用户名: 密码: 验证码:
无机微纳米晶的合成、组装及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同形状纳米(微米)晶及其复杂结构组装体的控制合成与性质研究是无机合成化学和无机材料化学的研究热点。本文旨在探索利用简单的水热法实现不同形状微纳米晶的可控合成以及多级结构的组装,发展了对无机微纳米材料形态和结构进行控制的新合成路线,并对所合成的无机微纳米晶及其组装体的结构、形态与性能之间的相关性进行了初步探讨。本文的主要内容归纳如下:
     1.本文简化了含硫前驱物热分解法制备金属硫化物过程中的分离和提纯步骤,利用新生成的N,N二乙基二硫代氨基甲酸盐在母液中直接水热(溶剂热)分解,控制合成了ZnS、PbS、Bi2S3、CdS等一系列金属硫化物微纳米结构。
     首次利用单源前驱物分解和Ostwald熟化法相结合的路线制备了ZnS空心球。ZnS空心微球的粒径在220-350 nm,粒径和球壳厚度可以通过调节反应温度和反应时间来加以控制,依据化学反应诱导的Ostwald熟化机制分析了ZnS空心微球的形成过程。PL光谱表明其发光性质非常复杂,除了470 nm的主发光峰外,还有一些弱的可见光区的发光。UV-vis光谱表明所制备的ZnS空心球表现一定的“空心效应”。
     首次利用该路线控制合成出折纸花状的Bi2S3纳米片和多枝Bi2S3纳米带。折纸花结构的Bi2S3是由褶皱的纳米片自组装而成的,HRTEM图像表明单根纳米带是由多层单晶纳米薄片组成。利用循环伏安实验分析了Bi2S3样品的电化学储氢性能,结果表明Bi2S3样品的储氢能力与其纳米结构的形貌和结构有关,折纸花结构Bi2S3纳米片的电化学储氢能力优于Bi2S3多枝纳米带。初步讨论了Bi2S3纳米结构由纳米片到纳米带的转化过程。提出了纳米带的形成经历了杂化胶体粒子的生成、组装和晶体生长三个过程,并根据“折叠-撕裂”机理分析了由纳米片到纳米带的转化过程。
     同样方法制备了立方、十四面体等不同形状的PbS微晶,考察了不同实验条件对PbS微晶形貌的影响,简单讨论了两种形态PbS微晶的生长机理,发现PVP的添加量、反应时间、前驱体浓度等对PbS微晶的生长都有很大影响。通过控制结构导向剂PVP的浓度,可以有选择的制备PbS十四面体和立方体微晶以及二者之间的不同形状过渡状态的PbS微晶。
     同样方法用于CdS纳米结构的制备,得到了一系列由CdS纳米粒子或纳米棒构筑成的星形的纳米结构,讨论了CdS纳米结构的形成机理并且考察了不同CdS纳米结构的光学性质。
     2.本文采用一步水热法,制备了不同结构和形态的矫顽力可控的α-Fe203铁磁材料,考察各种实验条件对α-Fe2O3微纳米晶结构和形态的调控。所制备的α-Fe2O3鸡蛋形、方块状、桃子状、冬瓜状等一系列实心微球和空心结构微球都有好的单分散性、均匀的尺寸和规则的形状。通过此方法也可以制备单分散的Fe3O4微球。通过样品的磁滞回线探讨了不同α-Fe2O3样品的磁性能与其微结构之间关系,样品的矫顽力、饱和磁化强度和剩余磁化强度均与其形态结构有关,如鸡蛋状α-Fe2O3微球的矫顽力室温下达到3800 Oe,方形α-Fe2O3空心微球的矫顽力室温下达到7800 Oe,这是目前文献报道液相法制备的α-Fe2O3矫顽力的最高值。简单讨论了不同形态α-Fe2O3微球的形成过程,经历了中间相Fe8O8(OH)8Cl1.35纳米棒的生成转化以及α-Fe2O3纳米棒的组装和Ostwald熟化等过程,得到不同结构和形态的α-Fe2O3微球。在CTAB体系中得到了α-Fe2O3菱形纳米晶,该体系中α-Fe2O3具有不同的生长方式,其磁性能与球形聚集体也大不相同,矫顽力为920 Oe,剩余磁化强度为0.17emu/g,饱和磁化强度为0.44emu/g。
     3.本文采用80℃的低温液相反应制备了ZnO六棱柱构成的花状微结构,并在低温水溶液中很方便地在ZnO棱柱表面沉积了纳米金属Ag,得到花状的Ag-ZnO微结构。该结构具有微米尺度的结构,又有负载于微结构表面的Ag纳米粒子。根据室温PL光谱比较了负载Ag对ZnO花状微结构发光性能的影响,以甲基橙的光催化降解为例比较了两种微结构的光催化性能,实验发现,该复合结构能在较低的Ag负载量时大大提高其光催化活性。采用水热法首次在表面活性剂存在下制备了Ag-TiO2空心结构,以大肠杆菌为例考察其抗菌性能。实验结果表明,该空心结构具有很好的抗菌活性。分析了CTAB胶束模板法制备Ag-TiO2空心结构的基本过程。
     4.采用水热法,通过改变反应温度选择性地制备了普鲁士蓝纳米立方块和球形组装体,水热反应温度是控制普鲁士蓝纳米晶的主要因素。所得纳米立方块和球形组装体的粒径分布窄,分散性好。通过UV-vis光谱、N2吸附-脱附等温线以及循环伏安曲线比较了普鲁士蓝纳米晶形状与性能之间的关系。普鲁士蓝纳米晶修饰碳电极的循环伏安结果表明该电极对H2O2的电还原具有十分明显的催化作用,可用于制备电化学生物传感器。分别讨论了不同形貌的普鲁士蓝纳米粒子的形成机理。
In this thesis, novel synthetic methodologies have been developed to prepare inorganic micro (nano) crystals with specific shapes, for that morphology controlled synthesis and the large-scale self-assembly of the nanoscale building blocks into complex structures have been the focus of significant interests in materials chemistry and device fabrications. Morphology controllable synthesis and assembly of several inorganic micro (nano) crystals have been carried out, and their morphology and shape dependent properties have been investigated. The main points are summarized as follows:
     1. A simple route has been explored to synthesize sulfides micro (nano) structures through directly hydrothermal decomposition of the as-formed diethyldithiocarbamate precursor in its mother solution. A series of microstructures have been obtained, including ZnS hollow spheres, Bi2S3 microstructures, and PbS polyhedra.
     A facile one-pot synthesis of ZnS hollow spheres has been carried out, for the first time, via a chemical transformation induced inside-out Ostwald ripening process from a single source precursor. The as-obtained ZnS hollow spheres have sizes in the range of 220-350 nm, and the size and shell thickness can be controlled by adjusting the reaction temperature and reaction time, respectively. Photoluminescence spectra show a dominant emission peak at 470 nm accompanied by several weaker peaks. UV-vis measurement reveals that the obtained ZnS hollow spheres exhibit "hollow effect". The formation process of ZnS hollow spheres has been discussed.
     For the first time, Bi2S3 nanostructures from paper folding flower-like structures to nanobelts/multibranches were obtained through similar procedure. The synthesized Bi2S3 flower-like structures are constructed with folding of self-assembled nanosheets. HRTEM investigation shows that an individual nanobranch is composed of multiple nanosheets with single crystalline nature. Cyclic voltammograms of the Bi2S3 nanostructures are measured to investigate their electrochemical hydrogen storage behaviors. It was found the capacity of electrochemical hydrogen storage is susceptible to the morphology and structure of Bi2S3 nanostructures, and Bi2S3 roses have superior capacity than that of Bi2S3 nanobelts. The morphology evolution from flower-like nanosheets to multibranched nanobelts has been investigated. It may be determined by both the instinct crystal structures of Bi2S3 and the folding-splitting crystal growth mechanism.
     When extent this procedure to the synthesis of PbS, cubes and truncated octahedra have been obtained selectively. The influence of experimental parameters on the shapes of the PbS micro-crystals have been investigated and it was found that the concentration of PVP and the precursor and the reaction time are key factors for shape controlled synthesis of PbS microcrystals. PbS cubes and truncated octahedral can be selectively obtained by using different amount of PVP. The growth mechanism and the shape evolution progress have been discussed briefly.
     2. Monodisperse a-Fe2O3 microspheres and hollow spheres of different shapes have been selectively synthesized through the hydrothermal process. The a-Fe2O3 microspheres exhibit egg-like, cube-like, peach-like and white-gourd-like shapes, as well as hollow structures, all of them have good dispersibility, uniform size, and well-defined shapes. Monodisperse Fe3O4 microspheres have also been prepared. The relationship between the magnetic properties and the shapes and structures of theα-Fe2O3 microspheres has been studied. Ferromagnetic investigation shows that the coercivity and the magnetization saturation values of Fe2O3 samples are closely related to their shapes and structures. Egg-like a-Fe2O3 microspheres exhibit high coercivity of 3800 Oe, while cube-like hollow structures show extremely high coercivity of 7800 Oe at room temperature. When CTAB is used as structure directing reagent, a-Fe2O3 rhombohedrons are the main products. The rhombohedron nanocrystals show coercivity of 920 Oe, remanent magnetization of 0.17 emu/g, and saturation magnetization of 0.44 emu/g exhibiting different magnetic properties from a-Fe2O3 microspheres. A hydroxide precursor of Fe8O8(OH)8Cl1.35 have been captured in all the shape evolution process of a-Fe2O3. And the decomposition and assembly of the precursor nanorods toα-Fe2O3 microspheres as well as the Ostwald ripening process are responsible for the shape evolution of Fe2O3 samples.
