用户名: 密码: 验证码:
柞蚕丝结构和力学性能的深入研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物丝(主要指蜘蛛丝和蚕丝)由于其优异的力学性能,近半个世纪来一直受到研究人员的关注。经过科学家的不懈努力,人们已经掌握了部分动物丝(如Nephila clavipes蜘蛛主腺体丝和桑蚕丝等)的丝蛋白序列结构,初步探讨了某些基序(motif)与固态动物丝中二级结构的对应关系。然而,这些二级结构(结构域)是以何种方式组装成更高级的凝聚态结构并使动物丝表现出相应的力学性能仍然是个未解之谜。尽管科学家已经通过各种精巧的实验描绘出了蜘蛛和蚕等的丝腺体与纺器的生理构造,并揭示了纺丝液在其中经历的流体作用、pH值和离子浓度变化等,但当人们尝试人工制造动物丝时仍然遇到很多困难。即使直接使用丝腺体中的纺丝液,所得到的再生丝性能往往远不及天然丝。这说明我们在模拟制备动物丝,特别是构建动物丝所特有的多级结构方面还有很长的道路要走。全面地掌握动物丝结构和力学性能间的关系无疑将为整个探索过程提供可靠的研究思路。
     目前对动物丝的研究主要集中于蜘蛛主腺体丝和桑蚕丝。虽然蜘蛛主腺体丝力学性能非常优异,但是由于蜘蛛的地盘意识强,容易相互残杀而无法大规模集体饲养,因此蜘蛛丝的产量有限;另一方面,桑蚕丝在几千年前就被人类大规模地利用,在全球的年产量达到几十万吨。相比之下,尽管柞蚕丝的全球年产量达万吨级,但对这种材料的研究却十分有限,而且主要是基于脱胶柞蚕丝。由于在缫丝和脱胶过程中引入的机械拉伸和化学试剂处理都可能导致天然丝的结构发生变化,因此,若直接测定脱胶柞蚕丝的力学性能,其数据的可靠度不高,进而无法将柞蚕丝的力学性能和结构相互关联。此外,柞蚕丝在动物丝家族中具有十分特殊的地位,即柞蚕丝的天然用途类似于桑蚕丝,用于织茧(保护蚕蛹);而柞蚕丝素蛋白的序列结构却与蜘蛛主腺体丝蛋白的序列结构非常相似,特别是其形成β-折叠结构的聚丙氨酸序列。因此,获得可靠的柞蚕丝力学性能数据、研究其与柞蚕丝(丝蛋白)各级结构的关系也将有助于我们了解整个动物丝家族一系列基本特性。
     在本论文中,我们通过强(迫)拉丝的方法从野生柞蚕的纺器中获取几乎没有宏观缺陷的强拉柞蚕丝。在研究强拉柞蚕丝在常温常湿条件下的力学性能、水及湿气对强拉柞蚕丝结构和力学性能的影响以及强拉柞蚕丝在低温下的力学性能等的基础上,对柞蚕丝(动物丝)的断裂模式进行了深入的讨论。
     首先,我们从野生柞蚕的纺器以一定速率获取强拉柞蚕丝,通过观察其表面形貌和截面形状发现:强拉丝的方法可以获得几乎没有宏观缺陷的丝纤维,这为后续的力学性能研究提供了可靠的原材料;我们还发现,即使拉丝速率不变,强拉丝的截面形状在较长距离内也有显著的变化,提示柞蚕在被强拉丝的过程会改变其纺器口模的形状,进而在一定程度上影响丝纤维的性能。
     接着,我们通过拉伸试验研究了强拉柞蚕丝在常温常湿条件下的力学性能,包括断裂强度、断裂应变、模量以及回弹性等,并与蜘蛛主腺体丝和强拉桑蚕丝进行对比。结果表明,柞蚕丝的断裂强度和断裂韧性与蜘蛛主腺体丝和强拉桑蚕丝处于同一量级,但回弹性介于蜘蛛主腺体丝和强拉桑蚕丝之间。此外,通过分析人为引入缺陷的强拉柞蚕丝断面形貌,提出了柞蚕丝在常温下的断裂机理。还利用Instron模拟商业缫丝过程探讨了商业生产中导致蚕丝力学性能发生改变的原因。
     在研究水对强拉柞蚕丝的结构和力学性能的影响时,我们借鉴了前人研究蜘蛛丝的方法。将强拉柞蚕丝经过水汽或水处理后,利用拉曼光谱和X-射线衍射法检测其结构的变化,并跟踪其力学性能发生的改变,此外还探讨了能否利用超收缩和湿态条件下预拉伸处理来提高柞蚕丝的力学性能。我们发现,一定温度下当环境湿度超过某一临界值时,强拉柞蚕丝将发生超收缩现象,其最大超收缩能力介于蜘蛛主腺体丝和强拉桑蚕丝之间;同时,在这个临界湿度附近,超收缩柞蚕丝的初始模量突降,表明非晶区丝蛋白链段发生了玻璃化转变,也证明了超收缩现象是熵驱动的分子链解取向过程。通过在不同温度下测定超收缩柞蚕丝发生玻璃化转变的临界湿度,我们发现升高温度和增大湿度(即增大柞蚕丝中的水含量)对超收缩柞蚕丝的力学性能的影响具有等效性。对桑蚕丝和柞蚕丝进行湿态拉伸试验证明,湿态预拉伸会导致纤维本身的模量升高、屈服应力提高、断裂应力(工程应力)增大、断裂伸长率降低而总断裂能降低。而且,湿态预拉伸对上述性能的影响与干态预拉伸相比,差别并不大。从工程应用的角度来说,模量提高和屈服应力提高的确意味着提高了蚕丝作为结构材料的使用价值。结构表征实验显示,强拉柞蚕丝中的α-螺旋结构在水或水汽处理过程中逐步消失,此构象转变所需的湿度在80%RH(相对湿度,25℃)以上,略高于强拉柞蚕丝发生超收缩所需的湿度(约75%RH,25℃)。经过水处理后,强拉柞蚕丝的模量下降,屈服应力降低且断裂伸长率增高。此外,我们将超收缩后多种动物丝的干/湿(态)模量比作为力学性能参数,与由丝蛋白一级结构所指的动物丝内在有序度进行比对,发现这一性能/结构关系可以用D. Porter的基团作用模型(Group Interaction Model)很好地模拟。
     实验测量发现,即便在液氮温度下,强拉柞蚕丝仍然是韧性材料,其断裂伸长率几乎与室温下的一致。这不仅表明“动物丝的低温韧性源于-70℃附近的脂肪侧基松弛过程”的早期研究结果的片面性,而且还促使我们通过采用一系列方法进一步探讨了强拉柞蚕丝在低温下仍具有优异韧性的原因。我们发现,当强拉柞蚕丝未经脱胶处理并且不够干燥时或者人为地在强拉柞蚕丝表面引入微米级缺陷时,都可以使其在低温下的断裂模式由韧性转变为半韧性(或脆性);结合强拉柞蚕丝断面分析,并与高性能合成尼龙纤维和聚酯纤维的早期研究结果进行
Animal silks have drawn the attention of biologists, chemists, and material scientists for more than a century. Yet their applications by human beings can be traced back millennia. The recent resurgence in scientific interest in such materials, which have evolved independently in spiders as well as a wide range of insects, is due to the silk's marvelous combination of modulus, strength and extensibility. After intensive study, the scientists have gained considerable knowledges about the primary sequences (although often only partial) of a wide range of natural silk proteins, and about the secondary structure of certain motifs. However, it is still less understood about the details of how the secondary structures arrange and organize into the condensed state structure at a higher level in the natural silks, and how these secondary structures contribute to the remarkable mechanical properties of the natural silks. Moreover, scientists have uncovered considerable details on natural spinneret construction and the gradients of proton and metallic ions along the duct, as well as their effects on the in vivo formation of silks. However, it seems to be a long way from producing artificial silk fibers comparable to those masterpieces produced by the spiders or silkworms themselves, whether the regenerated silk protein solutions or recombinant ones are used. Therefore in-depth understanding of the structure-property relationship of animal silks will provide valuable guideline for further research.
