用户名: 密码: 验证码:
井下注气驱替煤层甲烷机理及规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受煤层注气提高煤层气产出率(ECBM)试验成功的启发,首次成功地将煤层注气驱替技术用于煤矿井下注气促排促抽煤层瓦斯的工程技术领域。论文围绕煤对N2、CO2、CH4以及他们的混合气体吸附-解吸规律、气体之间的竞争吸附和置换吸附规律展开实验室研究。基于达西(Darcy)渗流理论、菲克(Fick)扩散理论、扩展Langmuir吸附理论以及气体状态方程,建立了多物理场耦合条件下的气体流动和置换解吸模型,利用Comsol Multiphysics有限元数值模拟软件进行了煤层注气数值模拟。在此基础之上,在煤矿井下开展了注气置换解吸煤层甲烷的工艺技术研究,考察了掘进面迎头边注边排和边注边抽、巷帮耳状钻场边注边抽、巷帮顺层孔边注边排和边注边抽等多种井下工艺的注气置换效果,提出了注气驱替/置换煤层甲烷的气体置换、气流“携载”、气流稀释扩散和气流膨胀增透的作用机理。
     首先研制了专用的大煤样量多元气体吸附装置,采用气样储罐隔离采样法解决了采样过程中气相组分不断变化的难题。建立了煤对混合气体的竞争吸附和置换吸附实验方法。试验结果表明,煤对CO2、CH4和N2吸附常数a值分别为63.6943 m3/t、41.1523 m3/t和16.5837 m3/t,说明煤对这三种气体吸附能力由大到小的顺序为CO2、CH4、N2;竞争吸附和置换吸附显示出相同的吸附规律,表明煤对气体的吸附与各种气体吸附的先后顺序无关,仅与吸附始末状态及浓度比例有关。
     煤层注气驱替/置换过程是一个渗流、扩散、置换吸附-解吸多场耦合条件下的含有质量交换的运动过程。基于达西定律、菲克定律和Langmuir多元气体吸附方程,建立了多物理场耦合数学模型,进行了煤层注气数值模拟。结果表明,在自然排放条件下,注气能使钻孔纯甲烷流量大幅度增加,其中注N2增加幅度为29.5倍,注CO2的增加幅度为37.54倍。配合抽放措施后,注N2增加幅度在排放+注气的基础之上又提高了8.34倍,注CO2提高了10.10倍。
     在煤矿井下分别对掘进工作面迎头、巷帮钻场和巷帮煤壁进行了注气促排和注气促抽现场试验。试验结果表明,试验煤层注气有效半径为1.2m-2.0m,且受注气压力和注气流量的影响较大。现场实测掘进面迎头注气+排放条件下,注气后的钻孔纯甲烷流量较注气前增加了31.56~140.93倍。抽放+注气条件下,纯甲烷抽放流量比单抽措施的抽放流量增加了1.63~2.06倍。经现场考察,在抽放量相同时,单抽措施需要抽放19天,配以注气措施后仅需9.2~11.6天。巷帮顺层钻孔高压注气的纯瓦斯流量增加了4.54~24.57倍。利用钢瓶向煤层注入纯N2或纯CO2时,从煤层瓦斯含量的变化和煤层气成分的变化上来看,比注空气的效果好。但是从煤层宏观上看,由于其注气量和注气时间有限,整体置换效果不如空气。
     井下注气驱替/置换煤层甲烷的机理主要有:注入气体的置换吸附-解吸作用、注气气流的载携作用、注气气流的稀释扩散作用和注气气流的膨胀增透作用。其中注入气体对甲烷的“携载”、“驱赶”作用占主导地位,而气体之间的“竞争吸附”和“置换吸附”起次要的作用。
Inspired by the successful test of Enhanced Coal Bed Methane (ECBM) by means of gas injection, the gas injection technology was firstly applied to accelerate coal seam methane emission and drainage in underground coal mine. The adsorption– desorption laws of N2, CO2, CH4 and their mixture on coal have been researched; and a series of lab experiment of displacement adsorption and competition adsorption have be made. Before underground testing, based on Darcy’s law, Fick’s law and Langmuir’s law, a set of numerical models were established under multi-physics field coupling conditions, and coal seam gas injection was simulated make use of The Comsol Multiphysics software. On this basis, a set of technical study about injection gas in coal seam to displace coal methane underground has been made, and the displacement effect of“gas-injection as methane releasing”and“gas-injection as drainage”in roadway head, road wall drill shack and roadside hole alone coal seam has been researched. Finally, the mechanism of displace methane by gas injection has been proposed.