     3. Simple solution methods have been explored to synthesize Ag loaded oxides semiconductor hierarchical structures with high photocatalytic activities. Radical-shaped ZnO microprisms were synthesized via a facile low temperature solution route, then, metal silver was facilely deposited on the surface of ZnO to form Ag/ZnO microstructures. The results showed that the deposition of metal Ag nanospecies were achieved successfully by simply aging the solution at 75℃, and the radical-shaped microstructures of ZnO were well maintained. The Ag/ZnO microstructures exhibit much lower PL emission intensity than that of radical-shaped ZnO microprisms, while much higher photocatalytic activity than that of the pure ZnO. Ag-TiO2 composite hollow structures have been obtained via a one-pot surfactant-assisted hydrothermal method. TEM measurement reveals that the sample is composed of hollow spheres and their tube-like aggregates. The surfactant cetyltrimethylammonium bromide plays a key role in the construction of the Ag-TiO2 hollow structures, which involves templating the CTAB micelles. These microstructures are characterized to ascertain their antibacterial activity which was investigated using the disk agar diffusion method, showing potential antibacterial activity against Echerichia Coli bacterium of clinical interest.
     4. Prussian blue nanocubes and nanoellipsoids have been synthesized selectively with variation of reaction temperature via a hydrothermal process. Both the nanocubes and nanoellipsoids have a narrow size distribution and a good dispersibility. UV-vis spectra showed that the excitonic peaks of the nanocubes and nanoellipsoids are 683 nm and 674 nm, respectively. Cyclic voltammograms of PB nanocubes and nanoellipsoids modified carbon paste electrodes showed two pairs of redox peaks and a dramatic catalysis for the reduction of H2O2. The possible formation mechanism of different shaped Prussian blue nanoparticles has been discussed and their shape related properties are briefly explored.
引文
[1]Qi L.M., Colloidal Chemical Approaches to Inorganic Micro-and Nanostructures with Controlled Morphologies and Patterns [J], Coordin. Chem. Rev.,2010,254:1054-1071
    [2]Jiang S., Chen Q., Mukta T., et al. Janus Particle Synthesis and Assembly [J], Adv. Mater., 2010,22:1060-1071
    [3]Mo M.S., Wang D.B., Du X.S., et al. Engineering of Nanotips in ZnO Submicrorods and Patterned Arrays [J], Cryst. Growth Des.,2009,9(2):797-802
    [4]Song R.Q. and Colfen H., Mesocrystals:Ordered Nanoparticle Superstructures [J], Adv. Mater., 2009,21:1301-1330
    [5]Tao A.R., Habas S., and Yang P.D., Shape Control of Colloidal Metal Nanocrystals [J], Small, 2008,4(3):310-325
    [6]Sunandan B., Joydeep D., Hydrothermal Growth of ZnO Nanostructures [J], Sci. Technol. Adv. Mater.,2009,10:013001
    [7]Xu S. J., Chua S. J., Liu B., et al. Luminescence Characteristics of Impurities-activated ZnS Nanocrystals Prepared in Microemulsion with Hydrothermal Treatment [J], Appl. Phys. Lett.,1998, 73:478-480
    [8]Cao Minhua, Hu Changwen, Peng Ge, et al. Selected-control Synthesis of PbO2 and Pb3O4 Single-crystalline Nanorods [J], J. Am. Chem. Soc.,2003,125:4982
    [9]Cao M.H., Hu C.W., Wang E.B..,The First Fluoride One-dimensional Nanostructures: Microemulsion-ediated Hydrothermal Synthesis of BaF2 Whiskers [J], J. Am. Chem. Soc.,2003, 125:11196-11197
    [10]Lin G.H., Lu W.S., Cui W.J., et al A Simple Synthesis Method for Gold Nano-and Microplate Fabrication Using a Tree-Type Multiple-Amine Head Surfactant [J], Cryst. Growth Des.,2010,10: 1118-1123
    [11]Zhang D.B., Qi L.M., Ma J.M., et alMorphological Control of Calcium Oxalate Dihydate by a Double-Hydrophilic Block Copolymer [J], Chem. Mater.,2002,14:2450-2457
    [21]孙洵,傅有君,高樟寿,等.杂质对KDP晶体结晶习性的影响[J],科学通报,2001,46:251-253
    [13]Zhou L., Wang W.Z., Xu H.L., et al. Bi2O3 Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and Their Application in Photocatalysis [J], Chem. Eur. J.,2009, 15:1776-1782
    [14]Yu S., Wu Y.S., Yang J., et al, A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E= S, Se, Te) and Morphological Control [J], Chem. Mater.,1998,10(9):2309-2312
    [15]Xu L.P., Hu Y.L., Pelligra C., et al. ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity [J], Chem. Mater.,2009,21: 2875-2885
    [16]Yu W. W, Peng X.G., Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers [J], Angew. Chem., 2002,114:2474-2477
    [17]Yang J., Xue C., Yu S.H., et alGeneral Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligand n-Butylamine as a Shape Controller Angew [J], Chem. Int. Ed., 2002,41:4697-4700
    [18]郑燕青,施尔畏,元如林,等.二氧化钛晶粒的水热制备及其形成机理研究[J],中国科学(E辑),1999,29(3):206-213
    [19]王步国,施尔畏,仲维卓,等.水热条件下ZnO微晶的结晶习性及形成机理[J],硅酸盐学报,1997,25(2):223-229
    [20]李汶军,施尔畏,郑燕青,等.氧化物晶体的成核机理与晶粒粒度[J],无机材料学报,2000,5(5):777-786
    [21]刘泽,李永祥,吴冲若.水热法制备二氧化钛晶须[J],硅酸盐学报,1998,26(3):392-394
    [22]Peng Z.A., Peng X.G.. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J Am Chem Soc,2001,123,1389.
    [23]Fornasieri G., Rozes L., Le G.S., et al Reactivity of Titanium Oxo Ethoxo Cluster [Ti16O16(OEt)32]. Versatile Precursor of Nanobuilding Block-Based Hybrid Materials [J], J Am Chem Soc,2005,127(13):4869-4878
    [24]Choi J. W., Tamaki R., Kim S. G., et al Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes [J], Chem. Mater.,2003,15(17):3365-3375
    [25]Luna-Xavier J. L., Guyot A. and Bourgeat-Lami E., Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator[J], J Colloid Inter Sci,2002,250(1):82-92
    [26]Luna-Xavier J. L., Bourgeat-Lami E. and Guyot A., The Role of Initiation in the Synthesis of Silica/Poly(methyl methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization [J], Colloid. Polym. Sci.,2001,279(10):947-958
    [27]Rutot-Houze D., Fris W., Degee P., et al Controlled Ring-Opening (Co)Polymerization of Lactones Initiated from Cadmium Sulfide Nanoparticles [J], J. Macromol. Sci., Pure Appl. Chem., 2004,41(6):697-711
    [28]Gravano S. M.,Dumas R.,Liu K.,et al Methods for the surface functionalization of Y-Fe2O3 nanoparticles with initiators for atom transfer radical polymerization and the formation of core-shell inorganic-polymer structures [J], J. Polym. Sci., Part A:Polym. Chem.,2005, 43(16):3675-3688
    [29]Ohno K., Koh K., Tsujii Y., et al Synthesis of Gold Nanoparticles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Living Radical Polymerization [J], Macromolecules,2002,35(24):8989-8993
    [30]Kotal A., Mandal T K. and Walt D. R., Synthesis of gold-poly(methyl methacrylate) core-shell nanoparticles by surface-confined atom transfer radical polymerization at elevated temperature[J], J. Polym. Sci., Part A:Polym. Chem.,2005,43(16):3631-3642
    [31]Chen X, Randall D. P, Perruchot C., et al. Synthesis and Aqueous Solution Properties of Polyelect Rolyte-grafted Silica Particles Prepared by Surface-initiated Atom Transfer Radical Polymerization[J], J Colloid Inter Sci,2003,257(1):56
    [32]Vestal C. R., Zhang Z.J., Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/polystyrene core/shell Nanoparticles [J], J Am Chem Soc,2002,124 (48):14312
    [33]Kickelbick G., Holzinger D., Brick C., et al Hybrid Inorganic-organic core/shell Nanoparticles from Surface-functionalized Titanium, Zirconium, and Vanadium Oxo Clusters [J], Chem Mater, 2002,14 (10):4382
    [34]Wang Y.P., Pei X.W., Yuan K. Reverse ATRP Grafting from Silica Surface to Prepare well-defined Organic/inorganic Hybrid Nanocomposite [J], Mater Lett,2005,59 (4):520
    [35]Tegou E., Bellas V., Gogolides E., et al Polyhedral Oligomeric Silsesquioxane (POSS) Based Resists:Material Design Challenges and Lithographic Evaluation at 157 nm [J], Chem. Mater., 2004,16(13):2567-2577
