用户名: 密码: 验证码:
竹叶及其植硅体类脂物的分类学意义及其季节性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶蜡的形成与植物的种类和环境有密切的关系,包含有重要的植物种类和环境信息。了解现代植物及其植硅体类脂物的形成、组成,探讨类脂物形成与环境之间的关系,评价其类脂物的成岩效应可以为碳循环和古环境重建研究提供理论依据。本文以竹亚科植物为例,探讨了西双版纳热带雨林中的23种木本竹子类脂物的化学分类意义,武汉慈竹(Bamboo N. affinis (Rendle) Keng f.)叶蜡形成与环境和生长之间的关系,评价了埋藏条件下竹叶类脂物及其正构烷烃同位素组成的早期成岩效应,并尝试了利用HF酸酸解植硅体提出类脂物的方法。
     叶蜡的形成受多种环境因子影响,导致其化学分类学意义具有一定的争议,为了排除这些因子的影响,对在同一时间、相近的高度和方向采集的西双版纳热带雨林植物园中的23种3个亚属的竹叶进行了类脂物分析,探讨其叶蜡化学分类和演化信息。叶蜡的正构烷烃和正构脂肪酸的组成和分布在木本竹子亚属级别上有明显的分类意义:8种箣竹(Bambusa)亚属叶蜡正构烷烃含有较高比例的大于C30组分,主要同系物散布在较多的碳数上;其平均链长(ACL)在29.2-30.4之间变化,平均值为30.4;9种牡竹(Dendrocalamus)亚属的叶蜡主要分布在C27和C29上,表现出集中的分布特征,大于C30的同系物含量较低;其平均链长在27.0-28.8之间变化,平均值为28.3;绿竹(Dendrocalamopsis)亚属不同于箣竹和牡竹亚属,其正构烷烃分布模式较为复杂。其中,有三种竹子的正构烷烃主要同系物比较平均地分布于多个碳数(C27,C29,C31和C33),有两种竹叶正构烷烃主要集中分布在C27、C29,还有一种主要集中分布在C25、C27;大于C30的同系物含量介于箣竹(Bambusa)和牡竹(Dendrocalamus)亚属之间。此亚属的正构烷烃平均链长介于27.4-29.0之间,平均值为29.0。箣(Bambusa)竹亚属正构脂肪酸主要以C24为主峰,牡竹(Dendrocalamus)亚属主要以C22为主峰,绿竹(Dendrocalamopsis)亚属中有类似于箣竹(Bambusa)亚属的,也有类似于牡竹(Dendrocalamus)亚属的,正构脂肪酸组成的聚类结果同其主峰碳数指示的分类结果相符合,同时与传统分类学结果有较好的一致性。
     叶蜡正构烷烃和正构脂肪酸的分布模式能够清楚地区分箣竹(Bambusa)和牡竹(Dendrocalamus)亚属的物种,然而,绿竹亚属正构烷烃和正构脂肪酸具有复杂的分布模式,一些与箣竹(Bambusa)相似,一些与牡竹(Dendrocalamus)相似。类脂物分析表明绿竹(Dendrocalamopsis)亚属应该提升为一个独立的属,从箣竹属分离出来。主要正构烷烃同系物的相对比重与平均链长的差异表明牡竹有可能是三个亚属中最为进化的种类,绿竹(Dendrocalamopsis)亚属介于箣竹和牡竹亚属。根据叶蜡正构烷烃推断的木本竹子的分类和演化结果与以前报道的形态学结论相一致,表明叶蜡正构烷烃应该是一种重要而有用的竹类化学分类工具,能够进行木本竹子的分类研究。
     叶蜡的成分的含量、组成,特别是正构烷烃的分布(ACL, CPI)和单体碳同位素的构成与环境的关系具有复杂性,研究较少。通过慈竹叶蜡成分两年月分辨率的变化监测,探讨了叶蜡成分及其正构烷烃单体同位素的季节变化与环境和生长的关系。
     慈竹各器官类脂物的组成和分布不同。正构烷烃和烯烃、正构脂肪酸、正构脂肪醇和甾烯醇从茎、枝到叶含量有升高趋势,正构脂肪醇和甾烯醇从根到茎出现降低的现象,且含量高于茎和枝,根中没有检测到正构烷烃。正构脂肪酸、正构脂肪醇平均链长、甾醇类C29:1的相对含量从根、茎到叶有升高的趋势,短链的甾醇C28:1和含不饱和键的甾醇C29:2则出现降低的趋势,根相对其他部位正构脂肪酸、正构脂肪醇主要集中在低碳数部分,主峰碳数和茎、枝、叶不同。正构烷烃分布由集中在少数碳数到分散到多个碳数,C29正构烷烃比重从茎、枝到叶逐渐降低。各成分含量和疏水性组分沿根、茎、枝到叶总体有升高趋势可能与蒸腾作用有关,植物通过合成不同成分或含量的蜡质成分来适应蒸腾作用。根部类脂物组成的特殊性很可能与其吸收养分和水分的功能相适应。正构烷烃在各器官的分布特征与其蒸腾作用不一致,其分布响应蒸腾作用信号可能被其他功能掩盖。竹叶蜡质主要含有4环或4环以下的多环芳烃,含少量或缺乏高环数的多环芳烃,主要是现代植物吸收大气中污染的多环芳烃(PAHS)造成的,多环芳烃的比能够指示其污染种类和来源。多环芳烃的比值表明本处的多环芳烃主要指示热源成因,主要燃料是煤,并有少量木材燃烧。高环数多环芳烃的比有可能不适用于指示其来源。
     慈竹叶蜡各成分的含量、组成和分布有明显的季节变化。慈竹叶蜡正构烷烃在生长季节的开始含量较低,随着叶片的生长,气温的升高,蒸发量的增加,正构烷烃及正构烯烃的含量逐渐升高,在7-8月份含量较高,随后降低,在低温的11月至次年的3月由于干燥的气候造成其烷烃及烯烃出现另一个峰值。炎热的夏季和初秋由于高温,正构烷烃平均链长较大,在相对湿、凉的月份平均链长较小,在寒冷的冬季由于干旱或较低的空气湿度,其平均链长有一定增加。低碳数(小于C20)与高碳数(大于C20)正构脂肪酸的相对含量与温度和光照的变化具有一致性,低温/低光照可能会造成低碳数正构脂肪酸的合成较少,参与储存的部分增多。植物在生长季节的初期可以通过调节C29:2和C29:1的相对含量来适应生长和环境的变化。生长季节的初期,正构脂肪酸、脂肪醇的平均链长、各脂肪烃CPI出现高值;而正构烷烃平均链长较小,在整个生长季节有增加的趋势,表明生长季节的早期,植物能够利用储存的有机物合成长链正构脂肪酸;不饱和C18脂肪酸和C29:2的甾烯醇相对比重增加,可能是为了增加细胞膜的流动以便满足植物生长初期营养物质和水分的需要;脂肪烃的CPI主要受基因控制,受环境影响比较小。在低温的月份不饱和C18的含量没有出现高值,说明大部分叶片不具备抗寒植物叶片在寒冷季节合成较多不饱和脂肪酸的功能,低温降低了C18不饱和脂肪酸的合成,同时衰老和死亡叶片的不饱和脂肪酸可能被氧化。正构烷烃单体同位素能够很好地反映植物的生长、环境的变化,在植物生长旺盛的季节由于重新利用根或茎储存的糖类合成有机物,其单体同位素相对偏正;随着气温的升高,核酮糖-1,5-二磷酸羧化酶活性增强,造成正构烷烃单体同位素组成降低;在寒冷干燥的冬季,叶片衰老使气孔导通率下降,在干旱胁迫下,细胞内外的C02分压降低,导致单体同位素值增加。
     精确评价叶蜡的早期成岩效应有利于提高古环境和古植物重建的可靠性,通过竹子叶蜡成分在植物-土壤系统中的变化,可以认识和了解早期成岩对叶蜡成分影响规律。慈竹叶片类脂物在植物-土壤系统中组成和分布由于受土壤生物降解、改造、贡献等影响出现重要变化:正构烷烃CPI由新鲜叶片到枯叶,由土壤表层到下层有逐渐降低的趋势;正构烷烃ACL从新鲜叶片到土壤表层有增加的趋势,由表层到深层则出现降低的趋势。正构脂肪酸ACL、CPI由新鲜叶片-枯叶-土壤表层-土壤深层有逐渐降低的趋势,在根系发达处ACL有明显的增加,可能与根的贡献有关;在贫营养的沙质土壤中,根系发达地带有可能存在微生物的相对活跃区。叶蜡正构烷烃和正构脂肪酸受早期成岩作用有一定差别,正构烷烃能较好的反映土壤植被更替及早期成岩信息,正构脂肪酸在土壤中的分布容易受到植物根系的贡献或微生物改造。
     高等植物正构烷烃单体同位素分析能够比较准确的恢复古植被,探讨环境的变化,正构烷烃单体同位素在不同的环境或实验条件下变化有一定的差异。植物根系是土壤有机质的重要来源,在埋藏条件下,正构烷烃及其单体同位素组成的变化了解甚少,探讨在埋藏条件下高等植物类脂物组成和分布以及正构烷烃单体同位素组成变化非常必要。慈竹叶蜡在埋藏条件下很少受土壤污染,能比较客观的反映叶蜡各成分及正构烷烃同位素组成在埋藏条件下的早期成岩效应。在埋藏条件下,慈竹叶蜡正构烷烃和正构脂肪酸平均链长增加,主峰碳数增大,主要与土壤生物利用低碳数部分类脂物合成高碳数同系物以及微生物优先降解低碳数同系物有关,同时正构烷烃与正构脂肪酸相比受早期成岩和微生物改造较弱,能够比较客观地反映上覆植被的信息;埋藏叶片中异构、反异构的低碳数酸以及不饱和的C16酸主要来源于土壤菌藻类微生物及动物,异构、反异构脂肪酸的在不同深度的相对比例主要决定于土壤中微生物种类。C27、C29正构烷烃的合成数量有明显的季节变化,但其同位素组成始终存在差值,说明高碳数正构烷烃同位素组成通常低于低碳数主要与脂肪烃的合成有关。正构烷烃C27、C29从新鲜叶片到地表,从土壤表层到深层单体同位素的组成逐渐偏正;埋藏叶片正构烷烃同位素组成偏正于新鲜叶片,且随埋藏时间增加略有偏正,主要归结于微生物的优先降解贫12C的正构烷烃,同时贡献富13C的正构烷烃。总体而言,正构烷烃的组成和分布随生物降解逐渐接近土壤,而正构脂肪酸与土壤中的相应组分差异明显,说明正构烷烃比正构脂肪酸更能够代表植被的原始信息,受早期成岩和微生物影响较小;植物叶片在埋藏条件下,其正构烷烃碳同位素在早期成岩过程中没有明显的变化,一定程度上能够反映植物正构烷烃碳同位素的组成。
     植硅体形态组合的季节变化研究有利于了解植硅体形成的机制,认识植硅体组合变化与环境变化的关系,有助于解译沉积物中植硅体组合的环境信息。首次利用提取现代植物叶片植硅体进行植硅体形态组合的季节变化研究。慈竹叶植硅体含量随植物的生长含量逐渐增加,表明了植硅体的形成很大程度上与植物叶片的蒸腾作用有关。在生长季节的初期,植硅体含量增加的速率较快,表明植硅体的含量与植物的生长阶段有一定的关系;竹亚科植硅体类型多样,除了长鞍型、扇型以及哑铃型外,狭长卵型(narrow elliptates)可做为慈竹植硅体的特征形态。植硅体的形态组合有明显的季节变化。硅质短细胞优先硅化,其他表皮细胞随植物的生长硅化数量逐渐增加,机动细胞含量的季节变化主要反映叶片蒸腾作用的强弱;长细胞植硅体可能对低温有防御功能;植硅体的形成很可能与细胞的形态和功能相联系。温暖指数与年平均气温呈明显的正相关,在一定程度上能够反映气温的变化,其变化受到植物生长的影响。
     植硅体稳定同位素研究有利于了解地球硅循环,认识植硅体形成的生理机制,解译氧、碳同位素分馏与环境的关系。植硅体具有抗腐蚀、抗降解,易于保存等特性,其内部锢囚有有机碳。其同位素分析能够相对准确地揭示古植被、古环境和古气候信息,探讨C3、C4植物的演化。开展植硅体有机化学组成分析,特别是其类脂物的研究,有助于认识C3、C4草本植硅体碳同位素组成偏负于植物体,且其碳同位素差值缩小的原因,并有可能成为古环境重建新的代用指标。目前,植硅体类脂物的GC-MS分析数据很少报道。利用HF酸酸解植硅体可以提出类脂物组分。慈竹叶片植硅体主要含低碳数的正构脂肪酸,其类脂物的组成是叶片类脂物的子集,植硅体类脂物的组成可能与植硅体化学组成有关,对细胞体的类脂物诱陷具有一定的选择性。
Genetic and environmental factors influences wax quantity and composition. The wax production can be used in plant chemotaxonomy and paleoenvironment reconstruction. Studying the formation and compositon of leaf waxes and lipid in phytoliths, the relationships between compostion and quantity of leaf wax and environment factors and evaluating the early diagenesis effect of leaf waxes are the theoretic basis of carbon recycle and paleoenvironment reconstruction research. This work presented and disccused the leaf wax chemotaxonomy of bamboo from Xishuangbanna Tropical Rain Forest in Southwest China, the carbon isotope variation in n-alkanes and in chemical compostion of wax from the leaves of Bamboo N. affinis (Rendle) Keng f. with season changes and in plan-soil system, especially in soil. In additional, the lipid was extracted from phytolith by HF acid acidolysis.