     A special experimental equipment for big quantity coal saples adsorption and desorption to multicomponent gas has been developed, and the problem, which the gas phase component change continually in the sampling process has been solved by separate sampling method used a gas sample storage vessel. Based on the equipment, two experimental methods of competition adsorption on multicomponent gas mixture and displacement adsorption for gases displacing methane in coal has been established. The results show that the adsorption constant a values of coal sample to CO2, CH4 and N2 weae 63.6943 m3/t, 41.1523 m3/t and 16.5837 m3/t, the absorbability descending sequence of the three gas is CO2, CH4 and N2. Two experiments showed the seam laws between displacement adsorption and competition adsorption. It indicated that the gases adsorption has nothing to do with the order of adsorption of every component, it only relates to start and end condition of adsorption and component of mixture.
     Displacement and replacement of coal seam gas incection is a complex movement with mass exchange under the multi-physics field coupling conditions of permeation, diffusion, and displacement adsorptiom-desorptiom. Based on Darcy’s law, Fick’s law and multicomponent gas Langmuir’s law, a series of multi-physics field coupling mathematical model has been established, the gas injection numerical simulation has been made. The results were indicated that methane flow quality in bore hole made a significant increase after gas injection, which the increase multiple of N2 injection is 29.5 times, and that of CO2 injection is 37.54 times. With the gas drainage, the increase multiple of N2 injection is 8.34 times, and that of CO2 injection is 10.10 times.
     The two testing of gas injection-nature emission and gas injection-drainage has been made in head-on of coal drift face, coal roadside wall and drill shack. The site test result indicated that the effective influence radius of gas injection is 1.2m to 2.0m for the testing coal seam, and the radius was influenced greatly by pressure and flow of gas injection. With compared to nature methane emission, the pure methane flow quality of bore hole is increase to 31.56~140.93 times under air injection and nature emission in tunneling face head-on. Correspondingly, the methane flow quality is increase to 1.63~2.06 times under air injection and drainage. With the same drainage methane quality,the drainage time of drainage only is 19 days, that of air injection and drainage only need 9.2~11.6 days. The pure methane flow quality is increase 4.54~24.57 times on the condition of air injection and drainage in roadside hole alone coal seam. When injected pure N2 and CO2 into coalbed use high-pressure cylinders, the methane emission effect of pure gas injection is better than that of air injection as viewed from methane quality of coal sample. But from the macro point of view, pure gas injection effect is no better than that of air injection because of the limit of quality and period of injection.
     The mechanism of gas injection to accelerating methane emission and drainage are the action of displacement adsorption of injection gas, the action of carrying of injection gas to coal seam methane, the action of dilution and diffuse, and the action of expansion and increased permeability. The action of carry and drive of injection gas is main role, and the action of competition and replacement adsorption is played secondary role.
引文
[1]王显政.抓住机遇迎接挑战促进煤炭工业健康可持续发展[J].中国煤炭,2007, 33(6): 5-7.
    [2]黄盛初.国内外煤炭工业发展趋势与煤矿安全战略[J].中国煤炭,2009,35(9):5-9.
    [3]赵铁锤.认真落实“十六字工作体系”继续深化切实做好煤矿瓦斯治理工作[J].中国煤炭, 2008, 34(7): 11-14.
    [4]王魁军主编.矿井瓦斯防治技术优选——瓦斯涌出量预测与抽放[M].徐州:中国矿业大学出版社,2008.10.
    [5]胡千庭主编.矿井瓦斯防治技术优选——煤与瓦斯突出和爆炸防治[M].徐州:中国矿业大学出版社,2008.10.
    [6]范维唐主编.我国煤矿安全生产形式、差距与对策[M].北京:煤炭工业出版社,2003.6.
    [7]张铁岗煤矿瓦斯综合治理技术[M].北京:煤炭工业出版社. 2001:256-258.
    [8]马丕梁,蔡成功.我国煤矿瓦斯综合治理现状及发展战略[J].煤炭科学技术,2007,35(12):7-11.
    [9]于洪观,范维唐,孙茂远等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化, 2005, 28(1): 43-47.
