用户名: 密码: 验证码:
复杂介质煤层气运移模型及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤层气资源十分丰富,开发煤层气对改善我国能源结构,具有重要的战略意义。本文在含甲烷原煤煤样的气体渗流物理特性、低煤阶煤层气开采数值模拟以及考虑井筒压降影响的煤层气羽状水平井开采数值模拟方面开展了实验分析、数学建模、数值求解和计算机模拟等研究,取得了一定的研究进展。
     本文首先在实验室条件下研究了含甲烷块状原煤煤样的渗流物理特性,着重探讨了有效应力和煤中水分含量对煤中甲烷渗流速度的影响规律,并考虑煤体变形和甲烷渗流之间的相互作用,提出了描述煤层甲烷非线性渗流物理特性的运动方程。在此基础上,根据低煤阶煤储层区别于中高阶煤储层的显著特征,即低煤阶煤层裂隙基本不发育、基质孔隙度相对较大,认为低煤阶煤层是由基质微孔隙系统、基质孔隙系统和裂隙系统组成的多孔介质,建立了能准确描述低煤阶煤储层气—水两相运移规律的数学模型,该模型考虑气—水两相在基质孔隙和裂隙中的运移以及煤体变形对裂隙渗透率的影响。
     其次,采用全隐式有限差分方法得到了低煤阶煤储层气—水两相运移数学模型的线性差分方程组,进而利用块系数不完全LU分解预处理的正交极小化方法对其进行了求解。编制相应的计算程序对模型的影响参数进行了分析,并通过对阜新刘家区块内的3口煤层气试验井的生产历史拟合和动态产能预测研究检验了模型的合理性。结果表明:煤基质孔隙的绝对渗透率、孔隙度以及含水饱和度通过影响低煤阶煤层的排水降压效果,进而对气井的产气量产生较大影响;与非平衡吸附模型相比,该模型预测的排水降压初期和稳产期的产气量较低,而相应的产水量较高。
     再次,根据煤体的岩石力学性质和弹性本构关系,建立了考虑煤体应力敏感特性以及煤基质收缩效应的煤储层孔隙度、渗透率理论模型,并在孔渗理论模型的基础上,建立了煤储层气—水两相流动模型;另一方面,基于煤层气羽状水平井井身结构的特殊性以及井筒流体的流动特点,考虑井筒变质量流动的摩擦压降、加速度压降以及分支流体和主支流体汇合的混合压降影响,建立了羽状水平井的井筒变质量流压降模型。将上述井筒变质量流压降模型与煤储层气—水两相流动模型相耦合,建立了考虑水平井筒压降影响的煤层气羽状水平井开采数学模型及数值模型。利用模型分析了影响煤层气羽状水平井开采的各种因素,为多分支水平井的分支参数优化设计提供了科学的理论依据。影响因素分析表明:煤基质收缩效应对裂隙渗透率的改善不能忽略,当按主水平井眼与煤层最大渗透性方向垂直的方式钻井开发时,煤层气羽状水平井可以获得更高的采收率。
     最后,针对煤层气羽状水平井井身结构特点,采用相应的经济净现值预测模型研究分析了羽状水平井井身几何参数对其净现值影响规律,并进行了相应的优化设计。
Coalbed methane resource is very abundant in China,so the exploitation of coalbed methane has very important strategic significance for improving China’s energy structure. In this paper, the gas-water flow characteristics in low rank coalbed methane reservoirs, as well as that coupling the flow in coalbed methane reservoir and variable mass flow in pinnate horizontal wellbore, are investigated by experimental study, theoretical analysis and numerical simulation, and the research has made some progress.
     Firstly, this paper investigated the gas seepage characteristics in block raw coal samples, and emphatically discussed the effects of effective stress and moisture content on the seepage flow velocity. Considering the interaction between coal deformation and methane seepage flow, a motion equation was presented to describe the nonlinear seepage characteristics of coalbed methane in coal. According to the above experimental research and the different characteristics of low rank coal seams, that is fractures are hardly developed and matrix porosity is relatively larger than high rank coal, the low rank coal seams were considered as a porous media composed of matrix micropore system, matrix macropore system and fracture system and a new mathematical model for the gas-water seepage flow in low rank coalbed methane reservoirs was established. Furthermore, not only gas-water two phases flow in matrix macropores and fractures but also coal deformation effects on the fracture permeability was taken into consideration in this model.