     The chemotaxonomy significance is disputant because the leaf wax composition might be affected by grow conditions such as temperature, humidity, light, CO2 concentration and nutrition that might affect the leaf composition. In order to minimize the effects of differences in growth conditions the whole fully-developed leaves were collected in the same light conditions and approximately at the same height from Xishuangbanna tropical botanical garden. The leaf n-alkanes, identified in 23 species of woody bamboos from the Xishuangbanna tropical rain forest in South China, show a distribution in carbon number ranging from C23 to C35, with a strong odd-over-even predominance. The distribution pattern of leaf n-alkanes is distinctively different at the subgenus level of woody bamboos we investigated:The leaf waxes of individual species in the Bambusa subgenus contain a wide range of dominant compounds, including C27, C29, C31, C33 and C35 n-alkanes. The average chain length, ACL, of the eight species we analyzed varies from 29.2 to 31.6 and has an average value of 30.4. They have high proportion of C30+ alkanes. All of the leaf waxes of the nine species from the Dendrocalamus subgenus that we studied are dominated by only two n-alkanes, C27 and C29. The ACL values in this subgenus range from 27.0 to 28.8 and have an average value of 28.3. They have small proportion of C30+ alkanes. Unlike those of the Bambusa and Dendrocalamus species, the distributions of the n-alkanes in the Dendrocalamopsis subgenus do not follow a single, simple pattern. The distributions of three of the species we studied contain a range of dominant n-alkanes (C27, C29, C31 and C33), whereas the distributions of two others are dominated by C27 and C29 and that of a third by C25 and C27. The ACL values for the Dendrocalamopsis species vary from 27.4 to 30.0 with the mean value of 29.0. The leaf n-alkane patterns easily distinguish the Bambusa species from the Dendrocalamus species. Howver, the Dendrocalamopsis species have more complicated n-alkane distributions; some species are comparable with the Bambusa species and others with the Dendrocalamus species. It is possible to join species based on the main holomogues of n-alkanoic acid distributions:Bambusa with C24, Dendrocalamus with C22, some species of Dendrocalamopsis with C24 and the others with C22-The results of cluster analysis based on the n-alkanoic acid distributions are consistent with the classification by peak carbon number and morphological characters.
     The species of Bambusa and Dendrocalamus can be distinguished by the n-alkane and n-alkanoic acid distribution. However, the n-alkane and n-alkanoic acid distribution patterns are relative complicated in Dendrocalamopsis species. Some are simlar to subgenus Bambusa and the others are compared with subgenus Dendrocalamus.Our lipid data suggest that Dendrocalamopsis might be assigned as an independent genus separated from the Bambusa genus. The differences in the dominant n-alkanes and the ACL values suggest that the Dendrocalamus species might be more evolutionarily advanced than the Bambusa species, with the Dendrocalamopsis species being a transitional one. The evolution and classification of the woody bamboos inferred from leaf n-alkanes are consistent with morphological investigations reported before, indicating that the leaf wax components could be used as a chemotaxonomic tool for these bamboo plants.
     It is complicated the composition and concentration of leaf waxes, especially the distributions and carbon isotope compositons (ACL and CPI) of n-alkanes reponses to environments. The mensal variations of leaf wax in N. affinis (Rendle) Keng f. was investigated to make clear the relationships between the variations of leaf wax concentritions and composition, and its n-alkanesδ13C value, and plant growth or eviromental in two years.
     Cuticular wax composition and concentration varies among different organs of N. affinis (Rendle) Keng f.. The concentration of n-alkanes, alkenes, n-fatty acids, n-alkanols and stenol increases from stem to branch and leaves. While the concentration of n-alkanols and stenols decreases from stem to root and no n-alkanes was detected in roots. Generaly, trends to longer average n-fatty acids and n-alkanol chains and more sterol (C29:1) are evident from roots over stems to leaves. While the short-chain sterol (C28:1) and unsaturated sterol (C29:2) show the decreasing trend. Shorter n-fatty acids and n-alcohols are present in root than that in other parts. The proportion of C29 n-alkane gets depressed, and the dominant homologues are more dispersed in more caron numbers from stems over branches to leaves. The concentrations of a great member of components in leaf wax and hydrophobic members increased from root over stem and branch to leaves maybe be related to plant transpiration. The plant maybe can regulate compositon and concentration of leaf wax to adapt to the transpiration intensity. However, the distributions of n-alkanes in different organs seem not consistent with other compounds. This maybe due to the other function of n-alkanes covering up the role of resisting water lose. The polycyclic aromatic hydrocarbons with 4 rings or less than 4 rings can be detected in N. affinis (Rendle) Keng f.. The ratios of lower ring PHSs indicate their sources are major from combustion of coal, and little from wood, and that of higher ring PHSs maybe are not appropriate to indicate their source.