    [36]Bocchini S., Fornasieri G., Rozes L., et al New Hybrid Organic-inorganic Nanocomposites Based on Functional [Ti16O16(OEt)24(OEMA)8] Nano-fillers[J], Chem. Commun.,2005,20: 2600-2602
    [37]Worden J. G, Dai Q., Shaffer A. W., et.al, Monofunctional Group-Modified Gold Nanoparticles from Solid Phase Synthesis Approach:Solid Support and Experimental Condition Effect[J], Chem. Mater.,2004,16(19):3746-3755
    [38]Dai Q., Worden J. G, Trullinger J., et al A "Nanonecklace" Synthesized from Monofunctionalized Gold Nanoparticles [J], J Am Chem Soc,2005,127(22):8008-8009
    [39]Wu J, Lerner M. Structural, Thermal, and Electrical Characterization of Layered Nanocomposites Derived from Sodium-montmorillonite and Polyethers [J], Chem. Mater.,1993, 5(6):835-838
    [40]Soler-Illia G. J. D. A., Crepaldi E. L., Grosso D., et al, Block Copolymer-templated Mesoporous Oxides [J], Curr. Opin. Colloid Interface Sci.,2003,8(1):109-126
    [41]Ryoo R., Ko C. H., Kruk M., et al, Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore-Micropore Network [J], J. Phys. Chem.,2000, 104(48):11465-11471
    [42]Magbitang T., Lee V. Y., Cha J. N., et al, Oriented Nanoporous Lamellar Organosilicates Templated from Topologically Unsymmetrical Dendritic-Linear Block Copolymers [J], Angew. Chem. Int. Ed.,2005,44(46):7574-7580
    [43]Andres Ronald P., Bielefeld Jeffery D., Henderson Jason I., et al Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters [J], Science,1996,273: 1690-1693
    [44]Sun S.D., Murray C. B., Weller D., et al Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices[J], Science,2000,287:1989-1992
    [45]Murray C. B., Kagan C. R., and Bawend M. G., Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices [J], Science,1995,270:1335-1338
    [46]Huang Y., Duan X.F., Wei Q, Q., et al Directed Assembly of One-Dimensional Nanostructures into Functional Networks [J], Science,2001,291:630-633
    [47]Franklin K., Serena K., Jennifer A., et al, Langmuir-Blodgett Nanorod Assembly[J], J. Am. Chem. Soc.,2001,123:4360-4361
    [48]Boutonnet M., Kizhig J., Stenius P. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions[J], Colloids Surf., A,1982,5:209-225
    [49]Qiu S.Q., Dong J. X., Preparation of Cu nanoparticles from Water-in-oil Micro Emulsions [J], J. Colloid Interface Sci.,1999,216:230-234.
    [50]Xiong Y.J., Xie Y, Wu C.Z., et al Formation of Silver Nanowires Through a Sand wiched Reduction Process [J], Adv. Mater.,2003,15(5):405-408
    [51]Li Mei, Schnablegger Heimo, Mann Stephen, et al, Coupled Synthesis and Self-assembly of Nanoparticles to Give Structures with Controlled Organization[J], Nature,1999,402:393-395
    [52]Serena K., Franklin K., Jennifer A., et.al, Synthesis and assembly of BaWO4 nano-rods[J], Chem. Commun.,2001,447-448
    [53]Huang L.M., Wang H.T., Wang Z.B., et al, Nanowire Arrays Electrodeposited from Liquid Crystalline Phases[J], Adv. Mater.,2002,14:61-64
    [54]Braun P.V., Senar P. S., Stupp I., Semiconducting Superlattices Templated by Molecular Assemblies[J], Nature,1996,380:325-328
    [55]Yu D.B., Sun X.Q., Zou J.W., et al, Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres[J], J. Phys. Chem. B,2006,110(43): 21667-21671
    [56]Mo M.S., J Y.I.C., Zhang L.Z., et al, Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres[J], Adv. Mater.,2005,17(6):756-760
    [57]Shi H.T., Qi L.M., Ma J.M., et al Polymer-directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles[J], J. Am. Chem. Soc.2003,125(12):3450-3451
    [58]Shi H.T., Qi L.M., Ma J.M., et al Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts in Catanionic Reverse Micelles[J], Adv. Mater.2003,15(19):1647-1651
    [59]Liu S., Weaver J. V. M., Save M, et al., Synthesis of pH-Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles[J], Langmuir, 2002,18(22):8350-8357
    [60]Sidorov S. N., Bronstein L. M., Kabachii Y. A. et al, Influence of Metalation on the Morphologies of Poly(ethylene oxide)-block-poly(4-vinylpyridine) Block Copolymer Micelles [J], Langmuir,2004,20(9):3543-3550
    [61]Chen S.F., Zhu J.H., Jiang J., et al Polymer-Controlled Crystallization of Unique Mineral Superstructures[J], Adv. Mater.,2010,22:540-545
    [62]Moffitt M., Eisenberg A., Scaling Relations and Size Control of Block Ionomer Microreactors Containing Different Metal Ions [J], Macromolecules,1997,30(15):4363-4373
    [63]Du X.N., Liu F., Vali H., et.al, Cadmium Sulphide Quantum Dots in Morphologically Tunable Triblock Copolymer Aggregates [J], J. Am. Chem. Soc,2005,127(28):10063-10069
    [64]Perlich J., Schulz L., Abul Kashem M. M.,et al., Modification of the Morphology of P(S-b-EO) Templated Thin TiO2 Films by Swelling with PS Homopolymer[J], Langmuir,2007, 23(20):10299-10306
    [65]Cheng Y. J., Gutmann J. S., Morphology Phase Diagram of Ultrathin Anatase TiO2 Films Templated by a Single PS-b-PEO Block Copolymer[J], J. Am. Chem. Soc.,2006,128(14): 4658-4674
    [66]Yuwono A. H., Zhang Y, Wang J. et al., Diblock Copolymer Templated Nanohybrid Thin Films of Highly Ordered TiO2 Nanoparticle Arrays in PMMA Matrix[J], Chem. Mater.,2006, 18(25):5876-5889
    [67]Azzam T., Eisenberg A., Monolayer-Protected Gold Nanoparticles by the Self-Assembly of Micellar Poly(ethylene oxide)-b-Poly(s-caprolactone) Block Copolymer[J], Langmuir,2007,23(4): 2126.
    [68]Luo S., Xu J., Zhang Y. et al., Double Hydrophilic Block Copolymer Monolayer Protected Hybrid Gold Nanoparticles and Their Shell Cross-Linking[J], J. Phys. Chem. B,2005,109(47): 22159-22166
    [69]Ishii T., Otsuka H., Kataoka K. et al., Preparation of Functionally PEGylated Gold Nanoparticles with Narrow Distribution through Autoreduction of Auric Cation by α-Biotinyl-PEG-blocl-[poly(2-(N,N-dimethylamino)ethyl methacrylate)][J], Langmuir,2004,20(3): 561-564
    [70]Miyamoto D., Oishi M., Kojima K. et al., Completely Dispersible PEGylated Gold Nanoparticles under Physiological Conditions:Modification of Gold Nanoparticles with Precisely Controlled PEG-b-polyamine[J], Langmuir,2008,24(9):5010-5017
    [71]Kang Y., Taton T. A., Core/Shell Gold Nanoparticles by Self-Assembly and Crosslinking of Micellar, Block-Copolymer Shells[J], Angew. Chem. Int. Ed.,2005,44(3):409-412
    [72]Lu Y., Mei Y., Drechsler M. et al., Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles:Modulating the Catalytic Activity by a Phase Transition in Networks[J], Angew. Chem. Int. Ed.,2006,45(5):813-816
    [73]Park S., Lim J.H., Chung S.W., et al Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles[J], Science,2004,303:348-351
    [74]Gao X. L., Gu G. H., Hu Z. H., et al A Simple Method for Preparition of Silver Dendrites[J], Colliods and Surface A.,2005,254:57-61.
    [75]Liu S.H., Qian X.F., Yin J., et al Room Temperature Synthesis of PbS Nanocrystals with Different Morphologies in PEO-PPO-PEO Triblock Copolymers[J], Mater. Sci. Eng., B,2003, 100:314-317
    [76]Shi H.T., Qi L.M., Ma J.M., et al Polymer-directed Synthesis of Penniform BaWO4 Nano-structure in Reverse Micelles[J], J. Am. Chem. Soc,2003,125:3450-3451
    [77]张冬柏,齐利民,马季铭,等.双亲水嵌段共聚物存在下特殊形貌的晶体合成[J].高等学校化学学报,2004,25(1):159-161
    [78]Sedlak M., Antonietti M., Colfen H., Synthesis of A New Class of Double-Hydrophilic Block Copolymers with Calcium Binding Capacity as Builders and for Biomimetic Structure Control of Minerals[J], Macromol. Chem. Phys.,1998,199:247-254
    [79]Colfen H., Antonietti M., Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers[J], Langmuir,1998,14:582-589
    [80]Antonietti M., Breulmann M., Colfen H., et al Inorganic/organic Mesostructures with Complex Architectures:Precipitation of Calcium Phosphate in The Presence of Double-hydrophilic Block Copolymers[J], Chem. Eur. J.,1998,4(12):2493-2500
    [81]Qi L.M., Colfen H., Antonietti M., Formation of BaSO4 Fibers with Morphological Complexity in Aqueous Polymer Solutions[J], Chem. Eur. J.,2001,7:3526-3532.
