用户名: 密码: 验证码:
临江河回水区富营养化预测及生态浮床治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三峡水库的形成,库区次级河流回水区水文条件发生变化,使得水体对污染物的扩散作用和自净能力大大降低,从而导致水质恶化,尤其是氮、磷等营养盐的聚积加剧了次级河流回水区水体富营养化。论文针对次级河流回水区水环境问题研究较少的现状,以长江次级河流之一的临江河回水区为研究对象,对其富营养化问题进行研究。论文首先研究了临江河回水区富营养化的主要控制因子,根据主控因子的研究结果进一步对其富营养化进行预测,并对预测结果进行分析。为了达到消除富营养化威胁的目的,在掌握了其污染过程和自净能力的基础上,确定采用生态浮床技术原位治理临江河回水区污染水体的技术措施,论文分别就生态浮床的净化效果、植物的氮磷吸收能力和动力学模式进行了研究。
     论文的主要研究内容与结论如下:
     ①论文采用因子分析法对叶绿素a、流速等9项水质指标进行分析,确定了水温、透明度、TN、TP、COD和叶绿素a浓度6个水质指标为临江河回水区富营养化的主控因子。进一步对6个主控因子进行多元回归分析,结果表明,叶绿素a浓度受水温、TN、TP的影响较大,消减水体中的氮磷可使水体中叶绿素a浓度降低。
     ②在临江河回水区富营养化主控因子研究的基础上,利用神经网络技术建立临江河回水区富营养化预测模型,利用模型对不同氮磷浓度水平下的水体营养状态进行预测,结果表明:在当前氮磷浓度水平上,去除水体中40%的氮磷可使水体营养状态由中度富营养转变为轻度富营养;当去除比例达70%时,水体转变为中营养状态,从而可消除富营养化的威胁。
     ③论文利用水质模型对临江河回水区污染过程及自净能力进行量化,结果显示,污染物在进入临江河回水区后8h后才能达到稳态,扩散过程缓慢造成了氮、磷营养盐聚积,加剧了水体富营养化;回水区水体自净作用可使水体中COD、TN、NH3-N和TP浓度降低11.98%、12.25%、13.98%和11.59%,对于临江河回水区的重污染水体,其净化能力有限,故仍需对临江河回水区的污染进行治理。
     ④为了研究生态浮床对临江河回水区污染水体的净化效果,在临江河回水区现场进行了美人蕉、风车草、菖蒲和香根草浮床的净化试验,试验结果表明,4种浮床中美人蕉浮床的净化效果最好,故在临江河回水区污染治理中可优先考虑选用美人蕉浮床。在此基础上,利用富营养化预测模型对其应用效果进行预测,结果表明:当临江河回水区浮床栽种面积为0.3km2时,水体的营养状态可由中度富营养转变为轻度富营养;当浮床栽种面积为0.6km2时,水体营养状态可由中度富营养转变为中营养,表明生态浮床技术可以有效地控制临江河回水区富营养化。
     ⑤4种浮床栽培植物生长特性及吸收氮磷能力的研究结果表明:4种植物在生长过程中,生长速率均随时间的变化呈现出低→高→低的二次曲线变化趋势,移栽后的60~90d为植物的快速生长期;通过两个试验阶段的植物吸收贡献分析可知,4种植物的氮吸收量占浮床系统总去除量的比例在18.1%~35.6%之间,磷吸收量占浮床系统总去除量的比例在36.3%~52.1%之间,表明植物吸收是浮床系统氮、磷去除的重要途径。
     ⑥针对浮床系统对污染物的去除速率具有随着运行时间变化的特点,根据反应器动力学理论研究得出浮床系统的COD、TN和TP去除动力学方程。由动力学方程可知,浮床系统中COD降解反应可视为一级反应,TN和TP的去除反应表现得较为复杂。
With formation of The Three Gorges Reservoir, the hydrological condition variations of branch backwater regions reduce the diffusion effect of pollutants and weaken self-purification capacity of backwater region, then lead to water quality deterioration, especially that accumulation of nutrient salts will aggravate eutrophication. Because the researches on branch backwater regions was relatively less, taking Linjiang river which is a branch of Yangtze River as research object to study the eutrophication problem of Linjiang river backwater regions. Main influencing factors of Linjiang river backwater region eutrophication were studied, then, eutrophication forecasting model of Linjiang backwater region was built, and analyze the forecasting results. For the sake of controlling eutrophication, the pollution processes and self-purification capacity of Linjiang river backwater region was simulated. Based on the simulating results, ecological floating bed technology was adopted to control Linjiang river backwater region eutrophication.