     Secondly, linear difference equations of the gas-water flow model in low rank coal seams were obtained by the fully implicit finite difference method and solved by the OrthoMin iterative method with block incomplete LU factorization preconditioner. Moreover, a calculation program was developed to analyze influence parameters of the model and the model reliability was validated by production history matching and dynamic forecasting of three coalbed methane test wells in Liujia prospecting district. The results showed that the permeability, porosity and water saturation of matrix macropore have large influence on the water drainage performance, and then on the gas production. Comparing with the non-equilibrium adsorption model, the forecasting gas production of this model in initial and stable production periods is relatively low, while the forecasting water production is high.
     Thirdly, based on rock mechanics properties and elastic constitutive relation, new theoretical formulations for stress-dependent permeability and porosity were presented, which include both stress effects and matrix shrinkage. On the basis of the theoretical formulations, a mathematical model of gas-water seepage flow in coalbed methane reservoirs was given. Besides that, a pressure drop model of variable mass flow in pinnate horizontal wellbore was established in consideration of the mixing loss resulted from the multilateral aggregate flow as well as friction loss and acceleration loss. The mathematical and numerical models of pinnate horizontal wells for coalbed methane recovery were obtained by coupling the gas-water seepage flow model in coalbed methane reservoirs with the pressure drop model of variable mass flow in pinnate horizontal wellbore. And then various factors influencing the pinnate horizontal well productivity were analyzed, which provided a scientific theoretical basis for the optimal design of lateral parameters. The analysis of influencing factors indicates that the contribution of matrix shrinkage to the fracture permeability can’t be neglected and higher gas recovery factor could be obtained when the main horizontal wellbore is drilled perpendicular to the maximum permeability orientation.
     Finally, the influence of wellbore structural parameters on the corresponding forecast model of economic net present value(NPV) was analyzed to achieve optimize design in view of the wellbore structural features of pinnate horizontal wells.
引文
1.刘成林,朱杰,车长波,等.新一轮全国煤层气资源评价方法与结果[J].天然气工业, 2009,29(11):130-132.
    2.王红岩,刘洪林,赵庆波,等.煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    3.孙平,王勃,孙粉锦,等.中国低煤阶煤层气成藏模式研究[J].石油学报,2009,30(5): 648-653.
    4.王勃,李景明,张义,等.中国低煤阶煤层气地质特征[J].石油勘探与开发,2009, 36(1):30-34.
    5.КринчевскийР.М.О.ЛриродеВнеуалныхВыдененийНвыбросовугляИГаза[J].БюоллетеньМакний,1948(18).
    6.周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    7.郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业大学学报,1984,2(2):
    19-28.
    8.谭学术,袁静.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报, 1986,1:106-112.
    9.余楚新,鲜学福等.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报(自然科学版),1989,12(5):1-10.
    10.孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    11. Saghafi A, et al.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[A].第22届国际采矿安全会议论文集[C].北京:煤炭工业出版社,1987.
    12.周世宁.瓦斯在煤层中的流动机理[J].煤炭学报,1990,15(1):15-24.
    13.吴世跃.煤层瓦斯扩散与渗流规律的初步探讨[J].山西矿业学院学报,1994,12(3): 259-263.
    14.彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983.
    15.抚顺煤研所编.日本北海道大学通口澄志教授部分论文及报告汇编,1984.
    16.孙培德.煤层瓦斯流动规律的研究[J].煤炭学报,1987,12(4):74-81.
    17.邓英尔,谢和平,黄润秋,等.低渗透孔隙—裂隙介质气体非线性渗流运动方程[J].四川大学学报(工程科学版),2006,38(4):1-4.
    18. Gawuga J.. Flow of gas through stressed carboniferous strata[D].University of Nottingham,Ph.D.thesis,1979.
    19. Khodot V.V.. Role of Methane in the stress state of a coal seam[J].Journal of Mining Science,1980,16(5):460-466.
    20. Harpalani S.. Gas flow through stressed coal[D].University of California Berkeley, Ph.D.thesis,1985.
    21.谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安矿业学院学报,1994,1:22-25.
    22.张广洋,谭学术,鲜学福.煤层瓦斯运移的数学模型[J].重庆大学学报(自然科学版),1994,17(4):53-57.