    [82]Yu S.H., Antonietti M., Colfen H., Hartmann J., Growth and Self-Assembly of BaCrO4 and BaSO4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions[J], Nano. Lett.,2003,3(3):379-382
    [83]Yu S.H., Colfen H., Antonietti M., Control of the Morphogenesis of Barium Chromate by Using Double-Hydrophilic Block Copolymers (DHBCs) as Crystal Growth Modifiers[J], Chem. Eur. J.,2002,8 (3):2937-2945
    [84]Rees G.D., Evans-Gowing R., Hammond S.J., et al Formation and Morphology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil Microemulsions[J], Langmuir,1999,15(6): 1993-2002
    [85]Li M., Mann S. Emergent Nanostructures:Water-Induced Mesoscale Transformation of Surfactant-Stabilized Amorphous Calcium Carbonate Nanoparticles in Reverse Microemulsions [J]. Adv. Funct. Mater.,2002,12:773-779
    [86]Liu T., Xie Y., Chu B., Use of Block Copolymer Micelles on Formation of Hollow MoO3[J], Langmuir,2002,16(23):9015-9022
    [87]Huang J., Xie Y., Li B., et al An In-situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicro Hollow Spheres [J], Adv. Mater.,2000,12(11):808-811
    [88]Jiang X., Xie Y., Lu X., et al Low Temperature Interface-mineralizing Route to Hollow CuS, CdS, and NiS Spheres [J], Can. J. Chem.,2002,80:263-268
    [89]Qi L.M., Li J., and Ma J.M., Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-hydrophilic Block Copolymers[J], Adv. Mater.2002, 14:300-303
    [90]Zhang D.B., Qi L.M., Ma J.M., et al Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions [J]. Adv. Mater.,2002,14(20):1499-1502
    [91]Qi L.M., Colfen H., Antonietti M., et al Synthesis and Characterization of CdS nanoparticles Stabilized by Double-hydrophilic Block Copolymers [J]. Nano Lett.,2001,1(2):61-65
    [92]Ma Y., Qi L., Ma J., et al Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solution [J]. Langmuir,2003,19:4040-4042.
    [93]Yang D., Qi L.M., and Ma J.M., Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes[J], Adv. Mater.,2002,14:1543-1546.
    [94]Zeng H.C, Synthetic architecture of interior space for inorganic nanostructures, J. Mater. Chem.,2006,16,649-662
    [95]Fu X., Cen L., Wang J., et al Synthesis of CdS Nanocrystals Templating Against Liquid Crystal Formed by Acidic Extractants[J], J. Colloid Interface Sci.,2004,233:189-192
    [96]Shi H.Q., Fu X., Zhou X.D., et al Preparation of Organic Fluids with High Loading Concentration of Ag2S Nanoparticles Using the Extractant Cyanex 301 [J], J. Mater. Chem.,2006, 16:2097-2101
    [97]Hu Z.S., Li L.Y., Zhou X.D., et al Solvothermal Synthesis of Hollow ZnS Spheres[J]. J. Colloid Interface Science.,2006,294:328-333
    [98]Song C.X., Wang D.B., Lin Y.S., et al Formation of Silver Nanoshells on Latex Spheres[J], Nanotechnology,2004,15 (8):962-965
    [99]Song C.X., Wang D.B., Gu G.H., et al Preparation and Characterization of Silver-TiO2 Composite Hollow Spheres[J]. J. Colloid Interface Sci.,2004,272:340-344
    [100]Wang D.B., Zhou Yanhong, and Song Caixia, General Route to Synthesize Monodisperse Oxide (Hydroxide) Nanoparticles[J], J. Dispersion Sci. Technol.,2009,30:336-339
    [101]Wang D.B., Song C.X., Zhao Y.H., et al Synthesis and Characterization of Monodisperse Iron Oxides Microspheres[J], J. Phys. Chem. C,2008,112(33):12710-12715
    [1]辛宝平,魏军,郭磊,等.生物还原-化学沉淀耦合反应制备纳米硫化镉和硫化铅[J],无机化学学报,2009,25:774-780.
    [2]Atul K. Verma, Thomas B. Rauchfuss, Scott R. Wilson, Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion[J], Inorg. Chem.,1995,34:3072~3078
    [3]胡寒梅,邓崇海,黄显怀,等.低温水热前驱物技术制备单晶PbS纳米片[J],无机化学学报,2007,23:1403-1408.
    [4]Barrelet C J, Wu Y, Bell D. C.et al. Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors[J], J. Am. Chem. Soc.,2003,125:11498~11499.
    [5]Tran N H, Lamb R N. Island Formation at the Initial Stages of Epitaxial ZnS Films Grown by Single Source Chemical Vapor Deposition[J], J. Phys. Chem. B,2002,106:352~325.
    [6]Liu, S., Zhang,.H.W., Swihart M.T. Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor[J], Nanotechnology,2009,20:235603.
    [7]Sun J W, Buhro W E. The Use of Single-Source Precursors for the Solution-Liquid-Solid Growth of Metal Sulfide Semiconductor Nanowires [J], Angew. Chem. Int. Ed.,2008,47: 3215~3218.
    [8]Bashouti M, Lifshitz E. PbS Sub-micrometer Structures with Anisotropic Shape:Ribbons, Wires, Octapods, and Hollowed Cubes [J], Inorg. Chem.,2008,47:678~682.
    [9]Xie G, Qiao Z P, Zeng M H,et al. A Single-Source Approach to Bi2S3 and Sb2S3 Nanorods via a Hydrothermal Treatment[J], Cryst. Growth Des.,2004,4:513~516.
    [10]T. Trindade, P O'Brien, X. Zhang, et al. Synthesis of PbS nanocrystallites using a novel single molecule precursors approach:X-ray single-crystal structure of Pb(S2CNEtPri)2 [J], J. Mater. Chem.,1997,7:1011~1016.
    [11]Cai W, Li Z, Sui J. A facile single-source route to CdS nanorods[J], Nanotechnology,2008, 19:465606
    [12]王昌运,俞建长.水热法合成单分散ZnS微球[J].化学学报,2006,64:2287-2290.
    [13]K.P. Kalyanikutty, M. Nikhila, U. Maitra, et al. Rao. Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment [J], Chem. Phys. Lett.,2006,432:190~194.
    [14]T.Y Zhai, Z.J. Gu, Y Ma, et al. Synthesis of ordered ZnS nanotubes by MOC VD-template method[J], Mater. Chem. Phys.,2006,100:281~284.
    [15]W.T. Yao, S.H. Yu, L. Pan, et al. Flexible wurtzite-type ZnS nanobelts with quantum-size effects:a diethylenetriamine-assisted solvothermal approach[J], Small,2005,1:320~32
    [16]H. Deng, C. Chen, Q. Peng, et al. Formation of transition-metal sulfide microspheres or microtubes[J], Mater. Chem. Phys.,2006,100:224~229.
    [17]F. Gu, C.Z. Li, S.F. Wang, et al. Solution-phase synthesis of spherical zinc sulfide nanostructures[J], Langmuir,2006,22:1329~1332.
    [18]H.J. Liu, YH. Ni, M. Han, et al. A facile template-free route for synthesis of hollow hexagonal ZnS nano-and submicro-spheres[J], Nanotechnology,2005,16:2908~2912.
    [19]J.Q. Hu, Y Bando, J.H. Zhan, et al. Growth of wurtzite ZnS micrometer-sized diskettes and nanoribbon arrays with improved luminescenece [J], Adv. Funct. Mater.,2005,15:757~762.
    [20]M.L. Breen, A.D. Dinsmore, R.H. Pink, et al. Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals[J], Langmuir,2001,17:903~907
    [21]D. Son, A. Wolosiuk, P.V. Braun. Double Direct Templated Hollow ZnS Microspheres Formed on Chemically Modified Silica Colloids[J], Chem. Mater.,2009,21:628~634.
    [22]A. Wolosiuk, O. Armagan, P.V. Braun. Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres [J], J. Am. Chem. Soc.,2005,127:16356~16357.
    [23]Y.R. Ma, L.M. Qi, J.M. Ma, et al. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions[J], Langmuir,2003,19:4040~4042.
    [24]Y.Y. Luo, G.T. Duan, M. Ye, et al. Biasing the Center of Charge in Molecular Dynamics Simulations with Empirical Valence Bond Models:Free Energetics of an Excess Proton in a Water Drople t[J], J. Phys. Chem. C,2008,112:2349~2356.
    [25]Y.J.He. A novel emulsifier-free emulsion route to synthesize ZnS hollow microsphere s[J], Mater. Res. Bull.,2005,40:629~634.