     Most of previous studies of animal silks are focused on major ampullate silks of spider and mulberry silk. The commercial production of spider silks is limited because of the cannibalistic character of most spiders. On the other hand, mulberry silk has already been used by human beings for several thousand years with a global production scaling up to hundreds of thousands tons per year. Compared to these two widely studied silks, A pernyi silk is produced at the scale of tens of thousands tons per year with limited research works, most of which were based on the degummed A. pernyi silk. Nevertheless, the degumming process may damage the silk structures on various levels, and then affect the results obtained. This may arise problems when someone wants to link the mechanical properties of the silks with their structure. Moreover, A. pernyi silk is quite special in the family of animal silks. Like mulberry (B. mori) silk, A. pernyi silk is used to construct cocoon. However, examination of the primary structure, especially the motifs, of A. pernyi fibroin reveals that it is more like major ampullate spidroins than B. mori fibroin. Therefore, obtaining reliable mechanical properties data of A. pernyi silk and figuring out its relationship with the structure of A. pernyi silk will provide important insight into the structure-property relationship of the whole family of animal silks.
     In this work, we first obtained forcibly reeled A. pernyi silk with few macro defects. Then the mechanical properties of such silk was studied in normal and moist environment as well as at low temperatures. Also, the effects of water on the structure and properties of forcibly reeled A. pernyi silk was discussed. Furthermore, the failure behavior of it was investigated at both ambient temperature and cryogenic temperature.
     The first part of our work (Chapter two) tells how to obtain the forcibly reeled A. pernyi silk directly from the spineret of silkworm, their mechanical performance at normal environment, and their morphology and shape of cross section. It was found that forcibly silking can provide silk fibers with few macro defects, which can be used for subsequent delicate studies. However, even reeled under constant rate, the forcibly reeled A. pernyi silk fiber would vary its cross sectional shape over long reeling time. This finding implies that silkworm may be able to change the shape of their spineret die. Then, the mechanical properties of forcibly reeled A. pernyi silk fiber was tested at normal environment, and the results were compared with those from major ampullate silk of spider and forcibly reeled B. mori silk. The results show that the A. pernyi silk has tensile strength and toughness of the same magnitude as those of spider silk and B. mori silk, while the elasticity of the A. pernyi silk lies between those of spider silk and B. mori silk. Moreover, the fracture mechanism of A. pernyi silk was discussed based on fractography of artificially notched silk. The force on the silk fiber during filature process was monitored with Instron machine, which revealed that over-stretching during the filature process may be the reason for the poor properties of commercial cocoon silkworm silks.
     The Chapter three focuses on the effect of water on the structure and mechanical properties of forcibly reeled A. pernyi silk. It is found that the A. pernyi silk fiber will supercontract when the environmental humidity reaches a critical value, and its supcontraction force is between the major ampullate silk of spider and forcibly reeled B. mori silk. Near the critical humidity, the modulus of supercontracted A. pernyi silk fiber plummets, which suggests the glass transition of the noncrystalline regions of silk protein (fibroin) takes place. The coincidence between the onset humidities of supercontraction and glass transition supports the assumption that the supercontraction of animal silks is a process of entropy-driven disorientation of molecular chains when the intra-or intermolecular frictional force is not strong enough to hold these chains in their elongated conformations. By determining the onset humidities of glass transition of supercontracted A. pernyi silk fiber at different temperatures, we found that increasing humidity is equivalent to raising temperature in affecting the mechanical properties of A. pernyi silk. By prestretching in water, both B. mori silk and A. pernyi silk showed improved modulus, yield stress and breaking stress, as well as decreased breaking elongation and breaking energy. Prestretching silk fiber in air and in water have similar effects on the mechanical properties of silk. Raman spectroscopy and X-ray diffraction were used to monitor the structure change of A. pernyi silk during water or moisture treatment. The result shows that forcibly reeled A. pernyi silk will gradually lose its a-helix structure when the humidity goes beyond 80%RH (relative humidity,25℃) which is a bit higher than the glass transition humidity (ca.75%RH,25℃). After supercontraction in water, the modulus and yield stress of forcibly reeled A. pernyi silk drop, while breaking elongation increases. Moreover, the ratio between dry and wet modulus of water-contracted silk was correlated with the ordered fraction of silk proteins, and the plot was compared with the simulated curve delivered by Dr. D. Porter. From these results, we proposed a mechanism how the primary structure determines the mechanical properties of animal silks.
     In Chapter four, dynamic mechanical thermal analysis (DMTA), tensile test in liquid nitrogen and fractography were used to explore the mechanism, by which forcibly reeled A. pernyi silk fiber remains tough at low temperatures. The silk breaks in a ductile way even at the temperature of liquid nitrogen, i.e.-196℃, and its breaking elongation doesn't differ from that at room temperature. The result implies that previous attribution of animal silk's low temperature toughness to the relaxation at-70℃is unsatisfactory. Furthermore, the failure mode of forcibly reeled A. pernyi silk fiber in liquid nitrogen was found to depend on sericin coating, moisture content, artificial notch and so on. For example, the silk fiber breaks in semi-ductile (or brittle) way in liquid nitrogen if it is undegummed and wet or it is artificially notched. According to fractography of forcibly reeled A. pernyi silk fiber and the previous observation on high tenacity nylon and PET fibers, we speculate that the well-defined nano-fibrillar structure in natural animal silks is the origin of their low temperature toughness.