    23.张广洋.煤结构与煤的瓦斯吸附、渗流特性研究[D].重庆:重庆大学博士学位论文,1995.
    24.程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师, 1998,1:13-16.
    25.赵阳升,白其峥.煤层瓦斯流动的固结数学模型[J].山西矿业学院学报,1990,8(1): 16-21.
    26.赵阳升.煤体瓦斯耦合理论及其应用[D].上海:同济大学博士学位论文,1992.
    27.赵阳升,胡耀青.煤体—瓦斯耦合数学模型的数值解法[J].山西矿业学院学报,1993, 11(4):287-293.
    28.赵阳升.煤体─瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3): 229-239.
    29.梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    30.孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报,1999,24(1): 60-64.
    31.刘建军,梁冰.非等温条件下煤层瓦斯运移规律的研究[J].西安矿业学院学报,1999,19(4):302-308.
    32.孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001.
    33. Somerton W.H., Soylemezoglu I.M. and Dudley R.C. Effect of Stress on Permeability of Coal[J]. International Journal of Rock Mechanics Mining Science andGeological Abstracts,1975,12:129-145.
    34. Harpalani S. and McPherson M.J. Effect of Stress on Permeability of Coal[C]. Proceedings of the 26th US Symposium on Rock Mechanics,1985:831-839.
    35. Durucan S., Edwards J.S. The Effects of stress and fracturing on permeability of coal[J].Mining Science and Technology,1986,3:205-216.
    36. McKee C.R., Bumb A.C., Way S.C.,et al. Using Permeability vs Depth Correlations to Assess the Potential for Producing Gas from Coal Seams[J]. Quarterly Review of Methane from Coal Seams Technology,1986,4:15-26.
    37. McKee C.R., Bumb A.C. and Koeing R.A. Stress-dependent Permeability and Porosity of Coal[A]. Proceedings of the 1987 Coalbed Methane Symposium,1987: 183-193.
    38. Gray I. Reservoir engineering in coal seams: Part 1-The physical process of gas storage and movement in coal seams[J]. SPERE,1987,2:28-34.
    39. Gray I. Reservoir engineering in coal seams: Part 2-Observations of gas movement in coal seams[J]. SPERE,1987,2:28-34.
    40. Puri R. and Seidle J. Measurement of Stress Dependent Permeability in Coals and its Influence on Coalbed Methane Production[A].Proceedings of the 1991 Coalbed Methane Symposium,1991:415-424.
    41. Reiss L.H.The Reservoir Engineering Aspects of Fractured Formations[J].Editions Technip,France,1980.
    42. Seidle J.P.,Jeansonne M.W. and Erickson D.J. Application of Matchstick Geometry to Stress Dependent Permeability in Coals[C]. Proceedings of the SPE Rocky Mountain Regional Meeting,1992:433-445.
    43.林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,1:21-28.
    44.靳钟铭,赵阳升等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991, 10(3):271-280.
    45.罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报(自然科学版), 1991,20(3):55-61.
    46.胡耀青,赵阳升.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报,1996,16(4):308-311.
    47.何伟钢,唐书恒,解晓东.地应力对煤层渗透性的影响[J].辽宁工业技术大学学报(自然科学版),2000,19(4):353-355.
    48.唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    49.黄启翔,尹光志,姜永东,等.型煤试件在应力场中的瓦斯渗流特性分析[J].重庆大学学报(自然科学版),2008,31(12):1436-1440.
    50.彭守建,许江,陶云奇,等.煤样渗透率对有效应力敏感性实验分析[J].重庆大学学报(自然科学版),2009,32(3):303-307.
    51.胡国忠,王宏图,范晓刚,等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    52.尹光志,黄启翔,张东明,等.地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J].岩石力学与工程学报,2010,29(2):336-343.
    53.王宏图,李晓红,鲜学福,等.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,23(2):303-306.
    54.王恩元,张力,何学秋,等.煤体瓦斯渗透性的电场响应研究[J].中国矿业大学学报(自然科学版),2004,33(1):62-65.
    55.刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报(自然科学版),2006,29(2):83-85.
    56.鲜学福,辜敏,杜云贵.变形场、煤化度和外加电场对甲烷在煤层中渗流的影响[J].西安石油大学学报(自然科学版),2007,22(2):89-91.