     ①In order to investigate the main influencing factors of Linjiang river backwater region, nine water quality indexes, include water temperature, diaphaneity, velocity of flow, TN, TP, COD, Chl-a, pH, DO, were monitored, then factor analysis method was used to analyze these indexes. Studying result showed that water temperature, diaphaneity, TN, TP, COD, chlorophyll-a were main influencing factors of Linjiang river backwater region eutrophication. Multiple regression analysis results of six main influencing factors showed that chlorophyll-a concentration had had significant correlation with water temperature, TN and TP, decreasing content of TN and TP can achieve the goal of reducing chlorophyll-a concentration.
     ②Based on the studying results of main influencing factors, BP neural network model was utilized to forecasting water nutritional status of Linjiang river backwater region on different nitrogen and phosphorus levels, the forecasting results indicated, when removing rate of nitrogen and phosphorus was 40%, chlorophyll-a concentration reduce from 55.591 mg·m-3 to 23.314 mg·m-3, water nutritional status convert from moderate eutrophication to mild eutrophication. When removing rate of nitrogen and phosphorus was 70%, chlorophyll-a concentration reduce to 9.127 mg·m-3, water nutritional status convert from moderate eutrophication to mesotrophy, so eliminating danger of eutrophication.
     ③Water quality model was used to analyze pollution processes and self-purification capacity of Linjiang river backwater region, results showed that, after pollutants discharged into water, pollutants concentration reached steady state eight hours later. Slow diffusing velocity result in accumulation of nitrogen and phosphorus. Self-purification of Linjiang river backwater region can remove 11.98 percent of COD, 12.25 percent of TN, 13.98 percent of NH3-N and 11.59 percent of TP. The self-purification capacity is far from enough for decontaminating heavy Pollution water of Linjiang river backwater region, so heavy polluted water of Linjiang river backwater region must be treated.
     ④For studying purification effect of ecological floating bed for Linjiang river heavily polluted water, ecological floating bed tester was built at the side of Linjiang river backwater region, study comparatively the purification effect of Canna indica, Acorus calamus Linn, Cyperous alternifoliu and Vetiver zizanioides floating bed system. Purification experimental results showed that four floating bed systems have good COD, TN and TP removal effect, and Canna indica floating bed system had the best removal effect among four floating-bed systems, so it can be applied to treat polluted water of Linjiang river backwater region. Forecasting model of eutrophication was used to predict practical application effect of ecological floating bed in Linjiang river backwater region. Forecasting results showed, when the area of floating bed was 0.6 km2 in Linjiang river backwater region, the forecasting value of chlorophyll-a concentration reduce to 9.68 mg·m-3, water nutritional status convert from moderate eutrophication to mesotrophy.
     ⑤Growth characteristics and absorbency to nitrogen and phosphorus of four plant species cultivated on floating-bed were studied comparatively based on purification experiments. During experimental process, plant growth rate present conic characters, the rapid growth period of plants was from sixty days to ninety days after planting. Nitrogen uptakes of four plants accounted from 18.1% to 35.6% of floating-bed system removal, and phosphorus uptakes occupied from 36.3% to 52.1%. Results showed that plant uptake is the important part of floating bed system nitrogen and phosphorus removal.
     ⑥According to the actual instance that pollutants removal rate of ecological floating bed system was not steady, based on reactor kinetics theory, the relation between COD, TN, TP removal rate of floating bed system and effluent concentration was studied, the results showed that degradation reaction of COD was first order reaction, degradation reaction of TN, TP was complicated.