引文
1. In http://en.wikipedia.org/wiki/Silk#Uses,2010.
    2. Nakazawa, Y.; Asakura, T., High-resolution C-13 CP/MAS NMR study on structure and structural transition of Antheraea pernyi silk fibroin containing poly(L-alanine) and gly-rich regions. Macromolecules 2002,35, (6),2393-2400.
    3. Shao, Z. Z. V., F. Yang,Y.and Thgersen, H. C., Structure and Behavior of Regenerated Spider Silk. Macromolecules 2003,36,1157-1161.
    4. Work, R. W.; Young, C. T., The Amino-Acid Compositions of Major and Minor Ampullate Silks of Certain Orb-Web-Building Spiders (Araneae, Araneidae). Journal of Arachnology 1987,15, (1),65-80.
    5. Sponner, A., Spider silk as a resource for future biotechnologies. Entomological Research 2007,37, (4),238-250.
    6. Ha, S. W.; Gracz, H. S.; Tonelli, A. E.; Hudson, S. M., Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 2005,6, (5),2563-2569.
    7. Hakimi, O.; Knight, D. P.; Vollrath, F.; Vadgama, P., Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B-Engineering 2007,38, (3),324-337.
    8. Zhou, C. Z.; Confalonieri, R.; Medina, N.; Zivanovic, Y.; Esnault, C.; Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R.; Li, Z. G., Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research 2000,28, (12),2413-2419.
    9. Drummy, L. F.; Farmer, B. L.; Naik, R. R., Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter 2007,3, (7),877-882.
    10. Sponner, A.; Schlott, B.; Vollrath, F.; Unger, E.; Grosse, F.; Weisshart, K., Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 2005,44, (12), 4727-4736.
    11. Ayoub, N. A.; Garb, J. E.; Tinghitella, R. M.; Collin, M. A.; Hayashi, C. Y, Blueprint for a high-performance biomaterial:full-length spider dragline silk genes. PLoS ONE 2007,2, (6), e514.
    12. Rising, A.; Nimmervoll, H.; Grip, S.; Fernandez-Arias, A.; Storckenfeldt, E.; Knight, D. P.; Vollrath, F.; Engstrom, W., Spider silk proteins-Mechanical property and gene sequence. Zoological Science 2005,22, (3),273-281.
    13. Holland, G. P.; Lewis, R. V.; Yarger, J. L., WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. Journal of the American Chemical Society 2004,126, (18),5867-5872.
    14. Holland, G. P.; Jenkins, J. E.; Creager, M. S.; Lewis, R. V.; Yarger, J. L., Solid-State NMR Investigation of Major and Minor Ampullate Spider Silk in the Native and Hydrated States Biomacromolecules 2008,9, (2),651-657.
    15. van Beek, J. D.; Hess, S.; Vollrath, F.; Meier, B. H., The molecular structure of spider dragline silk:Folding and orientation of the protein backbone. Proceedings of the National Academy of Sciences of the United States of America 2002,99, (16),10266-10271.
    16. Lefevre, T.; Rousseau, M. E.; Pezolet, M., Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophysical Journal 2007,92, (8),2885-2895.
    17. Brooks, A. E.; Stricker, S. M.; Joshi, S. B.; Kamerzell, T. J.; Middaugh, C. R.; Lewis, R. V, Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 2008,9, (6),1506-1510.
    18. Seydel, T.; Kolln, K.; Krasnov, I.; Diddens, I.; Hauptmann, N.; Helms, G.; Ogurreck, M.; Kang, S. G.; Koza, M. M.; Muller, M., Silkworm silk under tensile strain investigated by synchrotron X-ray diffraction and neutron spectroscopy. Macromolecules 2007,40, (4),
    1035-1042.
    19. Krasnov, I.; Diddens, I.; Hauptmann, N.; Helms, G.; Ogurreck, M.; Seydel, T.; Funari, S. S.; Muller, M., Mechanical properties of silk:Interplay of deformation on macroscopic and molecular length scales. Physical Review Letters 2008,1, (4),048104.
    20. Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J., Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk. Nature Materials 2010,9, (4),359-367.
    21. Grubb, D. T.; Jelinski, L. W., Fiber morphology of spider silk:The effects of tensile deformation. Macromolecules 1997,30, (10),2860-2867.
    22. Jenkins, J. E.; Creager, M. S.; Lewis, R. V.; Holland, G. P.; Yarger, J. L., Quantitative Correlation between the Protein Primary Sequences and Secondary Structures in Spider Dragline Silks. Biomacromolecules 2010,11, (1),192-200.
    23. Thiel, B. L.; Kunkel, D. D.; Viney, C., Physical and Chemical Microstructure of Spider Dragline-a Study by Analytical Transmission Electron-Microscopy. Biopolymers 1994,34, (8),1089-1097.
    24. Thiel, B. L.; Guess, K. B.; Viney, C., Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 1997,41, (7),703-719.
    25. Trancik, J. E.; Czernuszka, J. T.; Bell, F. I.; Viney, C., Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies. Polymer 2006,47, (15), 5633-5642.
    26. Shen, Y.; Johnson, M. A.; Martin, D. C., Microstructural Characterization of Bombyx mori Silk Fibers. Macromolecules 1998,31,8857-8864.
    27. Termonia, Y, Molecular Modeling of Spider Silk Elasticity. Macromolecules 1994,27, (25), 7378-7381.
    28. Riekel, C.; Vollrath, F., Spider silk fibre extrusion:combined wide-and small-angle X-ray microdiffraction experiments. International Journal of Biological Macromolecules 2001,29, (3),203-210.
    29. Hakimi, O.; Knight, D. P.; Knight, M. M.; Grahn, M. F.; Vadgama, P., Ultrastructure of insect and spider cocoon silks. Biomacromolecules 2006,7, (10),2901-2908.
    30. Sponner, A.; Vater, W.; Monajembashi, S.; Unger, E.; Grosse, F.; Weisshart, K., Composition and hierarchical organisation of a spider silk. PLoS ONE 2007,2, (10), e998.
    31. Rousseau, M. E.; Cruz, D. H.; West, M. M.; Hitchcock, A. P.; Pezolet, M., Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. Journal Of The American Chemical Society 2007,129, (13),3897-3905.
    32. Sponner, A.; Unger, E.; Grosse, F.; Klaus, W., Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nature Materials 2005,4, (10), 772-775.