    57.李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报(自然科学版),2009,38(4):523-527.
    58.何学秋.含瓦斯煤岩流变动力学[M].江苏徐州:中国矿业大学出版社,1995.
    59.许江,彭守建,陶云奇.蠕变对含瓦斯煤渗透率影响的试验分析[J].岩石力学与工程学报,2009,28(11):2273-2279.
    60. Harpalani S. and Schraufnagel R.A. Shrinkage of Coal Matrix with Release of Gas and its Impact on Permeability of Coal[J]. Fuel,1990,69:551-556.
    61. Sawyer W.K., Paul G.W. and Schraufnagle R.A. Development and Application of 3D Coalbed Simulator[C]. paper CIM/SPE 90-119 presented at the proceedings of thePetroleum Society CIM,Calgary,1990.
    62. Schwerer F.C. and Pavone A.M. Effect of pressure-Dependent Permeability on well-Test Analyses and Long-Term Production of Methane from Coal Seams[C]. paper SPE12857 presented at Unconventional Gas Recovery Symposium,Pittsburgh,PA,1984.
    63. Seidle J.P. and Huitt L.G. Experimental Measurement of Coal Matrix Shrinkage Due to Gas Desorption and Implications for Cleat Permeability Increases[C]. Proceedings of the International Meeting on Petroleum Engineering,1995:575-582.
    64. Harpalani S. and Chen G. Estimation of Changes in Fracture Porosity of Coal with Gas Emission[J].Fuel,1995,74:1491-1498.
    65. Levine J.R. Model Study of the Influence of Matrix Shrinkage on Absolute Permeability of Coal Bed Reservoirs[A]. Gayer R. and Harris I. (eds.). Coalbed Methane and Coal Geology[C],1996,109:197-212.
    66. Palmer I. and Mansoori J. How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[C]. paper SPE36737 presented at the SPE Annual Technical Conference and Exhibition held in Denver,Colorado,USA,1996.
    67. Mavor M.J. and Vaughn J.E. Increased Absolute Permeability in the San Juan Basin Fruitland Formation[C]. paper 9738 presented at the Proceeding of the International Coalbed Methane Symposium,University of Alabama/Tuscaloosa,1997:33-45.
    68. Harpalani S. and Chen G. Influence of Gas Production Induced Volumetric Strain on Permeability of Coal[J]. International Journal of Geotechnical and Geological Engineering,1997,15:303-325.
    69. Shi J.Q. and Durucan S.Changes in Permeability of Coalbeds During Primary Recovery–Part 1:Model Formulation and Analysis[A]//Proceedings of the 2003 Coalbed Methane Symposium[C].Tuscaloosa,Alabama:University of Alabama,2003.
    70. Cui X.J. and Bustin R.M.. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J].AAPG Bulletin, 2005,89(9):1181-1202.
    71. Robertson E.P., Christiansen R.L. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media[C]. paper SPE104380 presented at the SPE Eastern Regional Meeting,Canton,Ohio,USA, 2006.
    72. Palmer I., Mavor M. and Gunter B. Permeability Changes in Coal Seams During Production and Injection[C]. paper0713 presented at the International Coalbed Methane Symposium,Tuscaloosa,Alabama,2007.
    73. Palmer I. Permeability changes in coal: Analytical modeling[J]. International Journal of Coal Geology,2009,77:119-126.
    74. ZHANG XianMin, TONG DengKe. The coalbed methane transport model and its application in the presence of matrix shrinkage[J]. Science in China Series E: Technological Sciences,2008,51(7):968-974.
    75. Mazumder S. and Wolf K.H.. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology,2008,74:123–138.
    76. Zhang H.B., Liu J.S. and Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1226-1236.
    77. Wang G.X., Massarottoa P. and Rudolpha V. An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration[J]. International Journal of Coal Geology,2009,77:127-136.
    78. Connell L.D.,Detournay C. Coupled flow and geomechanical processes during enhanced coal seam methane recovery through CO2 sequestration[J].International Journal of Coal Geology,2009,77:222-233.
    79. Airey E.M.Gas emission from broken coal:an experimental and theoretical investigation[J]. International Journal of Rock Mechanics and Mining sciences,1968,5:475-494.