引文
[1]国家环保总局科技标准司.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社.2001.
    [2]金相灿.湖泊富营养化控制及管理技术[M].北京:中国环境科学出版社.2001.
    [3]邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社, 2007.
    [4]舒金华,黄文钮,吴延根.中国湖泊营养类型的分类研究[J].湖泊科学, 1996, 8(3):193~200.
    [5]刘连成.中国湖泊富营养化的现状分析[J].灾害学,1997,12(3):61~65.
    [6]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤, 2000,32(4):188~193.
    [7] FREEDMAN B. Environmental ecology [M]. Sandiego: Academic Press, 2002.
    [8] Dennis L. C. Peter J. V. Keith L. Modeling non - point source pollution in vadose zone with GIS [J]. Environmental Science and Technology.1997,8,2157~2175.
    [9] Boers. P. C. M. Nutrient Emissions from Agriculture in the Netherlands. Causes and Remedies [J ]. Water Science and Technology G.B .1996,33,183.
    [10] M.A.Imteaz. Modeling of lake eutrophication including artificial mixing and effects of bubbling operations on algal bloom. Ph.D.Thesis, Staitama University, Japan.1997.
    [11] OCED. Eutrophication of waters monitoring. assessment and control.OCED publication, Paris. 1982.
    [12]钟成华.三峡库区水体富营养化研究[D].四川:四川大学.2004.
    [13] V M Vaoncelos and E Pereira. Cyan bacteria diversity and toxicity in a wastewater treatment plant [J].Water Resource, 2001,35:1354~1357.
    [14] S P flgmacher, C Wiegand, A Oberemm, K A Beattie, E Krause, G A Codd and C E W Steinberg. Identification of an enzymatic ally formed glutathione conjugate of the cyan bacterial hepatotoxin microcrystal-LR: the first step of the detoxication [J]. Biochimicaet Biophysica Acta, 1998,1425:527~533.
    [15] A Boudrez, K Evens,M Beullens, E Waelkens, W Stalmans and MBonllen. Identification of MYPTI and NIPPI as subunits of protein phosphates in rat liver cytosol[J]. FEBS Letters,1999,455:175~178.
    [16] V R Beasley and R.R Stotts. Toxicokinetics of microcystin and dihydro microcyctin in Swine[J].Govt. Reports Announcements & Index,1994,19.
    [17] R E Guzman, P F Solter. Hepatic oxidative stress following prolonged sub lethal microystinLR exposure[J]. Toxicological Pathology,1999,27:582~588.
    [18]高建平,王珊玲.水体富营养化评价和防治的一些进展.农村生态环境[J]. 1989.89(3):56~60.
    [19]舒金华.我国湖泊富营养化程度评价方法的探讨.环境污染与防治[J]. 1990,12(5):2~7.
    [20]冯玉国.湖泊富营养化灰色评价模型及其应用[J].生态学杂志,1996,15(2):68~71.
    [21]杜宝汉,李永安.用灰色关联度模型评价湖泊富营养化[J],四川环境,1999,18(4):48~51.
    [22]李强.灰色动态模型在湖泊TN、TP贮蓄量预测中的应用[J].水资源保护,1998,98(2):23~26.
    [23]李祚泳,洪继华.模糊度概念用于湖泊富营养化评价[J].环境科学研究, 1991,4(2): 32~36.
    [24]刘首文,冯尚友.人工神经网络在湖泊富营养化评价中的应用研究[J].上海环境科学,1996,15(1):11~14.
    [25] Vollenweider R A. Input-Output Models with Special Reference to the Phosphorus Loading Concept in Limnology Schweizerische Zeits chrift Hydrol[J]. environmental quality, 1975,(37):53~84.
    [26] Steven C C. Long-term phenomenological model of phosphorus and oxygen for stratified lakes[J]. Water Research, ,1991,25(6): 707~715.
    [27] Cassell E A, Dorioz J M. Modeling phosphorus dynamics approaches[J]. Journal of Environmental Quality, 1998, 27(2):293~298.