    33. Vollrath, F.; Knight, D. P., Liquid crystalline spinning of spider silk. Nature 2001,410, (6828), 541-548.
    34. Asakura, T.; Ashida, J.; Yamane, T.; Kameda, T.; Nakazawa, Y.; Ohgo, K.; Komatsu, K., A repeated beta-turn structure in poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance. Journal of Molecular Biology 2001,306, (2),291-305.
    35. Vollrath, F.; Knight, D. P., Biology and Technology of Silk Production. In Handbook of Biopolymer, Steinbuchel, A.; Fahnestock, S. R., Eds.2003; Vol.8, pp 25-44.
    36. Chen, X.; Knight, D. P.; Vollrath, F., Rheological characterization of Nephila spidroin solution. Biomacromolecules 2002,3, (4),644-648.
    37. Terry, A. E.; Knight, D. P.; Porter, D.; Vollrath, F., PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules 2004,5, (3),768-772.
    38. Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A. R., Assembly mechanism of recombinant spider silk proteins. Proceedings of the National Academy of Sciences of the United States of America 2008,105, (18),6590-6595.
    39. Porter, D.; Vollrath, F., The role of kinetics of water and amide bonding in protein stability. Soft Matter 2008,4, (2),328-336.
    40. Knight, D. P.; Vollrath, F., Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 2001,88, (4),179-182.
    41. Chen, X.; Huang, Y. F.; Shao, Z. Z.; Huang, Y.; Zhou, P.; Knight, D. P.; Vollrath, E, Function of potassium in spinning process of spider Nephila. Chemical Journal of Chinese Universities-Chinese 2004,25, (6),1160-1163.
    42. Zhou, L.; Chen, X.; Shao, Z. Z.; Huang, Y. F.; Knight, D. P., Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B 2005,109, (35),16937-16945.
    43. Dicko, C.; Kenney, J. M.; Knight, D.; Vollrath, E, Transition to a beta-sheet-rich structure in spidroin in vitro:The effects of pH and cations. Biochemistry 2004,43, (44),14080-14087.
    44. Gosline, J. M.; Guerette, P. A.; Ortlepp, C. S.; Savage, K. N., The mechanical design of spider silks:From fibroin sequence to mechanical function. Journal Of Experimental Biology 1999, 202, (23),3295-3303.
    45. Shao, Z. Z.; Vollrath, F., Materials:Surprising strength of silkworm silk. Nature 2002,418, (6899),741-741.
    46. Liu, Y.; Sponner, A.; Porter, D.; Vollrath, E, Proline and processing of spider silks. Biomacromolecules 2008,9, (1),116-121.
    47. Vollrath, F.; Madsen, B.; Shao, Z. Z., The effect of spinning conditions on the mechanics of a spider's dragline silk. Proceedings Of The Royal Society Of London Series B-Biological Sciences 2001,268, (1483),2339-2346.
    48. Kubik, S., High-performance fibers from spider silk. Angewandte Chemie-International Edition 2002,41, (15),2721-2723.
    49. Liu, Y.; Shao, Z. Z.; Vollrath, E, Elasticity of spider silks. Biomacromolecules 2008,9, (7), 1782-1786.
    50. Zhou, H. J.; Zhang, Y, Hierarchical chain model of spider capture silk elasticity. Physical Review Letters 2005,94, (2),028104.
    51. Porter, D.; Vollrath, E, Silk as a Biomimetic Ideal for Structural Polymers. Advanced Materials 2009,21, (4),487-492.
    52. Sinsawat, A.; Putthanarat, S.; Magoshi, Y.; Pachter, R.; Eby, R. K., The crystal modulus of silk (Bombyx mori). Polymer 2003,44, (3),909-910.
    53. Sinsawat, A.; Putthanarat, S.; Magoshi, Y.; Pachter, R.; Eby, R. K., X-ray diffraction and computational studies of the modulus of silk (Bombyx mori). Polymer 2002,43, (4), 1323-1330.
    54. Porter, D.; Vollrath, F.; Shao, Z., Predicting the mechanical properties of spider silk as a model nanostructured polymer. European Physical Journal E 2005,16, (2),199-206.
    55. Becker, N.; Oroudjev, E.; Mutz, S.; Cleveland, J. P.; Hansma, P. K.; Hayashi, C. Y; Makarov, D. E.; Hansma, H. G., Molecular nanosprings in spider capture-silk threads. Nature Materials 2003,2, (4),278-283.
    56. Ebenstein, D. M.; Wahl, K. J., Anisotropic nanomechanical properties of Nephila clavipes dragline silk. Journal Of Materials Research 2006,21, (8),2035-2044.
    57. Vollrath, F.; Porter, D., Spider silk as archetypal protein elastomer. Soft Matter 2006,2, (5), 377-385.
    58. Liu, Y.; Shao, Z. Z.; Vollrath, E, Extended wet-spinning can modify spider silk properties. Chemical Communications 2005, (19),2489-2491.
    59. Madsen, B.; Shao, Z. Z.; Vollrath, E, Variability in the mechanical properties of spider silks on three levels:interspecific, intraspecific and intraindividual. International Journal of Biological Macromolecules 1999,24, (2-3),301-306.
    60. Riekel, C.; Muller, M.; Vollrath, E, In situ X-ray diffraction during forced silking of spider silk. Macromolecules 1999,32, (13),4464-4466.
    61. Thiel, B. L.; Viney, C., Spider major ampullate silk (drag line):Smart composite processing based on imperfect crystals. Journal of Microscopy-Oxford 1997,185,179-187.
    62. Ortlepp, C. S.; Gosline, J. M., Consequences of forced silking. Biomacromolecules 2004,5, (3),727-731.
    63. Perez-Rigueiro, J.; Elices, M.; Plaza, G.; Real, J. I.; Guinea, G. V., The effect of spinning forces on spider silk properties. Journal Of Experimental Biology 2005,208, (14),2633-2639.
    64. Chen, X.; Shao, Z. Z.; Vollrath, E, The spinning processes for spider silk. Soft Matter 2006,2, (6),448-451.
    65. Khan, M.; Morikawa, H.; Gotoh, Y.; Miura, M.; Ming, Z.; Sato, Y.; Iwasa, M., Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. International Journal Of Biological Macromolecules 2008,42, (3), 264-270.
    66. Yang, Y.; Chen, X.; Shao, Z. Z.; Zhou, P.; Porter, D.; Knight, D. P.; Vollrath, E, Toughness of spider silk at high and low temperatures. Advanced Materials 2005,17, (1),84-88.
    67. Glisovic, A.; Salditt, T., Temperature dependent structure of spider silk by X-ray diffraction. Applied Physics A-Materials Science & Processing 2007,87, (1),63-69.
    68. Martel, A.; Burghammer, M.; Davies, R. J.; Riekel, C., Thermal Behavior of Bombyx mori silk:Evolution of crystalline parameters, molecular structure, and mechanical properties. Biomacromolecules 2007,8, (11),3548-3556.