     The contents and distributions of the leaves wax from N. affinis (Rendle) Keng f. reponse seasonal changes well. The rising temperature and enhangcing evaporation and leaf growth evoked the elevated concentritions of alkanes and alkenes which reveal the maximum in July and August following a valley.. The phase between November and March with cold and dry climate, another peak value of alkanes and alkenes appeared. In hot summer and early-autumn, n-alkanes have longer averaged carbon chains. The ACL also increase lightly in cold winter with low air humidity. Short-chain n-fatty acids (     Accurate assessment of the early diagenetic effects of leaf wax is propitious to improve the reliability and objectivity of palaeoenvironment and paleovegetation reconstruction. By analysing the changes of bamboo leaf wax components in plant-soil system, we can understand how early diagenetic and biodegradtion affect on the composition and distribution of leaf wax. The composition and distribution of leaf lipids of N. affinis (Rendle) Keng f. significantly changed in plant-soil system due to soil microbe biodegradation, transformation, contribution etc. The n-alkanes CPI decreases gradually from fresh leaves to defoliation and from the soil surface to the lower part. The n-alkanes ACL present an increasing trend from fresh leaves to the soil surface, while a decreasing trend from the surface to the lower part. Normal fatty acids ACL and CPI gradually decrease from fresh leaves to fallen leaves, soil surface, lower part of soil. FAs ACL obviously increases in root-developed area, may be related to the contribution of root. In poor trophic sandy soil, there could be a relatively more active microbial area penetrated root-developed zone. Early diagenesis has different effect on leaf wax n-alkanes and fatty acids. N-alkanes can be better used to study the paleovegetation changes and early diagenetic, while normal fatty acids are vulnerable to affected by plant roots.
     Higher plant n-alkane specific carbon isotope analysis can be accurate used to reconstruct the palaeovegetation, to explore changes in paleoenvironment. The changes of n-alkane specific isotopes have some differences in different environmental or experimental conditions. Plant roots are an important source of soil organic matter. There are few reports of which n-alkanes and its specific carbon isotopic composition reponse to early diagenetic changes and biodegradtion, so to explore the composition and distribution of lipids, and n-alkane specific carbon isotopic in higher plant under buried conditions is necessary. The leaf wax of N. affinis (Rendle) Keng f. was rarely affected by soil contribution in buried conditions, so it can reflect the early diagenetic effects on leaf wax compositions and their n-alkanes carbon isotopic compositions under buried conditions. In the burial conditions, both the average chain length and peak carbon number of leaf wax n-alkanes and normal fatty acids from N. affinis (Rendle) Keng f. increased, this phenomena mainly be related to soil organisms using a few parts of low-molecular-weight lipid to synthesize high-molecular-weight homologues, alternatively microbes preferentially degraded low-molecular-weight homologues. The iso-, anteiso-15:0,17:0 fatty acids and unsaturated C16 acid of buried leaves are mainly contributed by soil algae, bacteria and animals, the relative proportion of isomerous, trans anteisomerous fatty acids in different depth are mainly determined by the soil microorganism species.The relative quantities of synthetical C27 and C29 n-alkane are significant seasonal changed, but there is always a difference of their isotopic composition, indicating the trend towards 13C-depletion with increasing chain length are mainly related to the synthesis of aliphatic hydrocarbons. Theδ13C of C27 and C29 n-alkanes in buried leaves are more positive than that of in fresh leaves, and got slightly positive with the increasing burial time. These phenomena are mainly ascribed to microbes preferentially degrade 12C-depleted n-alkanes and contribute 13C-rich n-alkanes. Overall, the n-alkane carbon isotopes of plant leaves in the burial conditions have no significant changes through the early diagenesis processes, and to some extent it can reflect the plant n-alkane carbon isotope composition.
     Seasonal variation of phytolith's morphological combination is useful in recognition the mechanism of the formation of phytolith, the relationship between the variation of its morphological combination and environments, the environmental information in phytolith assemblage. Here we firstly investigated the seasonal variation of phytolith assemblage by extracting phytolith from fresh leaves. Bamboo N. affinis (Rendle) Keng f. continuously increases the abundance of phytolith throughout their life, indicating that the accumulation of phytolith relates to transpiration greatly. In the beginning of the growth season, phytolith abundance increase with high rate, suggesting the abundance of phytolith is related to the growth phase of plant. Phytoliths in bamboo have diversiform types. e. Long-saddle, fan-model, dumbbell-model and narrow elliptates phytolith can be used as the diagnostic and characteristic morphology of N. affinis (Rendle) Keng f.. There are distinct changes in phytolith assemblage. Silica short cell silicified firstly, while the other cells deposited silica gradually during the developmental process of leaves and after maturation. Seasonal variations of the concentration of bulliform cell reflect the intensity of leaves'transpiration. The long silica cell maybe has a function to prevent cell from low temperature hurt. The formation of phytolith can be related to morphology and function of cells. Warmth index, influenced by growth, can reflect the variation of temperature at some extent.
     Research of the isotope of oxygen and carbon in phytolith will improve our understanding of the Silicon Cycle in the earth system, help us to learn physiological mechanism of the phytolith formation and decode the relationship between environment and fractionation of the Oxygen as well as Carbon. Phytolith resists to chemical erosion and degradation, in particular the original information of plants can be preserved in the occluded carbon in phytolith which is always difficult to be contaminated. Thus the capability of preserve for long are in favor of the objectiveness and accuracy of paleo-vegetational, paleo-environmental and paleo-climatical imformation uncovered by the phytolith carbon and oxygen isotope analysis. To investigate the organic components, especially the lipids, within the phytolith will lead us to know why their carbon isotopes are depleted relative to that of the whole carbon in plants, the isotopic range between C3 and C4 phytoliths relative to that for C3 and C4 grass are compressed. This investigation will also explore out whether the lipid in phytolith can be as a potential proxies for paleo-environmental and paleo-climatical reconstruction. To date, the GC-MS analysis of lipids in the phytolith is rarely reported. We also discovered that the lipid in the phytolith can be extracted by solvent through a prior HF acidolysis procedure and then be indentified by GC-MS. As it shows in our results, the lipids in the phytolith bearing in leaves of N. affinis (Rendle) Keng f. are mainly comprised of short chain n-fatty acids, which are a subset of the total lipid in the leaf tissues. These contents maybe affected by the phytolith chemical constituents that discriminate distinct lipids of the leaf cell in the entrapping process.
引文
[1]谢树成,赖旭龙,黄咸雨,马相如,杨淑娟。分子地层学的原理、方法及应用实例[J]。地层学杂志,2007,31(3):209-211.
    [2]Reina-Pinto Jose J., Yephremov Alexander. Surface lipids and plant defenses [J]. Plant Physiol. Biochem.,2009,47 (6):540-549.
    [3]Cameron Kimberly D., Teece Mark A., Smart Lawrence B. Increased Accumulation of Cuticular Wax and Expression of Lipid Transfer Protein in Response to Periodic Drying Events in Leaves of Tree Tobacco [J]. Plant Physiology,2006,140:176-183.
    [4]Jetter Reinhard, Schaffer Stefanie. Chemical Composition of the Prunus laurocerasus Leaf Surface. Dynamic Changes of the Epicuticular Wax Film during Leaf Development [J]. Plant Physiology,2001,126:1725-1737.
    [5]Jetter R, Schaffer S, Riederer M. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers:evidence from Prunus laurocerasus L. [J]. Plant Cell Environ 2000, 23:619-628
    [6]Baker E. A. Chemistry and morphology of plant epicuticular waxes. In:Cutler DF, Alvin KL, Price CE (eds) The plant cuticle [J]. Academic Press, London,1982, pp 139-165.
    [7]Schreiber L., Riederer M. Ecophysiology of cuticular transpiration:comparative investigation of cuticular water permeability of plant species from different habitats [J]. Oecologia,1996,107: 426-432.
    [8]Van Maarseveen Clare, Jetter Reinhard. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves [J]. Phytochemistry 2009, 70:899-906.
    [9]Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science,1967,156:1322-1334.
    [10]Baker, By E. A., Hunt, G. M. Erosion of waxes from leaf surfaces by simulated rain [J]. New Phytol,1986,102:161-173.
    [11]Hadley, J. L. & Smith, W. K. Wind erosion of leaf surface wax in alpine timeberline conifers [J]. Arctic Alpine Research,1989,21:392-398.