    [26]L.H. Dong, Y. Chu, Y.P. Zhang, et al. Surfactant-assistant and facile synthesis of hollow ZnS nanospheres [J], J. Colloid Interface Sci.,2007,308:258-264
    [27]X.Z. Liu, J.H. Cui, L.P. Zhang, et al. A solvothermal route to semiconductor ZnS micrometer hollow spheres with strong photoluminescence propertie s[J], Mater. Lett.,2006,60:2465~2469.
    [28]H. Zhang, S.Y. Zhang, S. Pan, et al. A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties [J], Nanotechnology,2004,15:945.
    [29]S.K. Panda, S. Chaudhuri. Chelating ligand-mediated synthesis of hollow ZnS microspheres and its optical properties [J], J. Colloid Interface Sci.,2007,313:338~344.
    [30]C.L. Yan, D.F. Xue. Room Temperature Fabrication of Hollow ZnS and ZnO Architectures by a Sacrificial Template Route [J], J. Phys. Chem. B,2006,110:7102~7106.
    [31]L. Gu, X.B. Cao, C. Zhao. Gram-scale preparation of hollow spheres of ZnS by scarifying ZnO crystallites within core-shell-structured ZnS/ZnO precursors [J], Colloids Sur. A,2008,326: 98-102.
    [32]H. Zhou, T. Fan, D. Zhang, et al. Novel Bacteria-Templated Sonochemical Route for the in Situ One-Step Synthesis of ZnS Hollow Nanostructures[J], Chem. Mater.,2007,19:2144~2146.
    [33]B. Liu, H.C. Zeng. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J], Small,2005,1:566~571.
    [34]H. Zhang, L. Qi. Low-temperature, template-free synthesis of wurtzite ZnS nanostructures with hierarchical architectures [J], Nanotechnology,2006,17:3984~3987.
    [35]杨雷,唐元洪,陈小华,等.ZnS微米球的制备和光学性质的研究[J].湖南大学学报(自然科学版),2007,34:45-47.
    [36]Z.S. Hu, L.Y Li, X.D. Zhou, et al. Solvothermal synthesis of hollow ZnS spheres[J], J. Colloid Interface Science.,2006,294:328~333.
    [37]Y. Ma, L.M. Qi. Solution-phase synthesis of inorganic hollow structures by templating strategies[J], J. Colloid Interface Sci.,2009,335:1~10.
    [38]H.C. Zeng, Synthetic architecture of interior space for inorganic nanostructures [J], J. Mater. Chem.,2006,16:649~662.
    [39]H.M. Yang, J. Ouyang, A.D. Tang. Single Step Synthesis of High-Purity CoO Nanocrystals [J], J. Phys. Chem. B,2007,111:8006~8013.
    [40]X. Li, J. Li, G. Li,et al. Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres[J], Chem. Eur. J.2007,13:8754~8761
    [41]Y.L Hou, H. Kondoh, M. Shimojo, et al. High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization[J], J. Phys. Chem. B,2005,109: 19094~19098.
    [42]Y. Babayan, J.E. Barton, E.C. Greyson, et al. Templated and Hierarchical Assembly of CdSe/ZnS Quantum Dots[J], Adv. Mater.,2004,16:1341~1345.
    [43]Y. Zhang, Q. Peng, X. Wang, et al. Synthesis and Characterization of Monodisperse ZnS Nanospheres[J], Chem. Lett.,2004,33:1320~1321.
    [44]F. Gu, C.Z. Li, S.F. Wang, et al. Solution-Phase Synthesis of Spherical Zinc Sulfide Nanostructures[J], Langmuir,2006,22:1329~1332.
    [45]W.G. Becker, A.J. Bard. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J], J. Phys. Chem.1983,87:4888~4893.
    [46]S. Wageh, Z.S. Ling, X.X. Rong. Growth and optical properties of colloidal ZnS nanoparticles [J], J. Cryst. Growth,2003,255:332~337.
    [47]J.F. Suyver, S.F. Wuister, J.J. Kelly, et al. Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+[J], Nano Lett.2001,1:429~433.
    [1]Chen B., Uher C., Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 [J], Chem. Mater.,1997,9:1655-1658
    [2]Mane R.S., Sankapal B.R., Lokhande C.D., Photoelectrochemical (PEC) Characterization of Chemically Deposited Bi2S3 thin Films from Non-aqueous Medium, Mater [J], Chem. Phys.,1999, 60 (2):158-162
    [3]Killedar V.V., Lokhande C.D., Bhosale C.H., Preparation and characterization of Bi2S3 thin films spray deposited from non-aqueous media [J]. Thin Solid Films,1996,289:14-16
    [4]Pawar S.H., Bhosale P.N., Uplane M.D., et.al, Growth of Bi2S3 Film Using a Solution-gas Interface Technique[J],Thin Solid Films,1983,110(2):165-170
    [5]Monteiro O.C., Trindade T., Park J.H., et.al,The Use of Bismuth(III) Dithiocarbamato Complexes as Precursors for the Low-Pressure MOCVD of Bi2S3 [J], Chem.Vapor Depos.,2000,6 (5):230
    [6]Yu S., Yang J., Wu Y., et.al, Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide [J], Mater. Res.Bull.,1998,33 (11):1661-1666
    [7]Monteiro, O.C., Trindade T., Preparation of Bi2S3 nanofibers using a single-source method [J]. J. Mater.Sci.Lett.,2000,19:859-861.
    [8]Wang D.B., Shao M.W., Yu D.B.,et.al, Polyol-mediated preparation of Bi2S3 Nanorods[J], J. Cryst. Growth,2002,243 (2):331-335
    [9]Ye C., Meng G., Jiang Z.,et.al, Rational Growth of Bi2S3 Nanotubes from Quasi-two-dimensional Precursors[J], J. Am. Chem. Soc.,2002,124:15180-15181
    [10]Xi Y, Hu C.G, Zhang X.M., et.al, Optical Switches Based on Bi2S3 Nanowires Synthesized by Molten Salt Solvent Method[J], Solid State Commun,2009,149 (43-44):1894-1896
    [11]Yu Y, Sun W.T., Uniform Bi2S3 Nanowires:Structure, Growth, and Field-effect Transistors [J], Mater. Lett.2009,63 (22):1917-1920
    [12]Liu Z.P., Liang J.B., Li S.,et.al, Synthesis and Growth Mechanism of Bi2S3 Nanoribbons [J], Chem. Eur. J.2004,10 (3):634-640
    [13]Kaito C., Saito Y, Fujita K., et.al, Studies on the Structure and Morphology of Ultrafine Particles of Metallic Sulfides [J], J. Cryst. Growth,1989,94:967-977
    [14]Nomura R., Kanaya K., Matsuda H., et.al, Preparation of Bismuth Sulfide Thin Films by Solution Pyrolysis of Bismuth Dithiocarbamate Complexes[J], Bull. Chem. Soc. Jpn.,1989,62: 939-941
    [15]Cyganski A., Kobylecka J., Studies on the Thermal Decomposition of AlkaliMeta Thiosuiphatobismuthates (III) [J], Thermochim. Acta.1981,45 (1):65-77
    [16]Wang H., Zhu J.J., Zhu J.M.,et.al, Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods [J], J. Phys. Chem. B,2002,106 (15):3848-3854
    [17]Wang D.B., Shao M.W., Yu D.B.,et.al, Polyol-mediated Preparation of Bi2S3 Nanorods [J], J. Cryst. Growth.,2002,243:331-335
    [18]Wang D.B., Shao M.W., Yu D.B., et.al, Growth of Bi2S3 Skeleton Crystals with Three-dimensional Network Morphologies [J], J. Cryst. Growth 2003,254:487-491
    [19]Liu X.Z., Cui J.H., Zhang L.P., et.al, Control to Synthesize Bi2S3 Nanowires by a simple Inorganic-surfactant-assisted Solvothermal Process [J], Nanotechnology,2005,16 (9):1771-1775
    [20]Zhou X.F., Zhao X., Zhang D.Y., et.al, Hollow Microscale Organization of Bi2S3 Nanorods [J], Nanotechnology,2006,17 (15):3806-3811
    [21]Lu Q.Y., Gao F., Komarneni S., Biomolecule-Assisted Synthesis of Highly Ordered Snowflakelike Structures of Bismuth Sulfide Nanorods [J], J. Am. Chem. Soc,2004,126 (1):54-55
    [22]Jiang J., Yu S.H., Morphogenesis and Crystallization of Bi2S3 Nanostructures by an Ionic Liquid-Assisted Templating Route:Synthesis, Formation Mechanism, and Properties [J], Chem. Mater.2005,17 (24):6094-6100
    [23]Zhang, B.; Ye, X. C; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods [J]. J. Phys. Chem. B.2006,110,8978-8985.
    [24]Zhou, H.Y.; Xiong, S.L.; Wei, L. Z.; Xi, B.J.; Zhu, Y.C.; Qian. YT. Acetylacetone-Directed Controllable Synthesis of Bi2S3 Nanostructures with Tunable Morphology [J]. Cryst. Growth Des. 2009,9,3862-3867.