    80. McFall K.S., Wicks D.E., Kuuskraa V.A., et al. A Geologic Assessment of Natural Gas from Coal Seams in the Piceance Basin, Colorado[R].GRI Topical Report 87/0060,1986.
    81. Price H.S., McCulloch R.C. et al. A computer model study of methane migration in coalbeds[J]. The Canadian Mining and Metallurgical Bulletin,1973,66(737):103-112.
    82. Bumb A.C, McKee C.R.Gas-well testing in the presence of desorption for coalbed methane and Devonian shale[J].SPEFE,1988,3(1):179-185.
    83. Seidle J.P.,Arri L.E.Use of Conventional Reservoir Models for Coalbed Methane Simulation[C].paper CIM/SPE 90118presented at the Annual Technical Meeting, Calgary,Alberta,1990.
    84. Thomas. Advanced Large-Scale Coalbed Methane Modeling Using Conventional Reservoir Simulator[C]. paper SPE 75672 presented at the SPE Gas Technology Symposium,Calgary,Alberta,Canada,2002.
    85. Arri L.E.,Yee D.,et al. Modeling Coalbed Methane Production With Binary Gas Sorption[C]. paper SPE 24363 presented at the SPE Rocky Mountain Regional Meeting,Casper,Wyoming,1992.
    86.张烈辉,任德雄等.用热采模型模拟煤层气开采过程[J].天然气工业,2001,21(6): 20-22.
    87.张烈辉,陈军,涂中等.用常规黑油模型模拟煤层气开采过程[J].西南石油学院学报,2001,23(5):26-28.
    88. Ertekin T.,King G.R.,Schwerer F.C.. Dynamic Gas Slippage: A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations[J].SPEFE,1985,2:43-52.
    89. King G.R.,Ertekin T.,Schwerer F.C..Numerical Simulation of the Transient Behavior of Coal-Seam Degasification wells[J].SPEFE,1986,1(2):165-183.
    90. E Ertekin T., Schwerer F.C.. Production Performance Analysis of Horizontal Drainage Wells for Degasification of Coal-Seams[J].JPT,1988,40(5):625-632
    91. Ancell K.L. and Lambert S. Analysis of the coalbed degasification process at a seventeen well pattern in the Warrior Basin of Alabama[C]. paper SPE 8971 presented at the 1980 SPE/DOE Symposium on Unconventional Gas recovery held in Pittsburgh,1980.
    92. Anbarci K. and Ertekin T. A Comprehensive Study of Pressure Transient Analysis with Sorption Phenomena for Single-Phase Gas Flow in Coal Seams[C]. paper SPE20568 presented at 65th Annual Technical and Exhibition of the Society of Petroleum Engineers,New Orleans,LA,1990.
    93. Kolesar J.E., Ertekin T.,Obut S.T..The unsteady-state nature of sorption and diffusion phenomena in the micropore structure of coal:Part1-Theory and mathematicalformulation[J].SPEFE,1990,5(1):81-88.
    94. Kolesar J.E.,Ertekin T.,Obut S.T..The unsteady stature of sorption and diffusion phenomena in the micropore structure of coal:Part2-Solution[J].SPEFE,1990,5(1): 89-97.
    95. Gan H., Nandi S.P. and Walker P.L.J.. Nature of the Porosity in American Coals[J]. Fuel,1972,51(4):272-277.
    96. Thimons E.D. and Kissell F.N. Diffusion of Methane Through Coal[J].Fuel,1973,52:274-280.
    97. Sato T. Methane Recovery from Coalbeds: Surface and Physical Properties of Western Uniied States Coal[D].University of New Mexico,M.S.Thesis,1981.
    98. Smith D.M.Methane Diffusion and Desorption in Coal[D].University of New Mexico Ph.D. Thesis,1982.
    99. Smith D.M.,Williams F.L..Diffusional Effects in the Recovery of Methane From Coalbeds[J]. SPEJ,1984,24(10):529-535.
    100.Ruckenstein E.,Vaidyanathan A.S.and Youngquist G.R. Sorption by solid with bidisperse pore structures[J]. Chemical Engineering Science,1971,26:1305-1318.
    101.Bhatia S.K.Modeling the pore structure of coal[J].AICHE Journal,1987,33: 1707-1718.
