Foster D J, Keys R G. Interpreting AVO responses[A].69th Ann. Internat. Mtg., Soc.Expl. Geophys., Expanded Abstracts,1999.748-751.
    [91]Kelly M C, Ford D. The interpretation of P-P AVO cross-plot[A].69th Ann. Internat. Mtg., Soc.Expl. Geophys., Expanded Abstracts,2000.214-217.
    [92]Connolly P. Elastic impedance[J]. The Leading Edge,1999,18:438-452.
    [93]J. Soldo. Fluid to lithology discrimination approach using simultaneous AVO inversion: Puesto Peter Field, Austral Basin, Argentina[J]. THE LEADING EDGE,2009,28 (6): 698-701.
    [94]朱兆林,王永刚,曹丹平.裂缝性储层AVO检测方法综述[J].勘探地球物理进展,2004,27(2):87-92.
    [95]王云专,余杰,赵洪波等.利用AVO效应反演泊松比和储层厚度[J].大庆石油学院学报,2001,25(4):1-3.
    [96]王卫红,姜在兴,潘仁芳等.AVO交会分析及其应用[J].西安石油学院学报:自然科学版,2003,18(2):5-8.
    [97]张文,李维新.AVO交会分析技术的应用[J].中国海上油气,2002,16(4):286-290.
    [98]孙鹏远,孙建国,卢秀丽等.P-P波AVO近似对比研究:定性分析[J].石油地球物理勘探,2002,37(增刊):164.
    [99]陈湛文,刘勇.基于波形的高分辨率AVO反演[J].大庆石油地质与开发,2001,20(6),56-57.
    [100]孙鹏远,孙建国.P-SV波AVO分析[J].石油地球物理勘探,2004,38(2):417-422.
    [101]李景叶,陈小宏,金龙.时移地震AVO反演在油藏定量解释中的应用[J].石油学报.2005,26(3):68-73.
    [102]杨新菊,马建德.AVO正演模型研究及引用[J].海洋石油,2006,26(3):14-19.
    [103]孔选林,仇燕.饱和流体多孔介质中AVA特征分析与正演[J].内蒙古石油化工,2008,4:74-76.
    [104]尚新民,李红梅,韩文功等.基于岩石物理与地震正演的AVO分析方法[J].天然气工业,2008,28(2):64-66.
    [105]顾军锋;金振奎.AVO技术在气藏预测中的应用[J].科技导报.2009.6(6):43-46.
    [106]殷八斤,曾灏,杨在岩.AVO技术的理论与实践[M].北京:石油工业出版社,1995:68-86.
    [107]唐建明.AVO纵横波反演[J].物探化探计算技术,2002,2(1):27-30.
    [108]李正文,许多.油气储集层AVO非线性反演方法及应用研究[J].石油物探,2002,41(1):23-25.
    [109]王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社.2001.
    [110]赵治信.塔里木盆地地层:塔里木盆地油气勘探丛书[M].北京:石油工业出版社,1997.
    [111]雷利安,徐美茹,曹学良等.带趋势序贯指示模拟方法在东淮陷薄砂岩储层顶测中的 应用[J].石油地球物,2005,40(1):92:96.
    [112]李龙淞,陈恭洋.用随机模拟方法对井间砂体预测[J],石油与天然气地质.
    [113]侯景儒.地质统计学的理论与方法[M].北京,地质出版社,1990.
    [114]Samantha Hanley. Analyzing real data in a virtual world[J]. The Leading Edge,1999,18 (6):710-712.
    [115]Tatum, M. Sheffield, Geovolume visualization interpretation[J]. The Leading Edge, 1999,18 (6):668-674.
    [116]Gerald. D. Kidd, Fundamentals of 3-D Seismic Volume Visualization[J]. The Leading Edge,1999,18 (6):702-709
    [117]Samantha Hanley. Analyzing real data in a virtual world[J]. The Leading Edge,1999,18 (6):710-712.
    [118]Gao D., Volume texture extraction for 3D seismic visualization and interpretation[J]. Geophysics,2003,68 (4):1294-1302.
    [119]杨梦岩,常德双,孙忠等.可视化技术与全三维地震解释方法[J].石油物探,2002,41(增刊):972-991
    [120]王娟.三维可视化河道立体解释技术[J].石油地球物理勘探,2005,40(6):677-681
    [12]]吴东胜,陈华军,刘少华,朱小龙,王庆.三维可视化技术在隐蔽油气藏勘探中的应用[J].石油物探.2005,44(1):44-46.
    [122]席胜利、王怀厂等,鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业,2002,(22):21-23.
    [123]陈凤喜,卢涛,达世攀等.苏里格气田辫状河沉积相研究及其在地质建模中的应用[J].石油地质与工程,2008,22(2):21-24.
    [124]史松群,赵玉华.苏里格气田低阻砂岩储层的含气性预测研究[J].石油地球物理勘探,2003,38(1):77-83.
    [125]甘利灯,赵邦六,杜文辉,李凌高.弹性阻抗在岩性与流体预测中的潜力分析[J].石油物探,2005,44(5):504-508.
    [126]何晓菊,郭亚斌.鄂尔多斯盆地苏里格庙地区上古生界砂岩储层预测技术和效果[J].石油地球物理勘探,2002,37(增刊):9-13
    [127]郭晓龙,欧阳永林,耿晶,许晶.鄂尔多斯盆地苏里格气田地震转换波解释[J].2005,天然气地球物理勘探,2005,16(5):650-653.
    [128]刘红岐,彭仕宓,唐洪,侯金梅.苏里格庙气田气层识别方法研究[J].2005,27(1):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700