    [25]Li, Y.; Li., X.; He, R.; Zhu, J.; Deng, Z. Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors [J]. J. Am. Chem. Soc.2002.124,1411-1416,
    [26]Li, Y.; Wang, J.; Deng, Z.; Wu, Y.; Sun, X.; Yu, D.; Yang, P. Bismuth Nanotubes:A Rational Low-Temperature Synthetic Route[J]. J. Am. Chem. Soc.2001,123,9904-9905.,
    [27]Lee, S. M.; Cho, S. N.; Cheon, J. W. Adv. Mater.2003,15,441.
    [28]Black, J.; Conwell, E.M.; Seigle, L.; Spencer, C.W. J. Phys.Chem. Solids 1957,2,240.
    [29]Zhang, Z.L.; Tang, Z.Y.; Kotov, N. A.; Glotzer, S. C. Simulations and Analysis of Self-Assembly of CdTe Nanoparticles into Wires and Sheets, Nano Lett.2007,7,1670-1675.
    [30]Tang, Z.Y.; Zhang, Z.L; Wang, Y.; Glotzer, S. C.; Kotov, N.A. Science 2006,314,274-278
    [31]Palumbo, M.; Lutz, T.; Giusca, C. E.; Shiozawa, H.; Stolojan, V.; Cox, D C.; Wilson, R M.; Henley, S J.; Silva, S. R. P. From Stems (and Stars) to Roses:Shape-Controlled Synthesis of Zinc Oxide Crystals [J]. Cryst. Growth Des.2009,9,34323437.
    [32]Shen, L.M.; Bao, N.Z.; Yanagisawa, K.; Domen, K.; Grimes, C. A.; Gupta A. Organic Molecule-Assisted Hydrothermal Self-Assembly of Size-Controlled Tubular ZnO Nanostructures. J. Phys. Chem. C,2007,111 (20):7280-7287
    [33]Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals [J]. J. Am. Chem. Soc.2000,122, 12700-12706.
    [34]Zitoun, D.; Pinna, N.; Frolet, N.; Belin, C. Single Crystal Manganese Oxide Multipods by Oriented Attachment [J]. J. Am. Chem. Soc.2005,127,15034-15035.
    [35]Zhao, Y.; Xie, Y.; Jie, J.S.; Wu, C.Y.; Yan, S. J. Mater. Chem.2009,19,3378.
    [36]Tian, L.; Tan, H.Y.; Vittal, J. Morphology-Controlled Synthesis of Bi2S3 Nanomaterials via Single-and Multiple-Source Approaches [J]. J. Cryst. Growth Des.2008,8,734-738.
    [37]Yang, J.; Zeng, J.H.; Yu, S.H.; Yang, L.; Zhou, G. E.; Qian, Y.T. Formation Process of CdS Nanorods via Solvothermal Route, Chem. Mater.2000,12,3259-3263.
    [38]Tang, J.; Alivisatos, A. P. Crystal Splitting in the Growth of Bi2S3, Nano Lett.2006,6, 2701-2706.
    [39]Li, L.S.; Sun, N.J.; Huang, Y.Y.; Qin, Y.; Zhao, N.; Gao, J.N.; Li, M.X.; Zhou, H.H.; Qi, L.M. Topotactic Transformation of Single-Crystalline Precursor Discs into Disc-Like Bi2S3 Nanorod Networks [J]. Adv. Func. Mater.2008,18,1194-1201.
    [40]Zhang, B.; Dai, W.; Ye, X.C.; Hou, W.Y; Xie, Y. Solution-Phase Synthesis and Electrochemical Hydrogen Storage of Ultra-Long Single-Crystal Selenium Submicrotubes [J]. J. Phys. Chem. B 2005,109,22830-22835.
    [1]丁筛霞,张卫新,杨则恒,油-水界面反应制备不同微/纳结构的系列金属硫化物[J].无机化学学报,2008,24:1119-1123
    [2]Ge J P, Wang J, Zhang H X, Wang X, Peng Q, Li YD. Orthogonal PbS Nanowire Arrays and Networks and Their Raman Scattering Behavior[J]. Chem. Eur. J.,2005,11:1889~1894.
    [3]K.T. Yong, Y Sahoo, K.R. Choudhury, M.T. Swihart, J.R. Minter, PN. Prasad. Control of themorphology and size of P6S nanowires using gold nanoparticles[J]. Chem. Mater.,2006, 18:5965~5972.
    [4]S.M. Lee, Y W Jun, S.N. Cho, J. Cheon. Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks[J]. J. Am. Chem. Soc.,2002, 124:11244~11245.
    [5]N.N. Zhao, L.M. Qi. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants[J]. Adv. Mater.,2006,18:359~362.
    [6]H.L. Cao, Q. Gong, X.F. Qian, H.L. Wang, J.T. Zai, Z.K. Zhu. Synthesis of 3D hierarchical dendrites of lead chalcogenides in large scale via microwave-assistant method[J]. Cryst. Growth Des.,2007,7:425~429.
    [7]S.F. Wang, F. Gu, M.K. Lu. Sonochemical synthesis of hollow PbS nanospheres[J]. Langmuir, 2006,22:398~401.
    [8]L.M. Dong, Y Chu, Y Liu, M.Y Li, F.Y Yang, L.L. Li. Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers and dendritic nanostructures at lower temperature in aqueous solution[J]. J. Colloid. Interf. Sci.,2006,301:503~510.
    [9]糜裕宏;张孝彬;季振国;祝华云;周胜名;倪华良;球状、立方状及空心立方状PbS纳米晶的控制合成及其形成机理[J].无机化学学报,2009,25:1563-1568.
    [10]G.J. Zhou, M.K. Lu, Z.L. Xiu, S.F. Wang, H.P Zhang, Y.Y Zhou, S.M. Wang. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution Process[J]. J. Phys. Chem. B,2006,110:6543~6548.
    [11]崔英德,易国斌,廖列文.聚乙烯吡咯烷酮的合成与应用[M].北京:科学出版社,2001.
    [12]X. peng, L. Manna, W. Yang, et al. Nature,2000,404,59-61
    [13]Debao Wang, Maosong Mo, Dabin Yu, Liqiang Xu, Fanqing Li, and Yitai Qian, Large-Scale Growth and Shape Evolution of Cu2O Cubes, Crystal Growth Des., Vol.3, No.5,2003,717-720.
    [14]Murphy, C. J. Nanocubes and Nanoboxes [J]. Science 2002,298,2139-2140
    [15]L. Manna, E. C. Scher, A. P. Alivisatos. Shape Control of Colloidal Semiconductor Nanocrystals. Journal of Cluster Science,2002,13(4):521.
    [1]Li YD., Liao H.W., Ding Y, et al. Nonaqueous synthesis of CdS nanorod semiconductor [J]. Chem. Mater.,1998,10:2301-2303.
    [2]Acharya S., Patla I., Kost J., et al. Switchable assembly of ultra narrow CdS nanowires and nanorods [J]. J. Am. Chem. Soc.,2006,128:9294-9295.
    [3]Wang Z.Q., Gong J.F., Duan J.H., et al. Direct synthesis and characterization of CdS nanobelts [J]. Appl. Phys. Lett.,2006,89:33102-33104.
    [4]Gao F., Li Q.Y, Xie S.H., Zhao D.Y. A Simple Route for the Synthesis of Multi-Armed CdS Nanorod Based Materials [J]. Adv. Mater.,2002,14:1537-1540.
    [5]Chu H.B., Li X.M., Chen G.D., et al. Shape-controlled synthesis of CdS nanocrystals in mixed solvents [J]. Cryst. Growth Des.,2005,5:1801-1806.
    [6]陈惠敏,郭福强,张保花,低温水热合成由纳米颗粒自组装而成的CdS亚微米和微米球[J],材料科学与工程学报,2009,27:752-754.