    102.Clarkson C.R., Bustin R.M.The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study 1. Isotherms and pore volume distributions[J]. Fuel,1999,78:1333–1344.
    103.Clarkson C.R., Bustin R.M.The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study:2.Adsorption rate modeling[J]. Fuel,1999,78:1345-1362.
    104.Shi J.Q. and Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection[J].Fuel,2003,82(10):1219-1229.
    105.Shi S.Q.and Durucan S. Gas storage and flow in coalbed reservoirs: implementation of a bidisperse pore model for gas diffusion in coal matrix[C].paper 84342 presented at SPE Annual Technical Conference and Exhibition,Dencer,Colorado,U.S.A.,2003.
    106.Shi J.Q. and Durucan S. Gas storage and flow in coalbed reservoirs: implementation ofa bidisperse pore model for gas diffusion in a coal matrix[J].SPREE,2005,3:291-300.
    107.Shi J.Q. and Durucan S. Modelling of Mixed-Gas Adsorption and Diffusion in Coalbed Reservoirs[C].Paper SPE114197 presented at the 2008 SPE Unconventional Reservoirs Conference held in Keystone,Colorado,U.S.A.,2008.
    108.Cui X., Bustin R.M., and Dipple G. Selective transport of CO2, CH4, and N2 in coals:Insights from modeling of experimental gas adsorption data[J]. Fuel,2004,83(3):293-303.
    109.周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    110.杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,3:87-93.
    111.王继仁.本煤层孔网瓦斯抽放理论与技术的研究[D].辽宁阜新:辽宁工程技术大学博士学位论文,2000.
    112.张国辉.煤层应力状态及煤与瓦斯突出防治研究[D].辽宁阜新:辽宁工程技术大学博士学位论文,2005.
    113.李斌.煤层气非平衡吸附的数学模型和数值模拟[J].石油学报,1996,17(4):42-48.
    114.骆祖江.煤层甲烷运移动力学模型研究[D].陕西西安:煤炭科学研究总院西安分院博士学位论文,1997.
    115.郎兆新,张丽华.零维煤层气模拟软件的研制[J].石油大学学报(自然科学版),1997, 21(5):30-34.
    116.岳晓燕,谭世君,吴东平.煤层气数值模拟的地质模型与数学模型[J].天然气工业, 1998,18(4):28-31.
    117.冯文光,梅世昕,侯鸿斌.煤层气藏三维数值模拟[J].矿物岩石,1999,19(1):43-48.
    118.吴晓东,张迎春,李安启.煤层气单井开采数值模拟的研究[J].石油大学学报(自然科学版),2000,24(2):47-49.
    119.王安平.煤层甲烷赋存、输运机理及数值模拟研究[D].四川南充:西南石油学院博士学位论文,2002.
    120.张群.煤层气储层数值模拟模型及应用的研究[D].陕西西安:煤炭科学研究总院西安分院博士学位论文,2003.
    121.孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁阜新:辽宁工程技术大学博士学位论文,2004.
    122.王起新.阜新盆地煤层气储运规律及资源预测研究[D].辽宁阜新:辽宁工程技术大学博士学位论文,2005.
    123.张先敏.煤层气储层数值模拟及开采方式研究[D].山东东营:中国石油大学硕士学位论文,2007.
    124.同登科,张先敏.致密煤层气藏三维全隐式数值模拟[J].地质学报,2008,82(10):1428-1431.
    125.闫宝珍.沁水盆地煤层气富集机理及主控特征[D].北京:中国矿业大学博士学位论文,2008.
    126.陈德民.红菱矿区煤层气藏开发方法研究[D].北京:中国地质大学博士学位论文, 2008.
    127.张先敏,同登科.顶板含水层对煤层气井网产能的影响[J].煤炭学报,2009,34(5):645-649.
    128.Jochen J.E.,Robinson B.M.Survey of horizontal gas well activity[C].paper SPE35639 presented at the Gas Technology Conference held In Calgary,Alberta,Canada,1996.
    129.Sung W.,Ertekin T.,and Schwerer F.C. The Development, Testing and Application of a Comprehensive Coal Seam Degasification Model[C]. paper SPE15247 presented at the UGTS of SPE,Louisville,KY,1986.