    69. Work, R. W.; Morosoff, N., A Physicochemical Study of the Supercontraction of Spider Major Ampullate Silk Fibers. Textile Research Journal 1982,52, (5),349-356.
    70. Parkhe, A. D.; Seeley, S. K.; Gardner, K.; Thompson, L.; Lewis, R. V, Structural studies of spider silk proteins in the fiber. Journal of Molecular Recognition 1997,10, (1),1-6.
    71. Yang, Z. T.; Liivak, O.; Seidel, A.; La Verde, G.; Zax, D. B.; Jelinski, L. W., Supercontraction and backbone dynamics in spider silk:C-13 and H-2 NMR studies. Journal of the American Chemical Society 2000,122, (37),9019-9025.
    72. Shao, Z. Z.; Vollrath, F., The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 1999,40, (7),1799-1806.
    73. Schafer, A.; Vehoff, T.; Glisovic, A.; Salditt, T, Spider silk softening by water uptake:an AFM study. European Biophysics Journal With Biophysics Letters 2008,37, (2),197-204.
    74. Vehoff, T.; Glisovic, A.; Schollmeyer, H.; Zippelius, A.; Salditt, T., Mechanical properties of spider dragline silk:Humidity, hysteresis, and relaxation. Biophysical Journal 2007,93, (12), 4425-4432.
    75. Perez-Rigueiro, J.; Viney, C.; Llorca, J.; Elices, M., Mechanical properties of silkworm silk in liquid media. Polymer 2000,41, (23),8433-8439.
    76. Shao, Z. Z.; Young, R. J.; Vollrath, F., The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules 1999,24, (2-3),295-300.
    77. Gosline, J. M.; Denny, M. W.; Demont, M. E., Spider Silk as Rubber. Nature 1984,309, (5968),551-552.
    78. Plaza, G. R.; Guinea, G. V.; Perez-Rigueiro, J.; Elices, M., Thermo-hygro-mechanical behavior of spider dragline silk:Glassy and rubbery states. Journal Of Polymer Science Part B-Polymer Physics 2006,44, (6),994-999.
    79. Work, R. W., Viscoelastic Behavior and Wet Supercontraction of Major Ampullate Silk Fibers of Certain Orb-Web-Building Spiders (Araneae). Journal of Experimental Biology 1985,118, 379-404.
    80. Tsukada, M.; Kato, H.; Freddi, G.; Kasai, N.; Ishikawa, H., Structural changes and dyeability of silk fibroin fiber following shrinkage in neutral salt solution. Journal Of Applied Polymer Science 1994,51, (4),619-624.
    81. Guinea, G. V.; Elices, M.; Perez-Rigueiro, J.; Plaza, G. R., Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. Journal Of Experimental Biology 2005,208, (1),25-30.
    82. Liu, Y.; Shao, Z. Z.; Vollrath, F., Relationships between supercontraction and mechanical properties of spider silk. Nature Materials 2005,4, (12),901-905.
    83. Grubb, D. T.; Ji, G. D., Molecular chain orientation in supercontracted and re-extended spider silk. International Journal of Biological Macromolecules 1999,24, (2-3),203-210.
    84. Glisovic, A.; Vehoff, T.; Davies, R. J.; Salditt, T., Strain dependent structural changes of spider dragline silk. Macromolecules 2008,41, (2),390-398.
    85. Simmons, A. H.; Michal, C. A.; Jelinski, L. W., Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996,271, (5245),84-87.
    86. Eles, P. T.; Michal, C. A., Strain dependent local phase transitions observed during controlled supercontraction reveal mechanisms in spider silk. Macromolecules 2004,37, (4),1342-1345.
    87. Bell, F. I.; McEwen, I. J.; Viney, C., Fibre science-Supercontraction stress in wet spider dragline. Nature 2002,416, (6876),37-37.
    88. Guinea, G. V.; Elices, M.; Perez-Rigueiro, J.; Plaza, G., Self-tightening of spider silk fibers induced by moisture. Polymer 2003,44, (19),5785-5788.
    89. Savage, K. N.; Guerette, P. A.; Gosline, J. M., Supercontraction stress in spider webs. Biomacromolecules 2004,5, (3),675-679.
    90. Um, I. C.; Ki, C. S.; Kweon, H. Y.; Lee, K. G.; Ihm, D. W.; Park, Y. H., Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament. International Journal of Biological Macromolecules 2004,34, (1-2),107-119.
    91. Leng, B.; Huang, L.; Shao, Z., Inspiration from Natural Silks and Their Proteins. In Advances In Chemical Engineering, Koopmans, R. J., Ed. Academic Press, Elsevier Inc.:2009; Vol.35, pp 119-160.
    92. Fu, C. J.; Shao, Z. Z.; Vollrath, F., Animal silks:their structures, properties and artificial production. Chemical Communications 2009,6515-6529.
    93. Sashina, E. S.; Bochek, A. M.; Novoselov, N. P.; Kirichenko, D. A., Structure and solubility of natural silk fibroin. Russian Journal Of Applied Chemistry 2006,79, (6),869-876.
    94. Holland, C.; Terry, A. E.; Porter, D.; Vollrath, F., Natural and unnatural silks. Polymer 2007, 48, (12),3388-3392.
    95. Zarkoob, S.; Eby, R. K.; Reneker, D. H.; Hudson, S. D.; Ertley, D.; Adams, W. W., Structure and morphology of electrospun silk nanofibers. Polymer 2004,45, (11),3973-3977.
    96. Zhao, C. H.; Yao, J. M.; Masuda, H.; Kishore, R.; Asakura, T., Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers 2003,69, (2),253-259.
    97. Ohgo, K.; Zhao, C. H.; Kobayashi, M.; Asakura, T., Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 2003,44, (3),841-846.
    98. Yao, J. M.; Masuda, H.; Zhao, C. H.; Asakura, T., Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 2002, 35, (1),6-9.
    99. Lock, R. L. Process for Spinning Polypeptide Fibers. US5171505,1992.
    100. Ha, S. W.; Tonelli, A. E.; Hudson, S. M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 2005,6, (3), 1722-1731.
    101. Freddi, G.; Pessina, G.; Tsukada, M., Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. International Journal of Biological Macromolecules 1999, 24, (2-3),251-263.
    102. Phillips, D. M.; Drummy, L. F.; Conrady, D. G.; Fox, D. M.; Naik, R. R.; Stone, M. O.; Trulove, P. C.; De Long, H. C.; Mantz, R. A., Dissolution and regeneration of Bombyx mori Silk fibroin using ionic liquids. Journal Of The American Chemical Society 2004,126, (44), 14350-14351.