    [7]Jun Y-K, Lee J-H, Choi J-S, Cheon J, Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters [J]. J. Phys. Chem.B 2005,109:14795-14806
    [1](a) Kesavan V.,Sivanand P. S.,Chandrasekaran S.,et.al. Catalytic Aerobic Oxidation of Cycloalkanes with Nanostructured Amorphous Metals and Alloys [J], Angew.Chem.,Int. Ed. 1999,38(23):3521-3523 (b)Faust B. C.,Hoffmann M. R.,Bahnemann D. W., Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of.alpha.-iron oxide (Fe2O3)[J], Phys. Chem.1989,93(17):6371-6381 (c) Matijevic E., Scheiner P. Ferric hydrous oxide sols:Ⅲ. Preparation of uniform particles by hydrolysis of Fe (Ⅲ)-chloride,-nitrate, and-perchlorate solutions [J], Colloid Interface Sci. 1978,63(3):509-524
    [2](a) Pascal C.,Pascal J. L.,Favier F.,et.al. Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior [J], Chem. Mater. 1999,11(1):141-147. (b) Hyeon T.,Lee S. S.,Park J.,et.al, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process[J], J.Am. Chem. Soc.2001,123 (51):12798-12801
    [3](a) Song Q.,Ding Y.,Wang Z. L.,et.al. Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies[J],J. Phys. Chem. B 2006,110(50):25547-25550 (b) Sun S.,Zeng H. J. Size-Controlled Synthesis of Magnetite Nanoparticles[J],J. Am. Chem. Soc.2002,124(28):8204-8205 (c) Sahu K. K., Rath C., Mishra N. C., et.al. Microstructural and Magnetic Studies on Hydrothermally Prepared Hematite [J], J. Colloid Interface Sci.1997,185(2):402-410 (d) Jia B.P.,Gao L. Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field[J], J. Phys. Chem. C 2008,112(3):666-671 (e) Xu L. Q., Zhang W. Q., Ding Y. W., et.al. Formation,Characterization,and Magnetic Properties of Fe3O4 Nanowires Encapsulated in Carbon Microtubes[J], J.Phys.Chem.B, 2004,108(30):10859-10862
    [4](a) Zhao L.,Zhang H. J.,Xing Y.,et.al. Morphology-Controlled Synthesis of Magnetites with Nanoporous Structures and Excellent Magnetic Properties [J], Chem. Mater.2007, 20(1):198-204 (b) Zheng Y. H., Cheng Y., Wang Y. S., et.al. Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance [J], J. Phys. Chem. B,2006,110(7):3093-3097
    [5]Zou G.F.,Xiong K.,Jiang C.L.,et.al, Magnetic Fe3O4 nanodisc synthesis on a large scale via a surfactant-assisted process[J], Nanotechnology,2005,16 (9):1584-1588
    [6](a)Tang B.,Wang G.L.,Zhuo L.H.,et.al. Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods [J], Inorg. Chem.,2006,45(13):5196-5200 (b) Lian S., Wang E., Kang Z.,et.al. Synthesis of magnetite nanorods and porous hematite nanorods [J], Solid State Commun.2004,129(8):485-490 (c) Jing Z., Wu S. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach [J], Mater. Lett.,2004,58(27-28): 3637-3640
    [7](a) Pascal C., Pascal J. L., Favier F., et.al. Electrochemical Synthesis for the Control of y-Fe2O3 Nanoparticle Size, Morphology, Microstructure, and Magnetic Behavior [J],Chem. Mater. 1999,11(1):141-147 (b) Fu Y.,Chen J.,Zhang H. Synthesis of Fe2O3 nanowires by oxidation of iron [J],Chem. Phys. Lett.2001,350(5-6):491-494 (c) Fu Y.,Wang R.,Xu J.,et.al. Synthesis of large arrays of aligned a-Fe2O3 nanowires [J], Chem. Phys. Lett.2003,379(3-4):373-379 (c) Chueh Y.-L., Lai M.-W.,Liang J.-Q.,et.al.Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process[J],Adv. Funct. Mater., 2006,16 (17):2243-2251
    [8]Jia C. J., Sun L. D., Yan Z. G.,et.al. Single-Crystalline Iron Oxide Nanotubes[J], Angew. Chem. Int. Ed.,2005,44 (28):4328-4333
    [9]Wen X. G., Wang S. H., Ding Y., et.al. Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires[J], J. Phys. Chem. B,2005,109 (1): 215-220
    [10]Xuan S.H., Hao L.Y., Jiang W.Q., et.al. A FeCO3 Precursor-Based Route to Microsized Peanutlike Fe3O4 [J], Cryst. Growth Des.,2007,7(2):430-434
    [11](a) Liu X. M.,Fu S. Y.,Xiao H. M.,et.al. Preparation and characterization of shuttle-like a-Fe2O3 nanoparticles by supermolecular template [J], J. Solid State Chem.2005,178(9): 2798-2803 (b) Ngo A. T., Pileni M. P., Cigar-shaped ferrite nanocrystals:Orientation of the easy magnetic axes [J], J. Appl. Phys.,2002,92 (8):4649-4652
    [12]Zhu L.-P., Xiao H.-M., Fu S.-Y. Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloupe-like Fe2O3 Superstructures [J], Cryst.Growth Des.,2007,7(2): 177-182
    [13]Zhu L.-P.,Xiao H.-M.,Liu X.-M.,et.al. Template-free synthesis and characterization of novel 3D urchin-like-Fe2O3 superstructures [J], J. Mater. Chem.,2006,16(19):1794-1798
    [14](a) Cao M. H.,Liu T. F.,Gao S.,et.al. Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3:Large-Scale Synthesis, Formation Mechanism, and Properties[J], Angew. Chem..Int. Ed.2005,44 (27):4197-4201 (b) Chu Y.W.,Hu J. H.,Yang W.L.,et.al. Growth and Characterization of Highly Branched Nanostructures of Magnetic Nanoparticles [J], J.Phys. Chem. B,2006,110(7):3135-3139
    [15]Li L.L., Chu Y., Liu Y., et.al. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres [J],J. Phys. Chem. C,2007,111(5):2123-2127
    [16]Yang W.-H., Lee C.-F., Tang H. Y., et.al. Iron Oxide Nanopropellers Prepared by a Low-Temperature Solution Approach [J], J. Phys. Chem. B,2006,110(29):14087-14091
    [17]Matijevic E. Monodispersed metal (hydrous) oxides-a fascinating field of colloid science [J], Ace. Chem. Res.,1981,14(1):22-29
    [18](a) Du W.,Qian X.,Niu X.,et.al. Symmetrical Six-horn Nickel Diselenide Nanostars Growth from Oriented Attachment Mechanism [J], Cryst. Growth Des.,2007,7(12):2733-2737 (b) Mo. M.S.,Yu J. C.,Zhang L. Z.,Li S. K. A., Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres[J], Adv. Mater.,2005,17(6): 756-760
    [19]Finger L.W.,Hazen R.M. Crystal structure and isothermal compression of Fe2O3,Cr2O3,and V2O3 to 50 kbars[J],J. Appl. Phys.,1980,51(10):5362-5368
    [20]Liu X. M., Fu S. Y., Xiao H. M.,et.al. Preparation and characterization of shuttle-like a-Fe2O3 nanoparticles by supermolecular template [J],J. Solid State Chem.,2005,178(9):2798-2803
    [21]Finger L.W.,Hazen R.M. Crystal structure and isothermal compression of Fe2O3,Cr2O3,and
    V2O3 to 50 kbars[J], J. Appl. Phys.,1980,51(10):5362-5368
    [22]Zhu Y.F., Zhao W.R., Chen H. R., et.al. A Simple One-Pot Self-Assembly Route to Nanoporous and Monodispersed Fe3O4 Particles with Oriented Attachment Structure and Magnetic Property[J], J. Phys. Chem. C,2007,11(14):5281-5285
    [23]Cheng F. Y.,Su C. H.,Yang Y. S.,et.al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications [J], Biomaterials,2005,26(7):729-738
    [24](a) Iida H.,Takayanagi K.,Nakanishi T., et.al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis [J], J. Colloid Interface Sci.,2007, 314(1):274-280 (b) Yang T.Z., Shen C.M., Li Z., et.al. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties [J], J. Phys. Chem. B, 2005,109(49):23233-23236 (c) Li Z., Chen H., Bao H.B., et.al. One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals [J], Chem. Mater.,2004,16(8):1391-1393
    [25]Wang J., Wu Y.J., Zhu Y.J. Fabrication of complex of Fe3O4 nanorods by magnetic-field-assisted sol vothermal process [J]. Mater. Chem. Phys.,2007,106 (1):1-4
    [26]Deng H., Li X.L., Peng Q., et.al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.2005,44(18):2782-2785
    [27]Han D.H., Wang J.P., Luo H.L. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles [J], J. Magn. Mater.,1994,136(1-2):176-182
    [28](a) Mart inez B.,Obradors X.,Balcells L.,et.al. Low Temperature Surface Spin-Glass Transition in γ-Fe2O3 Nanoparticles [J], Phys. Rev. Lett.,1998,80(1):181-184 (b) Yu S., Chow G. M. Carboxyl group functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications [J], J. Mater. Chem.,2004,14(18):2781-2786
    [1] Georgekutty R, Seery MK, Pillai SC, A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism, J Phys Chem C 2008; 112:13563-70.
    [2] Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg Chem 2007; 46:6980-6.
    [3] Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei K, et al. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property, J Phys Chem C 2008; 112:10773-7.
    [4] Bhattacharyya S, Gedanken A. Microwave-Assisted Insertion of Silver Nanoparticles into 3-D Mesoporous Zinc Oxide Nanocomposites and Nanorods, J Phys Chem C 2008; 112: 659-65.
    [5] Lin DD, Wu H, Zhang R, Pan W. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers, Chem Mater 2009; 21: 3479-84.
    [6] Zhang Y.Y., Mu J., One-pot Synthesis, Photoluminescence, and Photocatalysis of Ag/ZnO composites [J], J Colloid Interface Sci, 2007, 309(2): 478-484
    [7] Xie J.S., Wu Q.S., One-pot Synthesis of ZnO/Ag Nanospheres with enhanced Photocatalytic Activity [J], Mater Lett, 2010,64(3):389-392
    [8] Tan T., Li Y., Liu Y., et al, Two-step preparation of Ag/tetrapod-like ZnO with Photocatalytic Activity by Thermal Evaporation and Sputtering [J], Mater Chem Phys, 2008,111(2-3):305-308
    [9] Usui H. Influence of Surfactant Micelles on Morphology and Photoluminescence of Zinc Oxide Nanorods Prepared by One-Step Chemical Synthesis in Aqueous Solution, J Phys Chem C 2007; 111:9060-5.