    130.Sung W.and Ertekin T. An Analysis of Field Development Strategies for Methane Production From Coal Seams[C].paper SPE16858 presented at the 62nd Annual Technical Conference and Exhibition,Dallas,TX.,1987.
    131.King G.R.,Ertekin T. Comparative Evaluation of Vertical and Horizontal Drainage Wells for the Degasification of Coal Seams[J].SPERE,1988,5:720-734.
    132.Engler T.W. and Rajtar J.M. Pressure Transient Testing of Horizontal Wells in Coalbed Reservoirs[C].paper SPE24374 presented at the SPE Rocky Mountain Regional Meeting held in Casper,Wyoming,1992.
    133.Sarkar P.S. and Rajtar J.M.Horizontal Well Transient Pressure Testing in Coalbed Reservoirs[C]. paper SPE26995 presented at III Lath American/Caribbean Petroleum Engineering Conference,Argentina,1994.
    134.Sarkar P.S., Rajtar J.M. Transient Well Testing Of Coalbed Methane Reservoirs with Horizontal Wells[C]. paper SPE27681 Presented at the SPE Permian Basin Oil and Gas Recovery Conference,Midland,Texas,1994.
    135.Osisanya S.O., Schaffitzel R.F. A Review of Horizontal Drilling and Completion Techniques for Recovery of Coalbed Methane[C].paper SPE37131 presented at the SPE International Conference on Horizontal Well Technology,Calgary,Canada,1996.
    136.鲍清英,鲜保安.我国煤层气多分支井钻井技术可行性研究[J].天然气工业,2004, 24(5):54-56.
    137.黄洪春,卢明,申瑞臣.煤层气定向羽状水平井钻井技术研究[J].天然气工业,2004, 24(5):76-78.
    138.鲜保安,高德利,李安启等.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,2005,25(1):114-116.
    139.鲜保安,高德利,王一兵等.多分支水平井在煤层气开发中的应用机理分析[J].煤田地质与勘探,2005,33(6):34-37.
    140.Maricic N., Mohaghegh S.D., Artun E. A Parametric Study on the Benefits of Drilling Horizontal and Multilateral Wells in Coalbed Methane Reservoirs[C]. paper SPE96018 presented at the SPE Annual Technical Conference and Exhibition,Dallas,Texas,2005.
    141.高德利,鲜保安.煤层气多分支井身结构设计模型研究[J].石油学报,2007,28(6):113-117.
    142.Dikken B.J.Pressure drop in horizontal wells and its effect on production performance[J].JPT,1990,42(11):1426-1433.
    143.张冬丽.煤层气定向羽状水平井开采数值模拟方法研究[D].河北廊坊:中国科学院研究生院博士学位论文,2004.
    144.张冬丽,王新海,宋岩.考虑启动压力梯度的煤层气羽状水平井开采数值模拟[J].石油学报,2006,27(4):89-92.
    145.席长丰,吴晓东,王新海.多分支井注气开发煤层气模型[J].煤炭学报,2007,32(4): 402-406.
    146.吴晓东,安永生,席长丰.煤层气羽状水平井数值模拟新方法[J].天然气工业,2007,7: 76-78
    147.孟伟东,王延斌,李玉魁等.倾斜煤层中不同倾向多分支井产能预测模型[J].煤田地质与勘探,2008,36(3):27-29.
    148.张健,汪志明,王开龙.煤层几何参数和渗透率对水平井开采煤层气的影响[J].石油钻探技术,2009,37(4):80-83.
    149.石书灿,李玉魁,倪小明.煤层气竖直压裂井与多分支水平井生产特征[J].西南石油大学学报(自然科学版),2009,31(1):48-52.
    150.Enever J.R.E.,Henning A..The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir model[A].Proceedings of the 1997 International Coalbed Methane Symposium, Tuscaloosa,AL,USA: University ofAlabama,1997:13-22.
    151.王登科.含瓦斯煤岩本构模型与失稳规律研究[D].重庆:重庆大学博士学位论文,2009.
    152.张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报,1995, 24(4): 65-68.
    153.王红岩,李景明,刘洪林等.煤层气基础理论、聚集规律及开采技术方法进展[J].石油勘探与开发,2004,31(6):14-16.
    154.Aranovich G.L. and Donohue M.D. Adsorption isotherms for microporous adsorbents [J].Carbon,1995,33:1369-1375.