    [28] Diederik T, Van D M.A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow, eutrophic systems[J]. Water Research, 1991,25(3):737~744.
    [29] Welch E B, Spyridakis D E, Shuster J I. Declining lake sediments phosphorus release and oxygen diversion[J]. Journal of Water Pollution Control Federation, 1986, 58(1):92~96.
    [30] Ahlgren I. Role of sediments in the process of recovery of a eutrophicated lake. In: Golterman H L(ed.), Interactions Between Sediments and Fresh Water. The Hague, 1977: 172~177.
    [31] Kamp N L. Modeling the temporal variation in sediment phosphorus fractions. In:Golterman H L(ed.), Interactions Between Sediments and Fresh Water The Hague, 1978: 277~285.
    [32] Lung W S, Canale R P, Freodman P L. Phosphorus models for eutrophic lakes[J]. Water Research, 1976,10(8): 1101~1114.
    [33]李文朝,尹澄清,陈开宁等.关于湖泊沉积物磷释放及其测定方法雏议.湖泊科学, 1999,11(4):296~302.
    [34] Malueg K W, Larsen D P, Schults D W, et al. A six year water, phosphorus and nitrogen budget of Shagawa Lake [J]. Journal of Environmental Quality, 1975 ,4(2): 236~242.
    [35] Helen B, Stephen J, John A N. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management[J]. Frrvironmental Science & Technology, 1996, 30(10): 1935~1942.
    [36] Bault J M. A model of phytoplankton development in the Lot River [France]: simulation of scenaries [J]. Water Research, 1998, 33(4):1065~1079.
    [37] JΦrgensen S E. Application of Ecological Modeling in Environmental Management, part A [J]. New York: Elsevier Scientific Publishing Company, 1983: 227~279.
    [38]刘元波,陈伟民.湖泊藻类动态模拟[J].湖泊科学, 2000, 12(2):171~176.
    [39] Di Toro. Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics [J]. Ecological Modelling,1980, 8(1):201~218.
    [40]屠清瑛,顾丁锡,尹澄清等.巢湖-富营养化研究[M].北京:中国科学技术出版社.1990: 101~125.
    [41] Chen C W, Orlob C T. Ecological simulation for aquatic environments [M]. In: Pattern B C (ed.), System Analysis and Simulation in Ecology. New York: Academic press.1975.
    [42] Janse J H. A mathematical model of the phosphorus cycle in lake Loosdrecht and simulation of additional measures [J]. Hydrobiologia, 1992, 133(1):119~136.
    [43] Nyholm N. A simulation model for phytoplankton growth and nutrient cycling in eutrophic shallow lakes [J]. Ecological Modeling, 1988, 4(3):279~310.
    [44] Robert I, Kees K, Lambertus L. Primary production estimation from continuous oxygen measurements in relation to external nutrient input [J]. Water Research, 1996, 30(3): 625~643.
    [45] Jorgensen S E, Mejer H, Frilis M. Examination of a Lake Model[J].Ecol Model, 1976(4):253~278.
    [46] Virtanen M, Koponen J, Dahlbo K,et al. Three-dimensional water quality-transport model compared with field observations[J].Ecol Model,1986, 31:185~199.
    [47] Menshutkin V V, Astrakhantsev G P, Yegorova N B, et al. Mathematical Modeling of the Evolution and Current Conditions of the Ladoga Lake Ecosystem[J]. Ecol Model, 1998,107:1~24.
    [48] Ronaldo Angelini, Miguel Petrere J. A Model for the Plankton System of the Broa Reservoir, Sao CarIos, Brazil [J]. Ecol Mode1,2000,126:131~137.
    [49] Menshutkin V V, Astrakhantsev G P, Yegorova N B, et al. Mathematical Modeling of the Evolution and Current Conditions of the Ladoga Lake Ecosystem[J].Ecol Model, 1998,107:1~24.
    [50]刘玉生,唐宗武,韩梅等.滇池富营养化生态动力学模型及其应用[J].环境科学研究,1991,4 (6):2~8.
    [51]蔡启铭.太湖环境生态研究[M].北京:气象出版社, 1998.