    [10] Lu WW, Gao SY. Wang JJ. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance, J Phys Chem C 2008; 112: 16792-800.
    [11] Mo M.S, Yu J.C., Zhang L.,et.al, Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres[J], Adv Mater ,2005,17(6):756-760
    [12] Mo M.S., Wang D.B., Du X.S.,et al, Engineering of Nanotips in ZnO Submicrorods and Patterned Arrays[J], Cryst Growth Des, 2009,9(2):797-802
    [13] Wang Z.L., Zinc Oxide Nanostructures: Growth, Properties and Applications[J], J. Phys: Condens. Matter., 2004,16(25):R829
    [14] Laudies R.A., Ballman A.A., Hydrothermal Syithesis of Zinc Oxide and Zinc Sulfidel[J],J. Phys. Chem., 1960,64(5):688-691
    [15] Xiong YJ, Washio I, Chen JY, Cai HG, Li ZY, Xia YN. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions, Langmuir 2006; 22: 8563-70.
    [1]B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO_2, J. Phys. Chem. B 109 (2005) 2805-2809.
    [2]C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, Ag/AgBr/TiO_2 visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.
    [3]D.Y. Zhang, D. Yang, H.J. Zhang, C.H. Lu, L.M Qi, Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by sephadex G-100, Chem. Mater.18 (2006) 3477-3485.
    [4]A. Syoufian, K. Nakashima, Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst:Optimization of reaction by peroxydisulfate electron scavenger, J. Colloid Interface Sci.313(2007) 213-218.
    [5]Y. R. Ma, L. M. Qi, Solution-phase synthesis of inorganic hollow structures by templating strategies, J. Colloid Interface Sci.335(2009) 1-10.
    [6]J.G Yu, W. Liu, H.G Yu, A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity, Cryst. Growth Des.8 (2008) 930-934.
    [7]H.G Yang, H. C. Zeng, Preparation of hollow anatase TiO_2 nanospheres via Ostwald ripening, J. Phys. Chem. B 108 (2004) 3492-3495.
    [8]X. Du, J.H. He, Y,Q. Zhao, Facile preparation of F and N codoped pinecone-like titania hollow microparticles with visible light photocatalytic activity, J. Phys. Chem. C 113 (2009) 14151-14158.
    [9]Y.D. Wang, A.N. Zhou, Z.Y. Yang, Preparation of hollow TiO_2 microspheres by the reverse microemulsions, Mater. Lett.62(2008) 1930-1932.
    [10]S.H Xuan, W.Q. Jiang, X.L Gong, Y. Hu, Z.Y. Chen, Magnetically separable Fe3O4/TiO_2 hollow spheres:fabrication and photocatalytic activity, J. Phys. Chem. C 113 (2009) 553-558.
    [11]J.K. Zhou, L. Lv, J.Q. Yu, H.L. Li, P.Z. Guo, H. Sun, X. S. Zhao, Synthesis of self-organized polycrystalline F-doped TiO_2 hollow microspheres and their photocatalytic activity under visible light, J. Phys. Chem. C 112 (2008) 5316-5321.
    [12]H. J. Zhang, G H. Chen, Potent antibacterial activities of Ag/TiO_2 nanocomposite powders synthesized by a one-pot sol-gel method, Environ. Sci. Technol.43 (2009) 2905-2910.
    [13]S. M. Lee, B. S. Lee, T. G. Byun, K. C. Song, Preparation and antibacterial activity of silver-doped organic-inorganic hybrid coatings on glass substrates, Colloids and Surfaces A 355 (2010) 167-171.
    [14]C. X. Song, D. B. Wang, G. H. Gu, Y. S. Lin, J. Y. Yang, L. Chen, X. Fu, Z. S. Hu, Preparation and characterization of silver/TiO_2 composite hollow spheres, J. Colloid Interface Sci. 272(2004) 340-344.
    [15]P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods:a semiconductor/metal nanocomposite in homogeneous nonpolar solution, J. Am. Chem. Soc.126 (2004) 3868-3679.
    [16]D. Guin, S. V. Manorama, J. N. L. Latha, S. Singh, Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes:synthesis, characterization, and tested for antibacterial outcome, J. Phys. Chem. C 111 (2007) 13393-13397.
    [17]F. Li, G.Z. Li, H.Q. Wang, Q.J. Xue, Studies on cetyltrimethylammonium bromide (CTAB) micellar solution and CTAB reversed microemulsion by ESR and 2H NMR, Colloids Surfaces A 127(1997) 89-96.
    [18]W. Zhang, G Li, J. Mu, Q. Shen, L. Zheng, H. Liang, C. Wu, Effect of KBr on the micellar properties of CTAB, Chinese Sci. Bull.45 (2000) 1854-1857.
    [19]A. Ponton, C. Schott, D. Quemada, Rheological behavior of flexible elongated micelles: temperature effect in an isotropic phase, Colloids Surfaces A 145(1998) 37-45.
    [1]Orellana M., Ballesteros L., Del Rio R., et. al, Electrosynthesis, characterization and electrocatalytic properties of Prussian Blue (PB) nanoparticles disposed on a template[J], J. Solid State Electrochem.,2009,13:1303-1308
    [2]Romualdo-Torres G, Agricole B., Mingotaud C., et. al, Hybrid Organic-Inorganic Langmuir-Blodgett Films Starting from Colloidal Prussian Blue Solution[J], Langmuir,2003, 19(11):4688-4693
    [3]Taguchi M., Yamada K., Suzuki K., et. al, Photoswitchable Magnetic Nanoparticles of Prussian Blue with Amphiphilic Azobenzene[J], Chem. Mater,2005,17(17):4554-4559
    [4]Puganova E. A., and Karyakin A.A., New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors [J], Sensor Actualt B,2005,109(1):167-170
    [5]Hornok V. and Dekany I., Synthesis and stabilization of Prussian blue nanoparticles and application for sensors[J], J. Colloid Interface Sci.,2007,309(1):176-182
    [6]Shen X.P., Wu S.K., Liu Y, et. al, Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach[J], J. Colloid Interface Sci.,2009,329(1): 188-195
    [7]Vaucher S., Li M., and Mann S., Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse MicroemulsionsAngew[J], Chem. Int. Ed.,2000,39(10):1793-1796
    [8]Jia Z.Q. and Sun G.B., Preparation of prussian blue nanoparticles with single precursor[J], Colloids Surfaces A,2007,302(13):326-329
    [9]Miao Y.Q., Liu J.W., Assembly and electroanalytical performance of Prussian blue/polypyrrole composite nanoparticles synthesized by the reverse micelle method[J], Sci. Technol. Adv. Mater., 2009,10,025001
    [10]Uemura T., Ohba M., and Kitagawa S., Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers[J], Inorg. Chem.,2004,43(23):7339-7345
    [11]Uemura T., Kitagawa S., Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone) [J], J. Am. Chem. Soc.,2003,125(26):7814-7815
    [12]Wu X.L., Cao M.H., Hu C.W., et. al, Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor[J], Cryst. Growth Des.,2006,6(1):26-28
    [13]Johansson A., Widenkvist E., Lu J., et. al, Fabrication of High-Aspect-Ratio Prussian Blue Nanotubes Using a Porous Alumina Template[J], Nano Lett.,2005,5(8):1603-1606
    [14]Zhou P.H., Xue D.S., Luo H.Q., et. al, Fabrication, Structure, and Magnetic Properties of Highly Ordered Prussian Blue Nanowire Arrays[J], Nano Lett.,2002,2(8):845-847
    [15]Pan Q.T., Huang K., Ni S.B., et al, Synthesis of two-dimensional micron-size single- crystalline Prussian blue nanosheets by hydrothermal methods assisted by glucose[J], Mater. Res. Bull.,2009,44(2):388-392
    [16]Zheng X.J., Kuang Q., Xu T., et. al, Growth of Prussian Blue Microcubes under a Hydrothermal Condition:Possible Nonclassical Crystallization by a Mesoscale Self-Assembly[J], J. Phys. Chem. C,2007,111(12):4499-4502
    [17]Hu M., Jiang J.S., Ji R.P., et. al, Prussian Blue mesocrystals prepared by a facile hydrothermal method[J], Cryst. Eng.Comm.,2009,11(11):2257-2259
    [18]Moscone D., D'Ottavi D., Compagnone D., et. al, Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors[J], Anal. Chem.,2001,73(11):2529-2535
    [19]Gorton L., Electroanal.7,23 (1995)
    [20]Lee S.M., Cho S.N., and Cheon J.W., Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J], Adv. Mater.,2003,15(5):441-444
    [21]Hensel J., Zhang J. Z., Photoluminescence Response of CdTe Quantum Dots with Different Surface Ligands to KC1 in Aqueous Solutions[J], Sci. Adv. Mater.,2009,1:4-12
    [22]Liu C.L., Gong Q.H., and L.M. Qi, One-Pot Synthesis of Uniform Cu2O and CuS Hollow Spheres and Their Optical Limiting Properties[J], Chem. Mater.,2008,20(19):6263-6269
    [23]Li X., Li J., Li G., et. al, Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres[J], Chem. Eur. J.,2007,3(31):8754-8761

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700