    [10]唐书恒,杨起,汤达祯等.注气提高煤层甲烷采收率机理及实验研究[J].石油实验地质, 2002, 24(6): 545-549.
    [11]唐书恒,韩德馨.用多元气体等温吸附成果评价煤层气开发潜力[J].中国矿业大学学报, 2002, 31(6): 630-633.
    [12]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607-611.
    [13] Yu H, Yuan J, Guo W, et al1 A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J]. International Journal of Coal Geology, 2007,73(4):156-166.
    [14]程林峰.煤层气注入增产法的探讨[J].中国煤层气,2006,3(3):40-43.
    [15]张林,刘池阳,李志航等.煤层气井水力压裂合适伴注气体的选择[J].煤炭学报, 2008, 33(3):322-324.
    [16] Mazumder S, Hemert P V, Bruining J, et al. In-situ CO2-coal reaction in view of carbon dioxide storage in deep unminable coal seams [J]. Fuel, 2006,85(9):1904-1912.
    [17]近藤精一,石川达雄,安部郁夫著,李希国译.吸附科学(原著第二版)[M].北京:化学工业出版社, 2006.1: 37-40.
    [18] M. Jaroniee, R. Madey著.加璐,程代云,王广昌译.非均匀固体上的物理吸附[M].北京:化学工业出版社. 1997.12:10-108.
    [19] Brunauer S., Deming L., Deming W., Teller E.,J. On a Theory of the van der Waals Adsorption of Gases[J]. Am. Chem. Soc.,1940,62(7):1723
    [20] Sing K.S. W. Adsorption methods for the characterization of porous materials [J]. adv. Colloid Interface Sci,1998,76-77:3-11.
    [21] Rouquerol J., Avnir D., Fairbridge C.W., et al .,Puer& A ppl. Chem.[J].1994,66(8):1739
    [22] Moffat D H, Weale K E. Sorption by coal of methane at high pressure.[J]. Fuel,34,1955:417-428.
    [23] Yang R T, Saunders J T. Adsorption of gases on coals and heat-treated coals at elevated temperature and pressure[J]. Fuel,1985:314-327.
    [24]孙培德.煤与甲烷气体相互作用机理的研究[J].煤, 2000,9(1):18-21.
    [25] Weishauptova Z, Medek J. Bound forms of methane in the porous system of coal[J]. Fuel, 1998,77(1):71-76.
    [26] Clarkson C R. Adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J]. Carbon,1997,35(12):1689-1705.
    [27]钟玲文,张新民.煤的吸附能力及其煤化程度和煤岩组成间的关系[J].煤田地质与勘探, 1990,18(4): 29-35.
    [28]唐修义.有关煤层气几个基本问题的认识[J].煤田地质与勘探, 1996, 24(3):20-26.
    [29] Crosdale P J, Beamish B B, Valix M. Coalbed methane sorption related to coal composition[J]. International Journal of Geology, 1998,35(2):147-158.
    [30]赵志根,唐修义.对煤吸附甲烷的Langmuir方程的讨论[J].焦作工学院学报, 2002,21(1):1-4.
    [31]张晓东,秦勇,桑树勋.煤储层吸附特征的研究现状及展望[J].中国煤田地质.2005,17(1): 16-29.
    [32]艾鲁尼A T.唐修义,宋德淑,王荣龙译.煤矿瓦斯动力学现象的预测和预防[M].北京:煤炭工业出版社, 1992.
    [33]陈昌国,鲜晓红,张代钧等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(2):75-79.
    [34]刘常洪,杨思敬.关于煤甲烷吸附体系吸附规律的研究[J].煤矿安全,1992,(4):1-5.
    [35] Laxminarayana Ch, Crosdale P J. Modeling methane adsorption isotherms using pore filling models: a ease study on India coals[C]. International coalbed methane symposium, 1999:117-128.
    [36]陈昌国,鲜晓红.微孔充填理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报, 1998,21(2):75-79.
    [37]崔永君.煤对CH4、N2、CO2及多组分气体吸附的研究[D].西安:煤炭科学研究总院博士学位论文, 2003.1
    [38]于洪观,范维唐,孙茂远等.煤中甲烷等温吸附模型的研究[J].煤炭学报, 2004,29(4):463-467.
    [39] Collins R E. New theory for gas adsorption and transport in coal[C]. International coalbed methane symposium, 1991:525-531.