    [52]王国祥.若干人工调控措施对富营养化湖泊藻类种群的影响.环境科学,1999,20(2):71~74.
    [53]陈水勇.水体富营养化的形成、危害和防治.环境科学与技术,1999,(2):11~15.
    [54]丁吉震.CBS水体修复技术.洁净煤技术,2000,6(4):36~38.
    [55]李维炯,倪永珍.EM的研究与应用.生态学杂志,1995,14(5):58~62.
    [56]李正魁,濮培民.固定化氮循环细菌技术治理湖泊富营养化.江苏农业学报,2000,16( 4):252.
    [57] James F R, Alex J H, Craig D M. Nitrate removal from a drinking water supply with large freesurface constructed wetlands prior to groundwater recharge[J].Ecological Engineering, 2000, 14:33~47.
    [58] Salmon C, Crabos J L, Sambuco J P, et al. Artificial wetland performances in the purification efficiency of hydrocarbon wastewater[J].Water, Air, and Soil Pollution, 1998, 104:313~329.
    [59]高占喜,叶春,杜娟等.水生植物对面源污水的净化效率研究[J].中国环境科学,1997,17(3):247~251.
    [60]牛晓音,葛滢,王晓等.不同光照条件下五种植物对富营养化水净化能力差异的比较[J].科技通报, 2001, 17(2):1~4.
    [61]丁树荣,程树培,胡忠明.利用人工基质无土栽培多花黑麦草净化缫丝废水的研究[J].中国环境科学, 1992, 12(1):9~14.
    [62]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版), 1999, 35(4):518~522.
    [63]廖新俤,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J].应用生态学报,2002,13(6):719~722.
    [64]戴莽,高村典子.利用大型围隔研究沉水植被对水体富营养化的影响[J].水生生物学报, 1999,14(2):98~101.
    [65]李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5): 511~517.
    [66]章宗涉,黄详飞.淡水浮游生物研究法[M].北京:科学出版社,1991.
    [67]王国祥,淮培民,张圣照.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学, 1998, 6(2):15~19.
    [68]宋海亮,吕锡武.利用植物控制水体富营养化的研究与实践[J].安全与环境工程, 2004, 11(3):35~38.
    [69]李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53~57.
    [70]靖元孝,陈兆平,杨丹苦,等.风车草对生活污水的净化效果及其在人工湿地的应用[J].应用与环境生物学报, 2002, 8(6):614~617.
    [71] Tanner C. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species[J].Ecological Engineering, 1996, 7(1):59~83.
    [72]曹蓉,王宝贞,彭剑锋.东营生态塘氮磷去除机理[J].中国环境科学, 2005, 25(1):88~91.
    [73]李先宁,吕锡武,宋海亮.一种水培植物过滤法的除藻性能[J].中国环境科学, 2004, 24(6):697~701.
    [74]吴洁.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学, 2001, 21(6):540~544.
    [75]殷敏,陈桂珠.利用水生高等植物净化污水研究的探讨[J].广州环境科学,2002,17(1):8~9.
    [76]许航,陈焕壮,熊启权.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报, 1999, 32(4):69~73.
    [77] Hoeger S. SCHWIMIMKAMPEN Germany's artificial floating islands. Journal of soil and Water conservation, 1988 ,43 (4).
    [78] X Song. Bio-production and water cleaning by plant grown with floating culture system[C].第6回世界湖沼曹拔霞浦95论文集, 1995, 1:426~427.
    [79] V Nathalie, M Fabien, S Huguete et al .Treatment of donestic wastewater by an hydroponic NET system[J]. Chemosphere, 2003,50:121~129.
    [80] K Nakamura, and Y Shimatani. Water purification and environmental enhancement by the floating wetland[C]. Proc. Of 6th IAWQ Asia-Pacific Regicnal Conference in Korea,1997.
    [81] Reeta D, Sooknah A, Wilkie C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering.2004, 22:27~42.
    [82]马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000, 2: 99~101.