    103.Phillips, D. M.; Drummy, L. F.; Naik, R. R.; De Long, H. C.; Fox, D. M.; Trulove, P. C.; Mantz, R. A., Regenerated silk fiber wet spinning from an ionic liquid solution. Journal Of Materials Chemistry 2005,15, (39),4206-4208.
    104.Prince, J. T.; McGrath, K. P.; Digirolamo, C. M.; Kaplan, D. L., Construction, Cloning, And Expression Of Synthetic Genes Encoding Spider Dragline Silk. Biochemistry 1995,34, (34), 10879-10885.
    105.Fahnestock, S. R.; Yao, Z.; Bedzyk, L. A., Microbial production of spider silk proteins. Reviews in Molecular Biotechnology 2000,74,105-119.
    106.SHINGO, H.; HIROMITSU, M. Silk Thread Containing Spider Thread Protein and Silkworm Producing the Silk Thread. EP1712561,2006.
    107.Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh, E. A.; Soares, J. W.; Karatzas, C. N., Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002,295, (5554),472-476.
    108.Huang, J.; Foo, C. W. P.; Kaplan, D. L., Biosynthesis and applications of silk-like and collagen-like proteins. Polymer Reviews 2007,47, (1),29-62.
    109.Zhu, Z. H.; Ohgo, K. S.; Watanabe, R.; Takezawa, T.; Asakura, T. S., Preparation and characterization of regenerated Bombyx mori silk fibroin fiber containing recombinant cell-adhesive proteins; nonwoven fiber and monofilament. Journal of Applied Polymer Science 2008,109, (5),2956-2963.
    110. Wang, M.; Jin, H. J.; Kaplan, D. L.; Rutledge, G. C., Mechanical properties of electrospun silk fibers. Macromolecules 2004,37, (18),6856-6864.
    111.Um, I. C.; Kweon, H. Y.; Lee, K. G; Ihm, D. W.; Lee, J. H.; Park, Y. H., Wet spinning of silk polymer-Ⅰ. Effect of coagulation conditions on the morphological feature of filament. International Journal of Biological Macromolecules 2004,34, (1-2),89-105.
    112.Seidel, A.; Liivak, O.; Calve, S.; Adaska, J.; Ji, G. D.; Yang, Z. T.; Grubb, D.; Zax, D. B.; Jelinski, L. W., Regenerated spider silk:Processing, properties, and structure. Macromolecules 2000,33, (3),775-780.
    113. Fahnestock, S. R. Recombinantly Produced Spider Silk. US6268169,2001.
    114. Yazawa, S.,J Chem Soc Jpn 1960,63,1428.
    115. Ishizaka H, W. Y, Ishida K,Fukumoto O,J Seric Sci Jpn 1989,58,87.
    116. Matsumoto, K.; Uejima, H.; Iwasaki, T.; Sano, Y.; Sumino, H., Studies on regenerated protein fibers.3. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method. Journal Of Applied Polymer Science 1996,60, (4),503-511.
    117. Ha, S. W.; Park, Y. H.; Hudson, S. M., Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules 2003,4, (3),488-496.
    118. Zhou, G. Q.; Shao, Z. Z.; Knight, D. P.; Yan, J. P.; Chen, X., Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts. Advanced Materials 2009,21, (3),366-370.
    119. Ki, C. S.; Kim, J. W.; Oh, H. J.; Lee, K. H.; Park, Y. H., The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. International Journal Of Biological Macromolecules 2007,41, (3),346-353.
    120. Lock, R. L. Process for Making Silk Fibroin Fibers. US5252285,1993.
    121. Plaza, G. R.; Corsini, P.; Perez-Rigueiro, J.; Marsano, E.; Guinea, G. V.; Elices, M., Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical properties. Journal of Applied Polymer Science 2008,109, (3),1793-1801.
    122. Postema, A. R.; Smith, P.; English, A. D., Ultra-Drawing Of Polyamides-The Hydrogen-Bond Barrier. Polymer Communications 1990,31, (12),444-447.
    123. Lefevre, T.; Boudreault, S.; Cloutier, C.; Pezolet, M., Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders. Biomacromolecules 2008,9, (9),2399-2407.
    124. Knight, D. P.; Vollrath, F., Liquid crystals and flow elongation in a spider's silk production line. Proceedings of the Royal Society of London Series B-Biological Sciences 1999,266, (1418),519-523.
    1. Sezutsu, H.; Yukuhiro, K., Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. Journal Of Molecular Evolution 2000,51, (4), 329-338.
    2. Tsukada, M.; Freddi, G.; Nagura, M.; Ishikawa, H.; Kasai, N., Structural-Changes Of Silk Fibers Induced By Heat-Treatment. Journal Of Applied Polymer Science 1992,46, (11),1945-1953.
    3. Kawahara, Y.; Shioya, M., Mechanical properties of tussah silk fibers treated with methacrylamide. Journal of Applied Polymer Science 1997,65, (10),2051-2057.
    4. Perez-Rigueiro, J.; Elices, M.; Llorca, J.; Viney, C., Effect of degumming on the tensile properties of silkworm (Bombyx mori) silk fiber. Journal of Applied Polymer Science 2002,84, (7), 1431-1437.
    5. Martel, A.; Burghammer, M.; Davies, R. J.; Riekel, C., Thermal Behavior of Bombyx mori silk: Evolution of crystalline parameters, molecular structure, and mechanical properties. Biomacromolecules 2007,8, (11),3548-3556.
    6. Madsen, B.; Shao, Z. Z.; Vollrath, F., Variability in the mechanical properties of spider silks on three levels:interspecific, intraspecific and intraindividual. International Journal of Biological Macromolecules 1999,24, (2-3),301-306.
    7. Shao, Z. Z.; Vollrath, F., Materials:Surprising strength of silkworm silk. Nature 2002,418, (6899), 741-741.
    8. Plaza, G. R.; Guinea, G. V.; Perez-Rigueiro, J.; Elices, M., Thermo-hygro-mechanical behavior of spider dragline silk:Glassy and rubbery states. Journal Of Polymer Science Part B-Polymer Physics 2006,44, (6),994-999.
    9. Leng, B.; Huang, L.; Shao, Z., Inspiration from Natural Silks and Their Proteins. In Advances In Chemical Engineering, Koopmans, R. J., Ed. Academic Press, Elsevier Inc.:2009; Vol.35, pp 119-160.
    10. Fu, C. J.; Shao, Z. Z.; Vollrath, F., Animal silks:their structures, properties and artificial production. Chemical Communications 2009,6515-6529.
    11. Freddi, G.; Gotoh, Y.; Mori, T.; Tsutsui, I.; Tsukada, M., Chemical-structure and physical-properties of antheraea-assama silk. Journal Of Applied Polymer Science 1994,52, (6), 775-781.