    155.孙平,刘洪林,巢海燕.低煤阶煤层气勘探思路[J].天然气工业,2008,28(3):19-22.
    156.赵群,王红岩,李景明等.我国高低煤阶煤层气成藏的差异性[J].天然气地球科学, 2007,18(1):129-133.
    157.陈振宏,贾承造,宋岩等.高煤阶与低煤阶煤层气藏物性差异及其成因[J].石油学报, 2008,29(2):179-184.
    158.Xiao-Chun L., Fan-Chang L. and Ted W.A. Adsorption studies of natural gas storage in Devonian shales[J]. SPEFE,1995,10(2):109-113.
    159.Bustin R.M.,Clarkson C.R. Free gas storage in matrix porosity: A potentially significant coal bed methane in low rank coals[A]//Tuscaloosa: International Coal bed Methane Symposium[C].1999:197-214.
    160.Schepers K.C.,Gonzalez R.J.,Koperna G.J.,et al. Reservoir modeling in support of shale gas exploration[C].paper SPE123057 presented at the SPE Latin American and Caribbean Petroleum Engineering Conference held in Cartagena, Colombia,2009.
    161.Gilman J.R. and Kazemi H.Improvements in Simulation of Naturally Fractured Reservoirs[J].SPEJ,1983,23(5):695-707.
    162.韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1993:147-264.
    163.张烈辉,李允,代艳英.块预处理正交极小化方法及其在水平井油藏模拟中的应用[J].西南石油学院学报,1997,19(1):32-36.
    164.曹志壮,张建民,张冲等.阜新盆地煤层气高效开发初探[A]//2008年煤层气学术研讨会论文集[C],2008:221-229.
    165.贾耀惠.阜新刘家区煤层气富集成藏规律研究[A]//2008年煤层气学术研讨会论文集[C],2008:133-139.
    166.白建梅.樊庄煤层气多分支水平井开采技术跟踪研究[D].山东东营:中国石油大学工程硕士学位论文,2009.
    167.饶孟余,杨陆武,张遂安等.煤层气多分支水平井钻井关键技术研究[J].天然气工业,2007,27(7):52-55.
    168.Reucroft P.J.and Patel H..Gas-induced Swelling in Coal[J].FUEL,1986,65(6): 816-820.
    169.Zimmerman R.W.Coupling in poroelasticity and thermoelasticity[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1):79-87.
    170.Neuzil C.E..Hydromechanical coupling in geologic processes[J].Hydrogeology Journal, 2003,11(1):41-83.
    171.Zimmerman R.W., Somerton W.H., King M.S.. Compressibility of porous rocks[J]. Journal of Geophysical Research,1986,91(B12):12765–12778.
    172.Berryman J.G.. Effective Stress for Transport Properties of Inhomogeneous Porous Rock [J].Journal of Geophysical Research,1992,97(B12):17409-17424.
    173.Nur A., Byerlee J.D.. An exact effective stress law for elastic deformation of rock with fluids[J]. Journal of Geophysical Research,1971,76(26):6414-6419.
    174.牟乃让.流体力学与传热学基础[M].北京:机械工业出版社,1984:57-77.
    175.黄世军,程林松,李秀生等.多分支水平井压力系统分析模型[J].石油学报,2003,24(6):81-86.
    176.步玉环,王瑞和,刘继林.分支井汇合流动压降计算[J].钻采工艺,2007,30(4):10-12.
    177.Ouyang L.B., Aziz K. A mechanistic model for gas-liquid flow in pipes with radial influx or outflux[C]. paper SPE 56525 presented at the 1999 SPE Annual Technical Conference and Exhibition,Houston, Texas,1999:359-372.
    178.Colebrook C.F. and White C.M. Experiments with fluid friction in roughened pipes[J]. Proceedings of the Royal Society of London Series A,1937,161(906):367–381.
    179.刘想平,张兆顺,刘翔鹗等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报,2000,22(2):36-39.
    180.Aavatsmark I.and Klausen R.A..Well Index in Reservoir Simulation for Slanted and Slightly Curved Wells in 3D Grids[J].SPEJ.2003,8(1):41-48.
    181.李五忠,赵庆波,吴国干.中国煤层气开发与利用[M].北京:石油工业出版社,2008, 12:195-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700