    [40] Stevenson M D. Pinezewski W V. Somers M L. et al. Adsorption/desorption of multicomponent gas mixture at in-seam conditions [C]. Proceedings of the SPE Asia-Pacific conference Perth.Western Australia 199l.11: 741-756.
    [41] Nodzenski A. Sorption and desorption of gases(CH4,CO2)on hard coal and activated carbon at elevated pressures[J]. Fuel, 1998,78:1243-1246.
    [42]曾凡桂,郝玉英.煤吸附的高分子溶液理论[J].煤炭转化, 1995, 18(4):31-37.
    [43] Vishnyakov A, Piotrovskaya E M. Capillary condensation and melting/freezing transitions formethane in slit coal pores [J]. Adsorption, 1998,4:207-224.
    [44] Karacan C O, Okandan E. Assessment ofenergetic heterogeneity ofcoals for gas adsorption and its effect on mixture predictions for coalbed methane studies [J]. Fuel, 2000,79:1963-1974.
    [45]杨思敬,宁德义,刘云生. MT/T 752-1997煤的甲烷吸附里测定方法(高压容量法)[S].北京:中国标准出版社, 1997.
    [46]张庆玲,张遂安,崔永君. GB/T 19560-2008煤的高压等温吸附试验方法容量法[S].北京:中国标准出版社, 2008.
    [47] Hall F E, Zhou Chunhe, Gasem, K.A.M. et al. Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixture on wet Fruitland coal[C]. Proceedings - SPE Eastern Regional Conference and Exhibition. Charleston, WV, USA.1994.11: 329-344.
    [48] Arri L E. Yee D. Morgan W D. Modeling coalbed methane production with binary gas sorption[C]. Rocky Mountain Regional Meeting, Casper, WY, USA, 1992.5: 459-472.
    [49]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探, 2001,29(4): 29-30.
    [50]欧成华,李士伦.高温高压下三元混合气在储层岩心中的吸附等温线的测定.天然气工业,2001,21(4):72-74。
    [51]周胜国,侯瑞云,郭淑敏.煤对双组分气体的等温吸附实验方法[J].焦作矿业学院学报, 1996,15(6):83-87.
    [52] Btaeuer P, Salem M.Calclllation of single adsorption isotherms from gravimetrically binary gas mixture adsorption isotherms On activated carbon at high pressures.Separation Purification Technology. 1997, 12: 255-263.
    [53] Ruppel T C. Adsorption of methane/ethane mixtures on dry coal at elevated pressures[J] Fuel, 1972,51(10):297-303.
    [54] Saunders J T. Benjamin M C. Yang R T. Adsorption of gases on coals and heat—treated coals at elevated temperature and pressure. 2 Adsorption from hydrogen-methane mixtures [J] Fuel,1985,64(5): 621-626.
    [55] Harpalani S, Pariti U M. Study of sorption isotherm using a multicomponent gas mixture [C], International Coalbed Methane Symposium. 1993.
    [56] Greaves K H. Owen L B.Melenman J D. et al. Multi component adsorption-desorption behavior of coal[C] proceedings of the 1993 International Coalbed Methane Symposium, 1993.
    [57] Chaback Joseph J, Morgan Don, Yee Dan. Sorption irreversibilities and mixture compositional behavior during enhanced coal bed methane recovery processes[C], Gas technology conference. Calgary Alberta,Canada. 1996: 431-438.
    [58]唐书恒.晋城地区煤储层特征及多元气体的吸附-解吸特征[D].徐州:中国矿业大学博士论文,2001
    [59]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报, 2004,33(4): 448-452.
    [60]吴世跃.煤层气与煤层耦合运动理论及其应用的研究——具有吸附作用的气固耦合理论[D].沈阳:东北大学博士论文, 2005.1.
    [61]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟[D].徐州:中国矿业大学博士学位论文, 2001.5.
    [62]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学博士学位论文, 2008.4
    [63]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安科技大学硕士学位论文, 2006.4
    [64]黄杰.无烟煤及无烟煤基活性炭对甲烷的吸附解吸性能研究[D].西安:西安科技大学硕士学位论文, 2007.4
    [65]于洪观,范维唐,孙茂远等.煤对CH4 / CO2二元气体等温吸附特性及其预测[J].煤炭学报. 2005,30(5):619-622.