    12. Ortlepp, C. S.; Gosline, J. M., Consequences of forced silking. Biomacromolecules 2004,5, (3), 727-731.
    13. Li, M.; Tao, W.; Kuga, S.; Nishiyama, Y., Controlling Molecular Conformation of Regenerated Wild Silk Fibroin by Aqueous Ethanol Treatment. Polymers For Advanced Technologies 2003,14, 694-698.
    14. Rousseau, M. E.; Beaulieu, L.; Lefevre, T.; Paradis, J.; Asakura, T.; Pezolet, M., Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. Biomacromolecules 2006,7, (9),2512-2521.
    15. Shao, Z.; Vollrath, F.; Sirichaisit, J.; Young, R. J., Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer 1999,40, (10),2493-2500.
    16. Shao, Z. Z.; Young, R. J.; Vollrath, F., The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules 1999,24, (2-3),295-300.
    17. Vollrath, F.; Porter, D., Spider silk as archetypal protein elastomer. Soft Matter 2006,2, (5), 377-385.
    18. Perez-Rigueiro, J.; Elices, M.; Plaza, G.; Real, J. I.; Guinea, G. V., The effect of spinning forces on spider silk properties. Journal Of Experimental Biology 2005,208, (14),2633-2639.
    19. Asakura, T.; Umemura, K.; Nakazawa, Y.; Hirose, H.; Higham, J.; Knight, D., Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 2007,8, (1),175-181.
    20. Vollrath, F.; Madsen, B.; Shao, Z. Z., The effect of spinning conditions on the mechanics of a spider's dragline silk. Proceedings Of The Royal Society Of London Series B-Biological Sciences 2001,268, (1483),2339-2346.
    21. Liu, Y; Shao, Z. Z.; Vollrath, F., Elasticity of spider silks. Biomacromolecules 2008,9, (7), 1782-1786.
    22.杨王玥;强文江,材料力学行为.化学工业出版社:北京,2009;p 243.
    23. Hearle, J. W. S.; Lomas, B.; Cooke, W. D., Atlas of Fibre Fracture and Damage to Textiles.2nd ed.; Woodhead:Abington,1998.
    24. Perez-Rigueiro, J.; Viney, C.; Llorca, J.; Elices, M., Mechanical properties of silkworm silk in liquid media. Polymer 2000,41, (23),8433-8439.
    25. Moseley, W. W., Effect of Internal Structure and Local Defects on Fiber Strength. Journal Of Applied Polymer Science 1963,7,187-201.
    1. Work, R. W., Viscoelastic Behavior and Wet Supercontraction of Major Ampullate Silk Fibers of Certain Orb-Web-Building Spiders (Araneae). Journal of Experimental Biology 1985,118, 379-404.
    2. Work, R. W.; Morosoff, N., A Physicochemical Study of the Supercontraction of Spider Major Ampullate Silk Fibers. Textile Research Journal 1982,52, (5),349-356.
    3. Parkhe, A. D.; Seeley, S. K.; Gardner, K.; Thompson, L.; Lewis, R. V., Structural studies of spider silk proteins in the fiber. Journal of Molecular Recognition 1997,10, (1),1-6.
    4. Yang, Z. T.; Liivak,O.; Seidel, A.; La Verde, G.; Zax, D. B.; Jelinski, L. W., Supercontraction and backbone dynamics in spider silk:C-13 and H-2 NMR studies. Journal of the American Chemical Society 2000,122, (37),9019-9025.
    5. Holland, G. P.; Lewis, R. V.; Yarger, J. L., WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. Journal of the American Chemical Society 2004,126, (18),5867-5872.
    6. Vollrath, F.; Porter, D., Spider silk as archetypal protein elastomer. Soft Matter 2006,2, (5), 377-385.
    7. Grubb, D. T.; Ji, G. D., Molecular chain orientation in supercontracted and re-extended spider silk. International Journal of Biological Macromolecules 1999,24, (2-3),203-210.
    8. Glisovic, A.; Vehoff, T.; Davies, R. J.; Salditt, T., Strain dependent structural changes of spider dragline silk. Macromolecules 2008,41, (2),390-398.
    9. Simmons, A. H.; Michal, C. A.; Jelinski, L. W., Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996,271, (5245),84-87.
    10. Eles, P. T.; Michal, C. A., Strain dependent local phase transitions observed during controlled supercontraction reveal mechanisms in spider silk. Macromolecules 2004,37, (4),1342-1345.
    11. Bell, F. I.; McEwen, I. J.; Viney, C., Fibre science-Supercontraction stress in wet spider dragline. Nature 2002,416, (6876),37-37.
    12. Guinea, G. V.; Elices, M.; Perez-Rigueiro, J.; Plaza, G., Self-tightening of spider silk fibers induced by moisture. Polymer 2003,44, (19),5785-5788.
    13. Savage, K. N.; Guerette, P. A.; Gosline, J. M., Supercontraction stress in spider webs. Biomacromolecules 2004,5, (3),675-679.
    14. Um, I. C.; Ki, C. S.; Kweon, H. Y.; Lee, K. G.; Ihm, D. W.; Park, Y. H., Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament. International Journal of Biological Macromolecules 2004,34, (1-2),107-119.
    15. Guinea, G. V.; Elices, M.; Perez-Rigueiro, J.; Plaza, G. R., Stretching of supercontracted fibers:a link between spinning and the variability of spider silk. Journal Of Experimental Biology 2005, 208, (1),25-30.
    16. Perez-Rigueiro, J.; Elices, M.; Guinea, G. V., Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 2003,44, (13),3733-3736.
    17. Plaza, G. R.; Guinea, G. V.; Perez-Rigueiro, J.; Elices, M., Thermo-hygro-mechanical behavior of spider dragline silk:Glassy and rubbery states. Journal Of Polymer Science Part B-Polymer Physics 2006,44, (6),994-999.
    18. Vehoff, T.; Glisovic, A.; Schollmeyer, H.; Zippelius, A.; Salditt, T., Mechanical properties of spider dragline silk:Humidity, hysteresis, and relaxation. Biophysical Journal 2007,93, (12), 4425-4432.
    19. Liu, Y.; Sponner, A.; Porter, D.; Vollrath, F., Proline and processing of spider silks. Biomacromolecules 2008,9, (1),116-121.
    20. Liu, Y.; Shao, Z. Z.; Vollrath, F., Relationships between supercontraction and mechanical properties of spider silk. Nature Materials 2005,4, (12),901-905.