    [12]Fang Jiasong, Chan Olivia, Joeckel R.M. et al. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska [J]. Organic Geochemistry,2006, 37:912-931.
    [13]Rawlins Andrew J., Bul Ian D., Poirie Natacha, et al. The biochemical transformation of oak (Quercus robur) leaf litter consumed by the pill millipede (Glomeris marginata) [J]. Soil Biology & Biochemistry,2006,38:1063-1076.
    [14]Bull, I.D., Van Bergen, P.F., Nott, C. J. et al. Organic geochemical studies of soils from the Rothamsted classical experiments-V. The fate of lipids in different long-term experiments [J]. Organic Geochemistry,2000,31:389-408.
    [15]Heider Johann, Sporman Alfred M., Belle Harry R., et al. Anaerobic bacterial metabolism of hydrocarbons [J]. FEMS Microbiology Reviews,1999,22:459-473
    [16]Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic or-ganisms as potential contributors to lacustrine sediments-Ⅱ [J]. Organic Geochemistry,1987,11:513-527.
    [17]Nierop K. G. J., Naafs D. F. W., Van Bergen P. F. Origin, occurrence and fate of extractable lipids in Dutch coastal dune soils along a pH gradient [J]. Organic Geochemistry,2005,36: 555-566.
    [18]Peters K. E., Moldowan J. M. The Biomarker Guide [J]. Prentice-Hall, New York,1993, pp. 363.
    [19]Nguyen Tu T.T., Derenne S., Largeau C., et al. Diagenesis effects on specific carbon isotope composition of plant n-alkanes [J]. Organic Geochemistry,2004,35:317-329.
    [20]Wiesenberg G. L. B., Lehndorff E., Schwark L. Thermal degradation of rye and maize straw: Lipid pattern changes as a function of temperature [J]. Organic Geochemistry 2009a,40:167-174.
    [21]Van Bergen Pim F., Bull Ian D., Poulton Paul. R., et al. Organic geochemical studies of soils from the Rothamsted Classical Experiments-Ⅰ. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness [J]. Org. Geochem,1997,26:17-135.
    [22]Van Bergen, Pim F., Nott Chris J., Bull Ian D., et al. Evershed Richard. Organic geochemical studies of soils from the Rothamsted Classical Experiments-Ⅳ. Preliminary results from a study of the effect of soil pH on organic matter decay [J]. Org. Geochem.,1998,29:1779-1795.
    [23]Jansen B., Nierop Klaas G. J. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns [J]. Organic Geochemistry,2009,40: 61-69.
    [24]Wang Yongli, Fang Xiaomin, Bai Yan, et al. Macrocyclic alkanes in modern soils of China [J]. Organic Geochemistry 2006,37:146-151.
    [25]王志远,刘占红,易轶等.不同气候和植被区现代土壤类脂物分子特征及其意义[J].土壤学报,2003,40(6):967-970.
    [26]Van Beilen J. B., Li Z., Duetz W. A., et al. Diversity of alkane hydroxylase systems in the environment [J]. Oil and Gas Science and Technology,2003,58:427-440.
    [27]Leif R.N., Simoneit B. R.T. Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin, Gulf of California [J]. Org. Geochem.,1995,23:884-904.
    [28]Volkman, J. K., Farrington, J. W., Gagosian, R. B., et al. Lipid composition of coastal sediments from the Peru upwelling region [J]. Advances in Organic Geochemistry,1983,228-240.
    [29]Bai Yan, Fang Xiaomin, Wang Yongli et al. Distribution of aliphatic ketones in Chinese soils: Potential environmental implications [J]. Organic Geochemistry,2006,37:860-869.
    [30]Xie Shucheng, Chen Fahu, Wang Zhiyuan, et al. Lipid distributions in loess-paleosol sequences from northwest China [J]. Organic Geochemistry 2003a,34:1071-1079.
    [31]Forney, F. W., Markovetz, A.J.,1971. The biology of Me ketones [J]. Journal of Lipid Research 12,383-395.
    [32]Mille Gilbert, Guiliano Michel, Asia Laurence, et al. Sources of hydrocarbons in sediments of the Bay of Fort de France (Martinique) [J]. Chemosphere,2006,64:1062-1073.
    [33]Meyers Philip A. Ishiwatar Ryoshi. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments [J]. Org. Geochem.,1993,20 (7):867-900.
    [34]Huang Xianyu, Xie Shucheng, Zhang Chuanlun, et al. Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China [J]. Organic Geochemistry,2008, 39:1765-1771.
    [35]Allan, J., Douglas, A.G. Variation in the content and distribution of n-alkanes in a series of carboniferous vitrinites and sporinites of bituminous rank [J]. Geochimica et Cosmochimica Acta, 1977,41:1223-1230.
    [36]Chikaraishi Yoshito, Naraoka Hiroshi. Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system [J]. Chemical Geology,2006,231:190-202.
    [37]Chaffee A. L., Hoover D. S., Johns R. B., et al. Biological markers extractable from coal. In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record. Elsevier [J]. Amsterdam,1986, pp.311-345.
    [38]Zhou Weijian, Xie Shucheng, Meyers Philip A., et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence [J]. Organic Geochemistry,2005,36:1272-1284.
    [39]Ficken, K.J., Barber, K.E., Eglinton, G. Lipid biomarker,δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millenia [J]. Organic Geochemistry, 1998,28:217-237.
    [40]Huang Yongsong, Bol Roland, Harkness Doglas, et al. Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of Bristish acid upland soils [J]. Org. Geochem.,1996,24:273-287.
    [41]Xie, S. C., Nott, C. J., Avsejs, L. A., et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction [J]. Geochimica et Cosmochimica Acta,2004, 68:2849-2862.
    [42]Jenks Matthew A., Tuttle Hillary A., Eigenbrode Sanford D., et al. Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis [J]. Plant Physiol.,1995,108:369-377.
    [43]Post-Beittenmiller Dusty. Biochemistry and molecular biology of wax production in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:405-430.
    [44]崔景伟,黄俊华,谢树成。湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J]。科学通报,2008,53(11):1318-1323。
    [45]Zheng Yanhong, Zhou Weijian, Meyers Philip A., et al. Lipid biomarkers in the Zoige-Hongyuan peat deposit:Indicators of Holocene climate changes in West China [J]. Organic Geochemistry,2007,38:1927-1940.
    [46]Hughen Konrad A., Eglinton Timothy I., Xu Li, et al. Abrupt Tropical Vegetation Response to Rapid Climate Changes [J]. Science,2004,304:1955-1959.
    [47]Collister, James W., Rieley Gareth, Stern Benjamin et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Org. Geochem.,1994,21: 619-627.
    [48]Cranwell, P.A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology,1973,3:259-265.
    [49]Rommerskirchen Florian, Plader Anna, Eglinton Geoffrey et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes [J]. Organic Geochemistry,2006,37:1303-1332.
    [50]Naffs D. F.W., Van Bergen P. F., Boogert S. J., et al. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season [J]. Soil Biology and Biochemistry,2004,36: 297-308.
    [51]Simoneit, B.R.T., Sheng, G, Chen, X., Fu, J., et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China [J]. Atmospheric Environment,1991,25: 2111-2129.
    [52]Gagosian, R. B., Peltzer, E.T., Merrill, J.T.,1986. The importance of atmospheric input of terrestrial organic material to deep sea sediments [J]. Organic Geochemistry,1986,10:661-669.
    [53]Hinrichs K.U., Rullkotter J. Terrigenous and marine lipids in Amazon Fan sediments: implications for sedimentological reconstructions [C]. In Proceedings of the Ocean Drilling Program. Scientific Results (eds. D. J. W. Piper, A. Klaus and L. C. Peterson),1997,155:539-553.
    [54]Kawamura, K., Ishimura, Y., Yamazaki, K. Four years'observation of terrestrial lipid class compounds on marine aerosols from the western North Pacific [J]. Global Biogeochemical Cycles, 2003,17:1-19.
    [55]Bendle J., Kawamura K., Yamazaki K., et al. Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean [J]. Geochimica et Cosmochimica Acta,2007,71: 5934-5955.
    [56]Huang, Y, Dupont, L., Sarnthein, M., et al. Mapping of C4 plant input form North West Africa into North East Atlantic sediments [J]. Geochimica et Cosmochimica,2000,64:3505-3513.
    [57]Dodd R. S., Afzal-Rafii Z. A. Habitat-related adaptive properties of plant cuticular lipids [J]. Evolution 2000,54:1438-1444.
    [58]Dodd R. S., Rafii Z. A., Power A. B. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition [J]. New Phytol.,1998,138:699-708.
    [59]Sicre M. A., Peltzer E. T. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector [J]. Atmos. Environ.2004,38:1615-1624.
    [60]Schefuss E., Ratmeyer V., Stuut J. B. W., et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic [J]. Geochimica et Cosmochimica Acta,2003,67 (10):1757-1767.