    [66]张子戌,刘高峰,张小东等. CH4 /CO2不同浓度混合气体的吸附-解吸实验[J].煤炭学报, 2009,34(4):551-555.
    [67] Krooss B M, Bergen Fvan, Gensterblum Y., et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology.2002,51(2):69-92.
    [68]夏德宏,张世强.注CO2开采煤层气的增产机理及效果研究[J].江西能源, 2008(1): 7-10.
    [69] J. N. Israelachvili. Intermolecular and surface forces [M]. London: Academic Press, 1992.
    [70]孙维吉.不同孔径下瓦斯流动机理及模型研究[D].阜新:辽宁工程技术大学硕士学位论文, 2007.
    [71]唐书恒,汤达祯,杨起.二元气体等温吸附实验及其对煤层甲烷开发的意义[J].中国地质大学学报, 2004, 29(2): 219-223.
    [72]张遂安,霍永忠,叶建平等.煤层气的置换解吸实验及机理探索[J].科学通报, 2005, 50(增刊I):143-146.
    [73] Xiaojun Cui, R.Marc Bustin, Gregory Dipple. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data [J]. Fuel, 2004(83): 293-303.
    [74]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].煤炭工业出版社,2000: 27-30.
    [75] Joubert J I, Grein C T, Biebstock D. Effect of moisture on the methane capacity of American coals[J].Fuel,1974,53:54-67.
    [76]张时音,桑树勋,刘长江等.煤储层固-液-气相间作用的等温吸附实验研究[J]中国煤田地质, 2005, 17(2): 16-17.
    [77]马东民.煤储层的吸附特征实验综合分析田[J].北京科技大学学报,2003, 25(4):292-293.
    [78]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报, 1999 ,24(2):118-122.
    [79]张群,杨锡禄平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6): 566-570
    [80]傅雪海,秦勇,李贵中,等特高煤级煤平衡水条件下的吸附实验[J].石油实验地质,2002,24(2)177-180.
    [81]周荣福,傅雪海,秦勇我国煤储层等温吸附常数分布规律及其意义煤田地质与勘探, 2000, 28(5): 23-25.
    [82]李士伦,周守信,杜建芬等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率, 2002.9(2):1-5.
    [83]蒲美玲.低渗透油气藏改造技术研究进展[J].内蒙古石油化工, 2007(12):315-317.
    [84]高远文,姚艳斌,郭广山.注气提高煤层气采收率研究进展[J].资源与产业,2007,9(6): 105-108.
    [85]姚胜林,陈明强,王克伟等.提高采收率研究现状[J].石油化工应用, 2009,28(4):1-3.
    [86]易俊,鲜学福姜永东等.煤储层瓦斯激励开采技术及其适应性[J].中国矿业, 2005,14(12): 26-29.
    [87]奥.依.切尔诺夫著.宋世钊,于不凡译.瓦斯突出危险煤层井田的准备[M],北京:煤炭工业出版社, 1980, 73-97.
    [88] Terzaghi K. Theoretical soil Mechanics, New York, 1943.
    [89]夏雅君.工程传质学[M].北京:机械工业出版社, 1985, 33-100.
    [90]А.з.彼特罗祥著,宋世钊译.煤矿沼气涌出[M].北京:煤炭工业出版社, 1983, 22-98.
    [91] S. V. Kuznetsov, V. A. Bobin. Desorption kinetics during phenomena in collieries [J]. Soviet Mining Science, 1987, 23(2): 159-168.
    [92] I. L.éttinger. Solubility diffusion of methane in coal strata [J]. Soviet Mining Science, 1980, 16(1): 49-54.
    [93] Yu. F. Vasyuchkov. A study of porosity, permeability, and gas release of coal as it is saturated with water and acid solution [J]. Soviet Mining Science, 1985, 21(1): 81-88.
    [94] A. M. M. Mendes, C. A. V. Costa, A. E. Rodrgues. Linear driving for isothermal non-isobaric diffusion/convection with binary Langmuir absorption [J]. Gas Sep Purif, 1995, 9(4): 259-268.
    [95] John H. Levy, Stuart J. Day, John S. et al.. Methane capacities of Bowen Basin coals related to coal properties [J]. Fuel, 1997, 76(9): 813-819.
    [96] Waclaw Dziurzyfiski, Andrzej Krach. Mathematical model of methane emission caused by a collapse of rock mass erump [J]. Archives of Mining Sciences, 2001, 46(4): 433-449.