    [83]王旭明.水雍菜在污水净化系统中的作用[J].农业环境与发展,1997, 14 (1): 33~35.
    [84]刘士哲,林东教,唐淑军等.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报,2004,15 (7):1261~1265.
    [85] Y lnamori, M Mizuochi,K Xu.Countermeasures for lake Eutrophication in Japan-Manual of lake Eutrophication Control[J].National Institute for Environmental Studies, Japan, 2002: 374~376.
    [86]屠清瑛,章永泰.北京什刹海生态修复试验工程[J].湖泊科学, 2004, 16(1):61~67.
    [87]李英杰,年跃刚,胡社荣,等.人工浮岛技术及其应用[C].中国水环境污染控制与生态修复技术高级研讨会, 2006:577~582.
    [88]陈渭忠.长江支流临江河[J].四川水利,1997,18(2):60~61.
    [89]张晟,李崇明,郑丙辉,等.三峡库区次级河流营养状态及营养盐输出影响.环境科学[J], 2007,28 (3): 500~505.
    [90]尹真真,邓春光,徐静.三峡水库二期蓄水后次级河流回水河段富营养化调查.安徽农业科学[J], 2006,34 (19): 4998~5000.
    [91]王红萍,夏军,谢平.汉江水华水文因素作用机理[J].长江流域资源与环境, 2004,13 (3): 282~285.
    [92]周广杰,况琪军,胡征宇.大宁河春季浮游藻类“水华”及其营养限制[J].长江流域资源与环境, 2007,16 (5): 628~633.
    [93]周广杰,况琪军,胡征宇,等.香溪河库湾浮游藻类种类演替及水华发生趋势分析[J].水生生物学报, 2006,30 (1): 42~45.
    [94]罗固源.重庆市次级河流污染综合整治对策分析.http://www.kjgwt.gov.cn.
    [95]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [96]高月香,张毅敏,张永春.流速对太湖铜绿微囊藻生长的影响[J].生态与农村环境学报, 2007,23 (2): 57~60.
    [97]李锦秀,杜斌,孙以三.水动力条件对富营养化影响规律探讨[J].水利水电技术, 2005,36 (5): 15~18.
    [98]张丛.环境评价教程[M].北京:中国环境科学出版社,2002.
    [99]李柞泳,丁晶,彭荔红.环境质量评价原理与方法.北京:化学工业出版社,2004.
    [100]李伟明.多元描述统计方法[M].华东师范大学出版社,2001.
    [101]刘先勇.SPSS统计分析软件与应用[M].北京:国防工业出版社.2002.
    [102]谢剑,彭立军.主成份分析方法在环境质量评价中的应用[J].中国环境科学,1986,6(2):24~29.
    [103]柯惠新,黄京华,沉浩.调查研究中的统计分析法[M].北京:北京广播学院出版社,1992
    [104] George P, Gerasimoula D, Nicolaos L. A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques[J]. Ecological Modelling, 2006, 193:759~776.
    [105] Istvanovics V, Somlyody L, Clement A. Cyanobacteria-mediated internal eutrophication in shallowLake Balaton after load reduction[J]. WaterRes, 2002, 36: 3314~3322.
    [106]张文彤.SPSS11统计分析教程[M].北京:北京希望电子出版社,2002.
    [117] Rumelhart D.E.,McClelland J.L. Parallel Data Processing the MIT Press 1986 Vol.l ,Chapter8:318~362.
    [118]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
    [119]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2007.
    [120]雒文生,宋星原.水环境分析与预测[M].武汉:武汉大学出版社, 2000.
    [121]彭泽洲,杨天行,梁秀娟等.水环境数学模型及其应用[M].北京:化学工业出版社, 2007.
    [122]徐敏,曾光明,谢更新等.基于实码遗传算法的河流水质模型的参数估计[J].湖南大学学报(自然科学版), 2004, 31(5): 41~45.
    [123] Jorgensen S E. An improved parameter estimation procedure in lake modeling [J]. Lake & Reservoirs: Research and Management, 1998, 3: 139~142.