    [61]Calvo E., Pelejero C., Logan G. A. et al. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles [J]. Paleoceanography,2004,19 (2), PA2020. doi:10.1029/2003PA000992.
    [62]Eckmeier, E., Wiesenberg, G. L. Short-chain n-alkanes (C16-20) in ancient soil are useful molecular markers for prehistoric biomass burning, Journal of Archaeological Science (2009), doi: 10.1016/j.jas.2009.03.021.
    [63]Jeng Woei-Lih. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments [J]. Marine Chemistry 2006,102:242-251.
    [64]Cranwell, P.A. Lipids of aquatic sediments and sedimenting particulates [J]. Progress in Lipid Research,1982,21:271-308.
    [65]Gonzalez-Vila Francisco J., Polvillo Oliva, Boski Tomasz., et al. Biomarker patterns in a time-resolved Holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/Spain border) [J]. Organic Geochemistry,2003,34:1601-1613.
    [66]Ficken, K. J. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa [J]. Org. Geochem.1998: 1701-1719.
    [67]Ficken K.J., Li B., Swain D.L., et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes [J]. Organic Geochemistry,2000,31: 745-749.
    [68]菲尔普斯,R.P.,傅家谟,盛国英。化石燃料生物标志物-应用与图谱[M]。科学出版社,北京,1987。
    [69]Lichtfouse E, Derenne S, Mariotti A, et al. Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios [J]. Organic Geochemistry,1994,22:1023-1027.
    [70]Zhang Zhaohui, Zhao Meixun, Eglintona Geoffrey et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr [J]. Quaternary Science Reviews,2006,25:575-594
    [71]Blyth Alison J., Asrat Asfawossen, Baker Andy et al. A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites [J]. Quaternary Research,2007,68:314-324.
    [72]Rieley G., Collier R. J., Jones D. M., et al. The biogeochemistry of Ellesmere Lake, U K—Ⅰ: Source correlation of leaf wax inputs to the sedimentary record [J].Organic Geochemistry,1991, 17:901-912.
    [73]Grice Kliti, Lu Hong, Zhou Youping, et al. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso-(3-methyl) and iso-(2-methyl) alkanes in tobacco leaves [J]. Phytochemistry,2008,69:2807-2814.
    [74]Barik A., Bhattacharya B., Laskar S. et al. The Determination of n-Alkanes in the Cuticular Wax of Leaves of Ludwigia adscendens L [J]. Phytochem. Anal.2004,15:109-111.
    [75]Jansen B., Nierop Klaas G. J., Hageman Jos A., et al. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes [J]. Organic Geochemistry,2006,37:1514-1536.
    [76]Xie Shucheng, Yi Yi, Huang Junhua, et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change [J]. Quaternary Research 2003b,60:340-347.
    [77]Lei, G, et al., Biomarkers of modern plants and soils from Xinglong Mountain in the transitional area..., Quaternary International (2010), doi:10.1016/j.quaint.2009.12.009.
    [78]Gobe V., Leme L., Ambles A. Structure elucidation of soil macromolecular lipids by preparative pyrolysis and thermochemolysis [J]. Organic Geochemistry,2000,31:409-419.
    [79]Kolattukudy, P. E. Biopolyester membranes of plants:cutin and suberin [J]. Science,1980, 208:990-1000.
    [80]Schwark L., Zink K., Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology,2002,30:463-466.
    [81]Xie Shucheng, Wang Zhiyuan, Wanghongmei, et al. The occurrence of grassy vegetation over the Chinese Loess Plateau since the last interglacier:the molecular fossil record [J]. Science in China (Series D),2002,45:53-62.
    [82]Huang Y., Street-Perrott F. A., Metcalfe S. E., et al. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance [J]. Science,2001,293: 1647-1651.
    [83]Schef Enno, Schouten Stefan, Fred Jansen J. H. et al. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period [J]. Nature,2003,422:418-421.
    [84]Reddy C. M., Eglinton T. I., Palic R., et al. Even carbon number predominance of plant wax n-alkane:A correction [J]. Organic Geochemistry,2000,31:331-336.
    [85]Xie Shucheng, Yi Yi, Liu Yuyan et al. The Pleistocene vermicular red earth in South China signaling the global climatic change:The molecular fossil record [J]. Science in China (Series D) 2003c,46,1113-1120.
    [86]Xie S. C., Yao T., Kang S. et al. Geochemical analysis of a Himalayan snowpit profile: Implication for atmospheric pollution and climate [J]. Organic Geochemistry,2000,31:15-23.
    [87]White J. W. C., Ciais P., Figge R. A. et al. A high resolution record of atmospheric CO2 content from carbon isotopes in peat [J]. Nature,1994,367:153-156.
    [88]Huang Yongsong, Street-Perrott F. Alayne, Alanperrott R., et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya [J]. Geochimica et Cosmochimica Acta,1999,63: 1383-1404.
    [89]Nikolau B. J., Ohlrogge J. B., Wurtele E. S. Plant biotin-containing carboxylases [J]. Arch. Biochem. Biophys.,2003,414:211-222.
    [90]任波,李毅。大豆种子脂肪酸合成代谢的研究进展[J]。分子植物育种,2005,3:301-306.
    [91]Bertrand Lemieus. Molecular genetics of epicuticular wax biosynthesis [J]. Trends in plant science,1996,1:312-318.
    [92]Shepherd T., Robertson G. W., Griffiths D. W., et al. Effects of environment on the composition of epicuticular wax from Kale and Swede [J]. Phytochemistry,1995,40:407-417.
    [93]Baker B. A.The influence of environment on leaf wax development in Bras Sic A Oleracea Var. Gemmieera [J]. New Phytol,1974,73:955-966.
    [94]Hatterman-Valenti Harlene M., Pitty Abelino, Owen Micheal D. K. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption [J]. Weed Science,2006,54: 607-614.
    [95]Gagosian R. B., Peltzer E. T. and Merrill J. T. Long-range transport of terrestrially derived lipids in aerosols from the South Pacific [J]. Nature,1987,325:800-803.
    [96]Harris P, James A. T. Effect of low temperature on fatty acid bio-synthesis in seed [J]. Biochim Biophys Acta,1969,187:13-18.
    [97]Larkindale J., Huang B. Changes in lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera) [J]. Environmental and Experimental Botany,2004,51:57-67.
    [98]Hauke Verena, Schreiber Lukas. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves [J]. Planta,1998,207: 67-75.
    [99]Jenks M. A., Andersen, L., Teusink R. S., et al. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments [J]. Physiol. Plant.,2001, 112:62-70.
    [100]Wiesenberg G. L. B., Schmidt M.W. I., Schwark L. Plant and soil lipid modifications under elevated atmospheric CO2 conditions:Ⅰ. Lipid distribution patterns [J]. Organic Geochemistry, 2008,39:91-102.
    [101]Wiesenberg Guido L. B., Schneckenberger Katja, Kuzyakov Yakov, et al. Plant lipid composition is not affected by short-term isotopic (δ13C) pulse-labelling experiments [J]. J. Plant Nutr. Soil Sci.,2009b,000,1-9.
    [102]Blanke Michael M., Bacher Wolfgang., Pring Richerd et al. Ammonium Nutrition Enhances Chlorophyll and Glaucousness in Kohlrabi [J]. Annals of Botany,1996,78:599-604.
    [103]Claudia M. Furlan, Deborah Y. A. C. Santos, Antonio Salatino, et al. n-Alkane distribution of leaves of Psidium guajava exposed to industrial air pollutants [J]. Environmental and Experimental Botany 2006,58:100-105.
    [104]Cameron Kimberly D., Teece Mark A. Bevilacqua Eddie et al. Diversity of cuticular wax among Salix species and Populus species hybrids [J]. Phytochemistry,2002,60:715-725.
    [105]Wiesenberg Guido L. B., Schwark Lorenz. Carboxylic acid distribution patterns of temperate C3 and C4 crops [J]. Organic Geochemistry,2006,37:1973-1982.
    [106]Stocker H., Wanner H. Changes in the composition of coffee leaf wax with development [J]. Phytochemeistry,1975,14:1919-1920.
    [107]Vioque J., Pastor, J., Vioque E. Leaf alkanes in the genus Coincya [J]. Phytochemistry,1994, 36,349-352.
    [108]Mimura Maria R. M., Salatino Maria L. F., Salatino Antonio., et al. Alkanes from foliar epicuticular waxes of Huberia species:Taxonomic implications [J]. Biochemical Systematics and Ecology,1998,26:581-588.
    [109]Skorupa L. A., Salatino Maria L. F., Salatino A. Hydrocarbons of leaf epicuticular waxes of Pilocarpus(Rutaceae):Taxonomic meaning [J].Biochemical Systematics and Ecology 1998,26: 655-662.
    [110]Maffei M. Chemotaxonomic Significance of leaf wax n-alkanes in the Umbelliferae, Cruciferae and Leguminosae (Subf. Papilionoideae) [J]. Biochemical Systmatics and Ecology, 1996a,24:531-545.