    [97]渡边伊温.作为煤层瓦斯突出指标的初期瓦斯解吸速度[J].煤矿安全, 1985(5):56-63.
    [98]渡边伊温.北海道煤的瓦斯解吸特征及瓦斯突出性指标[J].煤矿安全, 1985(7): 45-48.
    [99]王佑安,杨思敬.煤与瓦斯突出的某些特征[J].煤炭学报, 1980(1): 33-37.
    [100]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全, 1981(11): 46-49.
    [101]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性关系[J].煤矿安全, 1982(7): 16-21.
    [102]杨其銮.煤屑瓦斯扩散理论及其应用[J].煤炭学报, 1986, 11(3): 62-70.
    [103]杨其銮,王佑安.瓦斯球向流动的数学模型[J].中国矿业大学学报, 1988(4): 44-48.
    [104]中国矿业学院瓦斯组.煤与瓦斯突出的防治[M].北京:煤炭工业出版社, 1979, 34-78.
    [105]周世宁.从钻孔瓦斯压力上曲线计算煤层透气系数的方法[J].中国矿业学院学报, 1982(3): 8-15.
    [106]周世宁.用电子计算机对两种测定煤层透气系数方法的检验[J].中国矿业学院学报, 1984, 2(3): 46-5l.
    [107]郭勇义,周世宁.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报, 1984, 2(2): 19-28.
    [108]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报, 1991, 20(3): 36-42.
    [109]罗新荣.煤层瓦斯运移物理与数值模拟分析[J].煤炭学报, 1992, 17(2): 49-55.
    [110]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报, 1992, 10(1). -32-37.
    [111]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报, 1986,15(3): 67-72.
    [112]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报, 1987, 16(1): 2l-28.
    [113]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报, 1988, 17(4): 23-27.
    [114]何学秋.周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报, 1990, 19(2): l-9.
    [115]卢平,沈兆武,朱贵旺等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报, 2002, 32(6): 678-684.
    [116]陈代旬.渗流气体滑脱现象与渗透率变化的关系[J].力学学报, 2002, 34(1): 96-100.
    [117]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报, 1989, 12(5): 1-9.
    [118]孙培德.煤层瓦斯流动理论及其应用[C],中国煤炭学会1988年学术年会论文集,北京:煤炭工业出版社, 1988.
    [119]张广祥,谭学术,鲜学福等.煤层瓦斯运移数学模型[J].重庆大学学报, 1994, 17(4), 53-64.
    [120]孙培德.煤层瓦斯流场流动方程补正[J].煤田地质与勘探, 1993, 21(5): 61-62.
    [121]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报, 1987, 12(4): 74-82.
    [122]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆:重庆大学, 1998(2): 87-93.
    [123]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报, 1999, 24(1):60-64.
    [124] Sun Peide. Solid-gasinter action modeling for mining safety range and numerical simulation [J]. Journal of Coal Science & Engineering, 2000, 6(2):41-46.
    [125]吴世跃,郭勇义.注气开采煤层气增产机制的研究[J].煤炭学报,2001,26(2):199-203.
    [126] Clarkson C R, Bustin R M. Binary gas adsorption/ desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane [J]. International Journal of Coal Geology, 2000,42(4): 241-272.
    [127] Yukuo Katayama. Study of coalbed methane in Japan[C]. Proceedings of United Nations International Conference on Coalbed Methane Development and Utilization. Beijing: Coal Industry Press, 1995:238-243.
    [128] Stevens Scott H, Schoeling Lanny, Pekot Larry. CO2 injection for enhanced coalbed methane recovery: project screening and design [C]. Proceedings of the 1993 International Coalbed Methane Symposium. 1999.
    [129]李前贵,康毅力,罗平亚.超破裂压力注气开发煤层甲烷探讨[J].天然气工业,2005,25(6) : 87-89.
    [130]彭小龙,杜志敏.注气开发驱替前沿的离散渗流模型[J].西南石油大学学报(自然科学版). 2008,30(1):67-84.
    [131]郭彪侯,吉瑞,赵凤兰. CO2在多孔介质中的运移规律研究[J].重庆科技学院学报(自然科学版),2009(4):76-78.
    [132]李向良,李振泉,郭平等.二氧化碳混相驱的长岩心物理模拟[J].石油勘探与开发. 2005,31(5): 102-104
    [133]孙可明.煤层气注气开采多组分流体扩散模型数值模拟[J].辽宁工程技术大学学报, 2005,24(3):306-308.