    [124]王建平,程声通,贾海峰.水质模型参数优化的遗传算法实现及控制参数分析[J].环境科学, 2005, 26(3): 61~65.
    [125] Charles L Karr, Igor Yakushin, Keith Nicolosi. Solving inverse initial-value, boundary-value problems via genetic algorithm [J]. Engineering Applications of Artificial Intelligence, 2000,(13): 625~633.
    [126]朱嵩,毛根海,刘国华.基于FVM-HGA的河流水质模型多参数识别[J].水利发电学报, 2007, 26(6): 91~95.
    [127]韦鹤平.环境系统工程[M].上海:同济大学出版社,1993.
    [128] Charles LKarr, Igor Yakushin, Keith Nicolosi. Solving inverse initial-value, boundary-value problems via genetic algorithm[J]. Engineering Applications of Artificial Intelligence, 2000, (13) :625~633.
    [129]闵涛,周孝德,冯民权.河流水质多参数识别反问题的演化算法[J].水利学报, 2003, (10):119~123.
    [130]刘毅,陈吉宁,杜鹏飞.环境模型参数优化方法比较[J].环境科学, 2002, 23(2):1~6.
    [131] John Holland. Genetic Algorithms[J].Scientific American, 1992, 7: 44~50.
    [132]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [133] Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J]. IEEE Trans on Systems Man and Cybernetics (S0018-9412), 1994, 24(4): 656-667.
    [134]任子武,伞治.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报, 2006, 18(1): 41~43.
    [135]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [136]李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展, 2005,16(6): 777~783.
    [137] Lu, J.D., Zhao, L.Y., Kang, Q. The Present Study Conditions of Harnessing Eutrophic water by Man-Made Floating Culture Beds. Journal of Hunan Environment biological polytechnic.2005,11(3):214~218.
    [138]沈治蕊.南京煦园太平湖富营养化及其防治.湖泊科学.1997,9(4):377~379.
    [139]曾俊宁,林东教,李莹.浮床种植观赏植物净化富营养化水体的试验.广州环境科学, 2006,21(2):19~22.
    [140]卢进登,陈红兵,赵丽娅,等.人工浮床栽培7种植物在富营养化水体中的生长特性研究.环境污染治理技术与设备.2006,7(7):58~61.
    [141]宋祥甫,邹国艳,吴伟明,等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究.环境科学学报, 1998, 18(5):489~494.
    [142]高吉喜,叶春,杜娟,等.水生植物对面源污水净化效率研究.中国环境科学.1997, 17(3): 247~251.
    [143]张钟祥,钱易.废水生物处理新技术[M].北京:清华大学出版社.
    [144] J V Ymazal, H Brix, P.F Cooper, et al. Constructed Wetlands for Wastewater Treatment in Europe [M]. Backhuys Publishers, Leiden, The Netherlands, 1998.
    [145] Lauchlan H Fraser, SpringM Carty, David Steer. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. B ioresource Technology, 2004,94:185~192.
    [146]周小平,王建国,薛利红等.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究.应用生态学报,2005,16(11):2199~2103.
    [147]蒋跃平,葛滢,岳春雷等.人工湿地植物对观赏水中氮磷去除的贡献.生态学报, 2004, 24(8): 1720~1725.
    [148]王国祥,濮培民,张圣照,等.冬季水生高等植物对富营养化湖水的净化作用[J].中国环境科学,1999,19(2 ):106~109.
    [149]廖新俤,骆世明,吴银宝等.风车草和香根草在人工湿地中迁移养分能力的比较研究.应用生态学报,2005,16(1):156~160.
    [150]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].上海:上海科学出版社,1999.
    [151]吴建之,葛滢,王晓月.过硫酸钾氧化吸光光度法测定植物总氮.理化检验-化学分册,2000,36(4): 166~167.
    [152]国家技术监督局.饲料中总磷的测定分光光度法GB/T6437-2002 [S].中国标准出版社, 2002.
    [153]戚以政,汪叔雄.生化反应动力学与反应器[M]北京:化学工业出版社.
    [154]许保玖,龙腾锐.当代给水与废水处理原理[M]北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700