    [111]Maffei M. Chemotaxonomic significance of leaf wax alkanes in Gramineae [J]. Biochemical Systematics and Ecology,1996b,24:53-64.
    [112]Kim Ki Woo, Ahn Jeong Joon, Lee Joon-Ho. Micromorphology of epicuticular wax structures of the garden strawberry leaves by electron microscopy:Syntopism and polymorphism [J]. Micron,2009,40:327-334.
    [113]Wiesenberg Guido L. B., Schwarzbauer Jan, Schmidt Michael W. I., et al. Source and turnover of organic matter in agriculturalsoils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures [J]. Organic Geochemistry,2004,35:1371-1393.
    [114]Rhee Yoon, Hlousek-Radojcic Alenka, Ponsamuel Jayakumar, et al. Epicuticular Wax Accumulation and Fatty Acid Elongation Activities Are Induced during Leaf Development of Leeks [J]. Plant Physiol.1998,116:901-911.
    [115]Schonher, J. and Riederer M. Foliar penetration and accumulation of organic chemicals in plant cuticles [J]. Rev. Environ. Contam. Toxicol,1989,108:1-70.
    [116]Sanchez F. J., Manzanares M., Andres E. F., et al. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature [J]. Eur J Agron,2001,15:57-70.
    [117]Grncarevic A., Radler F. The effect of wax components on cuticular transpiration-model experiments [J]. Planta,1967,75:23-27.
    [118]O'Leary M. H. Carbon isotope fractionation in plants [J]. Phytochem.,1981,20:553-568.
    [119]Rieley G, Collister J. W., Stern B. et al. Gas Chromatography-Isotope Ratio Mass Spectrometry of leaf wax n-alkanes from plants of differing carbon dioxide metabolisms [J]. Rapid Communications in Mass Spectrometry,1993,7:488-491.
    [120]Chikaraishi Yoshito, Hiroshi Naraoka.δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants [J]. Organic Geochemistry 2007,38:198-215.
    [121]Monson K. D., Hayes J. M. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli [J]. J. Biol. Chem.1980,255,11435-11441.
    [122]Farquhar G. D., Ehleringer J. R., Hubick K. T. Carbon isotope discrimination and photosynthesis [J]. Ann Rev Plant Physiol,1989,40:503-537.
    [123]Francey R. J. Farquhar G. D. An explanation of 13C/12C variations in tree rings [J]. Nature, 1982,295:28-31.
    [124]Conte Maureen H., Weber John C. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis [J]. Nature,2002,417:639-641.
    [125]Lockheart M. J., Van Bergen P. F., Evershed R. P. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms:implications for the study of higher land plant-derived sedimentary organic matter [J]. Org. Geochem.1997,26: 137-153.
    [126]Hayes J. M., Freeman K. H., Popp B. N. et al. Compound-specific isotopic analyses:A novel tool for reconstruction of ancient biogeochemical processes [J]. Org. Geochem.,1990,16: 1115-1128.
    [127]Farquhar G. D., Hubick K. T., Condon A.G, et al. Carbon isotope discrimination and water use efficiency. Stable isotopes in ecological research [M].Springer Verlag, New York,1989b, 21-40.
    [128]Ehleringer James R. Variation in leaf carbon isotope discrimination in Encelia farinosa: implications for growth, competition, and drought survival [J]. Oecologia,1993,95:340-346.
    [129]Huang Y., Eglinton G., Ineson P., et al. Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experiment with Calluna vulgaris [J]. Organic Geochemistry 1997,26:497-501.
    [130]Nguyen Tu T. T., Derenne S., Largeau C., et al. Comparison of leaf lipids from a fossil ginkgoalean plant and its extant counterpart at two degradation stages:diagenetic and chemotaxonomic implications [J]. Rev. Palaeobot. Palynol,2003,124:63-78.
    [131]Mansuy L., Philp R. P., Allen J. Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples [J]. Environmental Science and Technology 1997,31:3417-3425.
    [132]Mazeas L., Budzinski H., Raymond N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation [J]. Organic Geochemistry,2002,33:1259-1272.
    [133]朱华。论滇南西双版纳的森林植被分类[J]。云南植物研究,2007,29(4):377-387。
    [134]王云花。西双版纳地区水文特性分析[J]。水文,2003,23(4):55-59。
    [135]张元勋,袁德芳。信阳红色旅游资源的分布与开发[J]。信阳农业高等专科学校学报,2009,19:71-74.
    [136]Ohrnberger D. The Bamboos of the World:Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa [J]. Elsevier, Amsterdam,1999.
    [137]Zhou, Fangchun. Bamboo Cultivation [M]. China Forestry Publishing House, Beijing,1998, pp:5.
    [138]Chen Xiangang, Zhang Xiaoquan, Zhang Yiping, et al. Changes of carbon stocks in bamboo stands in China during 100 years [J]. Forest Ecology and Management,2009,258:1489-1496.
    [139]Scurlock J. M. O., Dayton D.C., Hames B. Bamboo:an overlooked biomass resource [J]? Biomass and Bioenergy,2000,19:229-244.
    [140]Soderstrom T. R. Some evolutionary trends in the Bambusoideae (Poaceae) [J]. Ann Missouri Bot Gard,1981,68:15-47.
    [141]Sun Ye, Xia N. H. Stapleton Chris M.A. Relationships between Bambusa species (Poaceae, Bambusoideae) revealed by random amplified polymorphic DNA [J]. Biochemical Systematics and Ecology,2006,34:417-423.
    [142]Yang H. Q., Yang J. B., Peng Zhen H., et al. A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL-F DNA sequences [J]. Molecular Phylogenetics and Evolution,2008,48:809-824.
    [143]Clark L. G, Zhang W., Wendel J. F. A phylogeny of grass family (Poaceae) based on ndhF sequence data [J]. Systematic Botany,1995,20:436-460.
    [144]Clark L. G. Bamboos:The centerpiece of the grass family [C]. In Chapman G P, (eds.), The Bamboos. London:Academic Press,1997, pp 33-44. [145] Clayton W. D., Renvoize S.A.,1986. Genus graminum [M]. Her Majesty's Stationery Office, London.
    [146]Ramanayake S. M. S. D., Meemaduma V. N., Weerawardene T. E. Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using Random Amplified Polymorphic DNA [J]. Plant Systematics and Evolution 2007,269:55-61.
    [147]Li, D. Z. The flora of China Bambusoideae project-problems and current understanding of bamboo taxonomy in China. In:Chapman, G.P. (Ed.), The Bamboos [C]. Academic Press, London, 1997, pp.61-81.
    [148]Zhang W. P. Phylogeny and classification of the bamboos (Poaceae:Bambusoideae) based on molecular and morphological data. PhD dissertation, Iowa State University, U.S.A.,1996.
    [149]Hodkinson T. R., Renvoize S. A., Ni Chonghaile G., et al. A comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae) [J]. Journal Plant Research 2000,113:259-269.
    [150]Guo Z. H., Chen Y. Y., Li, D. Z., Yang J. B. Genetic variation and evolution of the alpine bamboos (Poaceae:Bambusoideae) using DNA sequence data [J]. Journal of Plant Research,2001, 114:315-322.
    [151]Guo Zhenhua and Li Dezhu. Advances in Systematics and Biogeography of the Bambusoideae (Gramineae) with remarks on some remaining problems [J]. Acta Botanica Yunanica,2002,24:431-438.
    [152]Jetter S., Riederer, M.,2000. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers:evidence from Prunus laurocerasus L. [J]. Plant Cell and Environment,2000,23:619-628.
    [153]贾良智,冯学琳D3关于慈竹属和单竹属的讨论[J]。植物分类学报,1980,18(2):211-216。
    [154]王润辉,夏念和,林汝顺。箣竹属和牡竹属(竹亚科)叶表皮微形态特征[J]。热带亚热带植物学报,2002,10(1):22-26。
    [155]耿伯介。世界竹亚科各属的考订(一)[J]。竹子研究汇刊,1982a,1(1):1-19.
    [156]耿伯介。世界竹亚科各属的考订(之三)[J]。竹子研究汇刊,1983a,2(1):11-27.
    [157]耿伯介。中国及其近邻的竹亚科族属系统分类[J]。竹子研究汇刊,1987,6(3):13-28.
    [158]耿伯介。世界竹亚科各属的考订(之二)[J]。竹子研究汇刊,1982b,1(2):30-46。
    [159]耿伯介。世界竹亚科各属的考订(之四)[J]。竹子研究汇刊,1983b,2(2):1-17.耿伯介。世界竹亚科各属的考订之三、四[J]。竹子研究汇刊,1983,2(1):11-27;2(2):1-17。
    [160]温太辉。中国竹亚科的几个分类学问题[J]。竹子研究汇刊,1986,5(2):10-27.