    [134]庞丽萍,王浚.活性炭床多组分竞争吸附数值方法研究[J].系统仿真学报, 2005,17(9):2104-2112.
    [135]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报, 2007,26(5):994-1001.
    [136]张宛君,邰英楼.煤层气注井开采数值模拟[J].辽宁工程技术大学学报(自然科学版) 2009,28 Suppl (9): 298-291.
    [137]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学, 2007,18(4): 581-583.
    [138]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术, 2006,31(2): 55-57.
    [139]梅海燕,张茂林,李闽等.气驱过程中考虑弥散的渗流方程[J].天然气工业, 2004,24(3): 97-99.
    [140]王联,潘真.国内外煤层气利用现状之比较[J].煤矿现代化, 2006.74(5):1-2.
    [141]黄盛初,刘文革,赵国泉.中国煤层号开发利用现状及发展趋势[J].中国煤炭, 2009,35(1):5-10.
    [142]王魁军,张兴华.中国煤矿瓦斯抽采技术发展现状与前景[J].中国煤层气, 2006.3(1):13-16.
    [143]马丕梁.我国煤矿抽放瓦斯现状及发展前景[J].煤矿安全, 2007,38(3):48-51.
    [144]中联煤层气有限责任公司编著.中国煤层气勘探开发技术研究[M].北京:石油工业出版社, 2007.9:197-272.
    [145]张红珠,冯美生,宁掌玄.深部岩体注气破裂的数值模拟[J].山西大同大学学报(自然科学版), 2009,25(2): 73-76.
    [146]劳业春,雷霄.涠洲11-4油田注气提高采收率数值模拟研究[J].中国海上油气, 2004,16(1): 32-35.
    [147]唐巨鹏,潘一山,李成全等.三维应力作用下煤层气吸附解吸特性实验[J].天然气工业, 2007,27(7): 35-38.
    [148]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探, 2001,29(5): 28-30.
    [149]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探, 2002,30(3): 26-29.
    [150]李树刚,常心坦,徐精彩.煤岩与CO2突出特征及其预防技术研究[J].西安科技学院学报, 2000,20(1): 1-4.
    [151]吕成明,崔永虎.獐儿沟煤矿CO2突出机理及防治研究[J].中国煤田地质, 2002,14(3):21-23.
    [152]孙建设.防治CO2突出技术研究[J].煤炭科技, 2009.2:110-112.
    [153]支元恒.急倾斜CO2突出厚煤层分层放顶煤开采防治技术分析[J].甘肃科技, 2007,23(11):144-145.
    [154] I. Langmuri, J. Amer. Chem. Soc., 40, (1918)1361.
    [155]梁冰,孙可明.低渗透煤层气开采理论及其应用[M] .北京:科学出版社,2006.
    [156]张行周,郭勇义,吴世跃.注气驱替煤层气技术的探讨[J].太原理工大学学报, 2000,31 (3): 251-253.
    [157]王剑光,余小广.注气驱替煤层气机理研究[J] .中国煤炭, 2004,30(12): 44-46.
    [158]李希建,蔡立勇,常浩.注气驱替煤层气作用机理的探讨[J].矿业快报, 2007,460(8):20-22.
    [159]陈诵英,孙予罕,丁云杰等著.吸附与催化[M].郑州:河南科学技术出版社, 2001.8:4-6.
    [160] Oscik. J. Adsorption [M]. Warszawa Poland: PWN-Polish Scientific Publishers. 1979.
    [161] Gregg S. J, Sing K S W. Adsorption Surface Area and Porosity. 2nd ed. [M]. London: Academic Press, 1982.
    [162] Scarlett B, ed. Power Surface Area and Porosity. 2nd ed. [M]. London: Chapman and Hall Ltd., 1984.
    [163]叶振华.化工吸附分离过程[M],北京:中国石化出版社, 1992, 50-172.
    [164]夏雅君.工程传质学[M],北京:机械工业出版社, 1985, 33-100.
    [165]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报, 2008,34(4): 427-432.
    [166]周世宁,林伯泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1999.2:30-36.
    [167]张红珠,冯美生,宁掌玄.深部岩体注气破裂的数值模拟[J].山西大同大学学报(自然科学版), 2009,25(2): 73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700