    21. Liu, Y.; Shao, Z. Z.; Vollrath, F., Elasticity of spider silks. Biomacromolecules 2008,9, (7), 1782-1786.
    22. Porter, D.; Vollrath, F.; Shao, Z., Predicting the mechanical properties of spider silk as a model nanostructured polymer. European Physical Journal E 2005,16, (2),199-206.
    23. Jelinski, L. W.; Blye, A.; Liivak, O.; Michal, C.; LaVerde, G.; Seidel, A.; Shah, N.; Yang, Z. T., Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. International Journal of Biological Macromolecules 1999,24, (2-3),197-201.
    24. Plaza, G. R.; Corsini, P.; Perez-Rigueiro, J.; Marsano, E.; Guinea, G. V.; Elices, M., Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical progerties. Journal of Applied Polymer Science 2008,109, (3),1793-1801.
    25. Fu, C. J.; Porter, D.; Shao, Z. Z., Moisture Effects on Antheraea pernyi Silk's Mechanical Property. Macromolecules 2009,42, (20),7877-7880.
    26. Shao, Z. Z.; Vollrath, F., Materials:Surprising strength of silkworm silk. Nature 2002,418, (6899), 741-741.
    27. Porter, D., Group Interaction Modelling of Polymer Properties. Marcel Dekker:New York,1995.
    28. Shao, Z. Z.; Young, R. J.; Vollrath, F., The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules 1999,24, (2-3),295-300.
    29. Yazawa, S., J Chem Soc Jpn 1960,63,1428.
    30. Zhou, G. Q.; Shao, Z. Z.; Knight, D. P.; Yan, J. P.; Chen, X., Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts. Advanced Materials 2009,21, (3),366-370.
    31. Ha, S. W.; Tonelli, A. E.; Hudson, S. M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 2005,6, (3),1722-1731.
    32. Guinea, G. V.; Perez-Rigueiro, J.; Plaza, G. R.; Elices, M., Volume constancy during stretching of spider silk. Biomacromolecules 2006,7, (7),2173-2177.
    33. Chen, X.; Shao, Z. Z.; Knight, D. P.; Vollrath, F., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function And Bioinformatics 2007,68, (1),223-231.
    34. Tsukada, M.; Freddi, G.; Monti, P.; Bertoluzza, A.; Kasai, N., Structure and molecular-conformation of tussah silk fibroin films-effect of methanol. Journal Of Polymer Science Part B-Polymer Physics 1995,33, (14),1995-2001.
    35. Freddi, G.; Monti, P.; Nagura, M.; Gotoh, Y; Tsukada, M., Structure and molecular conformation of tussah silk fibroin films:effect of heat treatment. Journal Of Polymer Science Part B-Polymer Physics 1997,35, (5),841-847.
    36. Shao, Z. Z.; Vollrath, F., The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 1999,40, (7),1799-1806.
    37. Schafer, A.; Vehoff, T.; Glisovic, A.; Salditt, T., Spider silk softening by water uptake:an AFM study. European Biophysics Journal With Biophysics Letters 2008,37, (2),197-204.
    38. Perez-Rigueiro, J.; Viney, C.; Llorca, J.; Elices, M., Mechanical properties of silkworm silk in liquid media. Polymer 2000,41, (23),8433-8439.
    39. Hu, X.; Kaplan, D.; Cebe, P., Effect of water on the thermal properties of silk fibroin. Thermochimica Acta 2007,461, (1-2),137-144.
    40. Agarwal, N.; Hoagland, D. A.; Farris, R. J., Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films. Journal of Applied Polymer Science 1997,63, (3), 401-410.
    41. Park, Y.; Ko, J. Y.; Ahn, T. K.; Choe, S., Moisture effects on the glass transition and the low temperature relaxations in semiaromatic polyamides. Journal of Polymer Science Part B-Polymer Physics 1997,35, (5),807-815.
    42. Miri, V.; Persyn, O.; Lefebvre, J. M.; Seguela, R., Effect of water absorption on the plastic deformation behavior of nylon 6. European Polymer Journal 2009,45, (3),757-762.
    43. Ellis, T. S.; Karasz, F. E., Interaction of Epoxy-Resins with Water-the Depression of Glass-Transition Temperature. Polymer 1984,25, (5),664-669.
    44. Tsukada, M.; Freddi, G.; Kasai, N.; Monti, P., Structure and molecular conformation of tussah silk fibroin films treated with water-methanol solutions:Dynamic mechanical and thermomechanical behavior. Journal Of Polymer Science Part B-Polymer Physics 1998,36, (15),2717-2724.
    45.姚穆,纺织材料学 第3版ed.;中国纺织出版社:北京,2009;p645.
    46. Grubb, D. T.; Jelinski, L. W., Fiber morphology of spider silk:The effects of tensile deformation. Macromolecules 1997,30, (10),2860-2867.
    47. Drummy, L. F.; Farmer, B. L.; Naik, R. R., Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter 2007,3, (7),877-882.
    48. van Beek, J. D.; Hess, S.; Vollrath, F.; Meier, B. H., The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proceedings of the National Academy of Sciences of the United States of America 2002,99, (16),10266-10271.
    49. Jenkins, J. E.; Creager, M. S.; Lewis, R. V.; Holland, G. P.; Yarger, J. L., Quantitative Correlation between the Protein Primary Sequences and Secondary Structures in Spider Dragline Silks. Biomacromolecules 2010,11, (1),192-200.
    50. Sezutsu, H.; Yukuhiro, K., Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. Journal Of Molecular Evolution 2000,51, (4), 329-338.
    51. Zhou, C. Z.; Confalonieri, F.; Medina, N.; Zivanovic, Y.; Esnault, C.; Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R.; Li, Z. G., Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research 2000,28, (12),2413-2419.
    52. Guerette, P. A.; Ginzinger, D. G.; Weber, B. H. F.; Gosline, J. M., Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 1996,272, (5258),112-115.
    53. Beckwitt, R.; Arcidiacono, S., Sequence Conservation in the C-Terminal Region of Spider Silk Proteins (Spidroin) from Nephila-Clavipes (Tetragnathidae) and Araneus-Bicentenarius (Araneidae). Journal of Biological Chemistry 1994,269, (9),6661-6663.
    54. Hinman, M. B.; Lewis, R. V, Isolation of a Clone Encoding a 2nd Dragline Silk Fibroin-Nephila-Clavipes Dragline Silk Is a 2-Protein Fiber. Journal of Biological Chemistry 1992,267, (27),19320-19324.
    55. Krasnov, I.; Diddens, I.; Hauptmann, N.; Helms, G.; Ogurreck, M.; Seydel, T.; Funari, S. S.; Muller, M., Mechanical properties of silk:Interplay of deformation on macroscopic and molecular length scales. Physical Review Letters 2008,1, (4),048104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700