    [161]Lichtfouse E., Berthier G, Houot S., et al. Stable carbon isotope evidence for microbial origin of C14-C18 n-alkanoic acids in soils [J]. Organic Geochemistry,1995,23:849-852.
    [162]Dierksen K. P., Whittaker G. W., Banowetz G. M., et al. High resolution characterization of soil biological communities by nucleic acid and fatty acid analyses [J]. Soil Biology and Biochemistry,2002,34:1853-1860.
    [163]Bakker M. I., Baas W. J., Sum D. T. H. M. et al. Leaf wax of lactuca sative and plantago major [J]. Phrtochemisto,1998,47(8):1489-1493.
    [164]张汉尧,刘小珍,孙茂胜等。云南部分竹种形态标记数量分类研究[J]。福建林业科技,2005,32:31-33.
    [165]Wu MCY., Classification of Bambuseae based on leaf anatomy. Botanical Bulletin Academia Sinica [J],1962,3:83-107.
    [166]Loh J. P., Kiew R., Set O. et al. A study of genetic variation and relationships within the bamboo subtribe Bambusinae using amplied Fragment Length Polymorphism [J]. Annals of Botany 2000,85:607-612.
    [167]Eglinton G., Hamilton R. J., Raphael R. A., et al. Hydrocarbon constituents of the wax coatings of plant leaves:a taxonomic survey [J]. Phytochemistry,1962:1:89-102.
    [168]Nordby H. E., Nagy S. Hydrocarbons from epicuticular waxes of Citrus peels [J]. Phytocemsitry,1977,16:1393-1397.
    [169]Jenks M. A., Tuttle H. A., Feldmann K. A. Changes in epicuticular waxes on wildtype and eceriferum mutants in Arabidopsis during development [J]. Phytochemistry,1996,42:29-34.
    [170]Smith D.G., Mayes R.W., Raats J. G. Effect of species, plant part and season of harvest on n-alkane concentrations in the cuticular wax of common rangeland grasses from southern Africa [J]. Australian Journal of Agriculture Research,200152:875-882.
    [171]Prasad, R. B. N., Gulz, P. G. Development and seasonal variations in the epicuticular waxes of beech leaves (Fagus sylvatica L.) [J]. Z. Naturforsch. C,1990,45:805-812.
    [172]Bianchi, G.:Plant Waxes, in Hamilton, R. J.:Waxes:Chemistry, Molecular Biology and Functions [J]. The Oily Press, Dundee,1994, p.175.
    [173]Rashotte Aaron M., Jenks Matthew A., Feldmann Kenneth A. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana [J]. Phytochemistry,2001,57:115-123.
    [174]Menzie C A, Potoki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment [J]. EnvironmentScience and Technology,1992,26(7):1278-1284.
    [175]Wilcke W., Amelung W., Martius C. et al. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain forest [J]. J. Plant Nutr. Soil Sci.,2000,163:27-30.
    [176]汤莉莉,牛生杰,朱永官等。北京市部分地区土壤和植物中多环芳烃的分布[J]。南京气象学院学报,2006,29:750-755。
    [177]郝蓉,万洪富,杜卫兵等。亚热带地区农业土壤和植物中多环芳烃的分布[J]。浙江大学学报(农业与生命科学版),2005,31(4):374-380.
    [178]王晓丽,彭平安,周国逸。广州白云山风景区阔叶植物叶片中的多环芳烃[J]。生态环境,2007,16(6):1597-1601.
    [179]Walker Shelby E., Dickhut Rebecca M., Chisholm-Brause et al. Catherine. Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary [J]. Organic Geochemistry,2005,36:619-632.
    [180]Krauss Martin, Wilcke Wolfgang, Martius Christopher et al. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment [J]. Environmental Pollution,2005,135:143-154.
    [181]Jones K. C., Stratford J. A., Waterhouse K. S. et al. Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century [J]. Environ. Sci. Technol.,1989, 23:95-101.
    [182]Wilcke W., Amelung W., Krauss M. et al. Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil [J]. Org. Geochem.,2003,34:1405-1417.
    [183]Ryan J. A., Bell J. M., Davidson J. M., et al. Plant uptake of non-ionic chemicals fromsoil [J]. Chemosphere,1988,17:2299-2323.
    [184]Halsall C. J., Coleman P. J., Davis B. J. Polycyclic aromatic hydrocarbons in UK urban air [J]. Environmental Science and Technology,1994,28:2380-2386.
    [185]Yunker M. B., Macdonald R. W. Composition and origins of polycyclic aromatic hydrocarbons in the mackenzie river and on the beaufort sea shelf [J]. Arctic,1995,48:118-129.
    [186]Yunker M. B., Macdonald R. W., Vingarzan R. et al. PAHs in the Fraser River Basin:A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Compostion [J]. Org. Geochem., 2002,33:489-515.
    [187]Boonyatumanond Ruchaya, Wattayakorn Gullaya, Togo Ayako et al. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand [J]. Marine Pollution Bulletin,2006,52:942-956.
    [188]Budzinslih J. I., Bellocq J., et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary [J]. Marine Chemistry,1997,8:85-97.
    [189]Yamada Keita, Ishiwatari Ryoshi. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments:implications for paleoenvironmental changes over the past 85 kyr [J]. Organic Geochemistry,1999,30:367-377.
    [190]Bondada B. R., Oosterhuis D. M., Murphy J. B., et al. Effect of water stress on the epicuticular wax composition and ultrastructure of cotton(Gossypium hirsutum L.) leaf, bract, and boll [J]. Environ. Exp. Bot.,1996,36:61-69.
    [191]Brincat David, Yamada Keita, Ishiwatari Ryoshi et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments [J]. Organic Geochemistry,2000,31:287-294.
    [192]Zech Michael and Glaser Bruno.Improved compound-specific δ13C analysis of n-alkanes for application in palaeoenvironmental studies [J]. Rapid Commun. Mass Spectrom.,2008,22: 135-142.
    [193]Kolattukudy, P. E. Plant waxes [J]. Lipids 1970,5:259-275.
    [194]Faini Francesca, Labbe Cecilia, Coll Josep. Seasonal changes in chemical composition of epicuticular waxes from the leaves of Baccharis linearis [J]. Biochemical Systematics and Ecology, 1999,27:673-679.
    [195]Huang Yongsong, Lockheart Matthew J., Collister James W. et al. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation:hydrocarbons and alcohols [J]. Orgnic Geochemstry,1995,23:785-801.
    [196]Yakir D. and Israeli Y. Reduced solar irradiance effects on net primary productivity (NPP) and the δ13C and δ18O. values in plantations of Muss sp., Musaceae [J]. Geochimica et Cosmochimica Acta,1995,59:2149-2151.
    [197]Ohyama Kiyoshi, Suzuki Masashi, Kikuchi Jun et al. Muranaka Toshiya Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis [J]. Proc Natl Acad Sci USA,2009,106:725-730.
    [198]Burkey Kent O., Wilson Richard F., Wells Randy. Effects of canopy shade on the lipid composition of soybean leaves [J]. Physiologia Plantarum,1997,101:591-598.
    [199]Sakaki T., Tanaka K., Yamada M. General metabolic changes in leaf lipids in response to ozone [J]. Plant Cell Physiol.1994,35:53-62.
    [200]Somerville C., Browse J., Jaworski J. G.., et al. In:Buchanan B B, Gruissem W and Jones R L eds. Biochemistry & Molecular Biology of Plant [J]. Rockville:American Society of Plant Physiologists,2000, pp.456-567.
    [201]杜丽;李玉梅,陈践发等。脂肪酸酯含量比-植物生长环境的指示计[J]。甘肃科技,2008,24:72-74.
    [202]Orvar B. L., Sangwan V., Omann F., et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity [J]. Plant Journal,2000,23:785-794.
    [203]赵金梅,周禾,,孙启忠等。植物脂肪酸不饱和性对植物抗寒性影响的研究[J]。草业科学,2009,26:129-134。
    [204]Gelpi E., Schneider H., Mann J. and Oro T. Hydrocarbons of geochemical significance in microscopic algae [J]. Phytochemistrv1970,9:603-612.
    [205]Weete J. D. Algal and fungal waxes [C], In Chemistry and Biochemistry of Natural Waxes (Edited by Kolattukudy P. E.),1976, pp.349-418. Elsevier, Amsterdam.
    [206]Albro P. W. Bacterial waxes. In Chemistry and Biochemistry of Natural Waxes (Edited by Kolattukudy P. E.),1976, pp.419-445. Elsevier, Amsterdam.
    [207]Pu Yang, Huang J. H., Huang X. Y. Acyclic Alkanes in the Cave in Qingjiang, Soil over Heshang cave in Qingjiang, Hubei Province [J]. Journul of China University of Geosciences,2006, 17:115-120.
    [208]Thiel Volker, Blumenberg Martin, Pape Thomas.Unexpected occurrence of hopanoids at gas seeps in the Black Sea [J]. Organic Geochemistry 2003,34:81-87.
    [209]Innes H., Bishop, A. N., Head, I. M., et al. Preservation and diagenesis of hopanoids in Recent lacustrine sediments of Priest Pot, England [J]. Organic Geochemistry,1997,26:565-576.
    [210]Logan G. A., Smiley C. J., Eglinton G. Preservation of fossil leaf waxes in association with their source tissues, Clarkia, northern Idaho, USA [J]. Geochimica et Cosmochimica Acta,1995,4: 751-763.
    [211]Zanetti Florent, Nguyen Tu Thanh Thuy, Bertini Adele et al. Chemotaxonomical investigations of fossil and extant beeches. Ⅱ. Leaf lipids of Pliocene Fagus from the Upper Valdarno Basin, central Italy [J]. Compets. Rendus. Palevol,2007,6:515-525.
    [212]Judziewicz, E. J., Clark, L.G., Londono X. et al. American Bamboos [C]. Smithsonian Institution Press, Washington, D. C.392pp.
    [213]Olivier J., Otto T., Roddaz M., et al. First macrofossil evidence of a pre-Holocene thorny bamboo cf. Guadua (Poaceae:Bambusoideae:Bambuseae:Guaduinae) in south-western Amazonia (Madre de Dios-Peru) [J]. Review of Palaeobotany and Palynology 2009,153,1-7.
    [214]Worobiec Elybieta, Worobiec Grzegorz. Leaves and pollen of bamboos from the Polish Neogene [J]. Review of Palaeobotany and Palynology,2005,133:39-50.
    [215]Freeman K. H., Colarusso L. A.,2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene [J]. Geochimica et Cosmochimica Acta 65,1439-1454.
    [216]Welte D. H., Ebhardt, G,1968. Distribution of long chain n-paraffins and n-fatty acids in sediments from the Persian Gulf [J]. Geochimica et Cosmochimica Acta 32,465-466.
    [217]Schwark L., Zink K., Lechterbeck J. Reconstruction of Postglacial to Early Holocene vegetation history in terrestrial Mid-Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology,2002,30:463-466.
    [218]Hanisch S., Ariztegui D., Puttmann W. The biomarker record of Lake Albano, central Italy-Implications for Holocene aquatic system response to environmental change [J]. Organic Geochemistry,2003,34,1223-1235.
    [219]Wang Y. L., Fang X. M., Bai Y. et al. Distribution of lipids in modern soils from various regions with continuous climate [J]. Science in China Series D (Earth Sciences),2007,50: 600-612.
    [220]Howard P. J. A., Howard, D. M., Lowe L. E. Effects of tree species and soil physico-chemical conditions on the nature of soil organic matter [J]. Soil Biology and Biochemistry,1998,30:285-297.
    [221]Gulz P. G, Mu ller E., Prasad R. B. N.,1991. Developmental and seasonal variations in the epicuticular waxes of Tilia tomentosa leaves [J]. Phytochemistry 30,769-773.
    [222]Zimmerman J. K., Ehleringer J. R.,1990. Carbon isotope ratios are correlated with irradiance levels in the Panamian orchid Cataselum viridiflavum [J]. Oecologia,83:247-249.
    [223]DeNiro M. J., Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis [J]. Science,1977,197:261-263.
    [224]Henn M. R., Chapela I. H. Differential C isotope discrimination by fungi during decomposition of C3-and C4-derived sucrose [J]. Applied and Environmental Microbiology, 2000,66:4180-4186.
    [225]Hogberg P., Plamboeck A. H., Taylor A. F. S. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests [J]. Proc. Natl. Acad. Sci. USA,199996:8534-8539.
    [226]王永吉,吕厚远。植物桂酸体研究及应用[M].北京:海洋出版社,1993。
    [227]Lu H. Y, Wu N. Q., Yang X. D., et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅰ:phytolith-based transfer functions [J]. Quaternary Science Reviews,2006,(25):945-959.
    [228]张新荣,胡克,介冬梅.长白山北坡垂直植被带表土植硅体组合研究[J].地球学报,2006,27(2):169-173.
    [229]王伟铭,刘金陵,周晓丹.南京直立人洞穴沉积的植硅体气候指数研究[J].科学通报,2003,48(11):1205-1208.
    [230]Li, Rencheng, Cater J. A., Xie Shucheng et al., Phytoliths And microcharcoal at Jinluojia archeological site in Middle Reaches Of Yangtze River indicative of Paleoclimate and human Activity during the last 3000 Years [J]. Journal of Archaeological Science,2010,37:124-132.
    [231]Bremond Laurent, Alexandre Anne, Odile Peyron et al. Grass water stress estimated from phytoliths in West Africa [J]. Journal of Biogeography (J. Biogeogr.),2005,32:311-327.
    [232]Shahack-Gross R., Shemesh A., Yakir D., et al. Oxygen isotopic composition of opaline phytoliths:Potential for terrestrial climatic reconstruction [J]. Geochimica et Cosmochimica Acta, 1996,60:3949-3953.
    [233]Hodson M. J., Parker A. G, Leng M. J., et al. Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths:implications for palaeoecology and archaeology [J]. Journal of Quaternary Science,2008,23 (4):331-339.
    [234]Farquhar G. D., Cernusak L. A., Barnes B. Heavy water fractionation during transpiration [J]. Plant Physiology,2007,143:11-18.
    [235]Motomura H., Fujii T., Suzuki M. Silica Deposition in Relation to Ageing of Leaf Tissues in Sasa veitchii (Carriere) Rehder (Poaceae:Bambusoideae) [J]. Annals of Botany,2004,93: 235-248.
    [236]Montti L., Honaine M. F., Osterrieth M., et al. Phytolith analysisof Chusquea ramosissima Lindm. (Poaceae:Bambusoideae) and associated soils [J]. Quaternary International,2009,193: 80-89.
    [237]Piperno D. R., Pearsall D. M. The silica bodies of tropical American grasses:morphology, taxonomy, and implications for grass systematics and fossil phytolith identification [J]. Smithsonian Contributions to Botany,1998,85:1-40.
    [238]Lu, H.Y., Liu, Kam-biu. Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States [J]. Diversity and Distributions,2003,9:73-87.
    [239]Motomura H., Fujii T., Suzuki M. Distribution of Silicified Cells in the Leaf Blades of Pleioblastus chino (Franchet et Savatier) Makino (Bambusoideae) [J]. Annals of Botany,2000,85: 751-757.
    [240]Motmura H., Mita N., Suzuki M. Silic accumulation in long-lived leaves of Sasa veitchii(Carriere) Rehder (Poaceae-Bambusoideae) [J]. Annals of Botany,2002,90:149-152.
    [241]Webb E. A., Longstaffe F. J. The oxygen isotopic compositions of silica phytoliths and plant water in grasses:Implications for the study of paleoclimate [J]. Geochimica et Cosmochimica Acta, 2000,64:767-780.
    [242]Webb E., Longstaffef F. J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass [J]. Geochimica et Cosmochimica Acta,2002,66:1891-1904.
    [243]Ding T. P., Zhou J. X., Wan D. F., et al. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon [J]. Geochimica et Cosmochimica Acta,2008a, 72:1381-1395.
    [244]丁悌平,田世红,孙立等。植物中硅矿化作用的硅同位素示踪研究[J]。地球学报,2009, 30 (2):129-142.
    [245]Harrison C. C. Evidence for intramineral macromolecules containing protein from plant silicas [J]. Phytochem.,1996,41:37-42.
    [246]Piperno D. R., Holst Ⅰ., Wessel-Beaver L., Ansres T. C. Evidence for the control of phytolyth formation inCucurbitafruits by the hard rind (Hr) genetic locus:archaeological and eclological implications [J]. Proc. Natl. Acad. Sci. USA,2002,99:10923-10928.
    [247]吕厚远,吴乃琴,刘东生等.150 ka来宝鸡黄土植硅体组合季节性气候变化[J].中国科学D辑,1996,26(2):131-1
    [248]Gu Y. S., Pearsall D. M., Xie S. C., et al. Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from phytolith and charcoal records from Holocene sediments [J]. Journal of Biogeography,2008,35:325-341.
    [249]Moulia B. The biomechanics of leaf rolling [J]. Biomimetics,1994,2:267-281.
    [250]Hernandez, M. L., Passas, H. J., Smith, L.G. Clonal analysis of epidermal Patterning during maize leaf development [J]. Developmental Biology,1999,216:646-658.
    [251]Sangster, A. G, Parry D.W. Some factors in relation to bulliform cell silicification in the grass leaf [J]. Annals ofnBotany,1968,33:315-323.
    [252]Andrejko, M. J. & Cohen, A. D. Scanning electron microscopy of silicophytoliths from the Okefenokee swampmarsh complex. The Okefenokee swamp:its natural history, geology and geochemistry [C]. (ed. by A.D. Cohen, D. J. Casagrande, M. J. Andrejko and G.R. Best),1984, pp. 468-491. Wetland Surveys, Los Alamos, NM.
    [253]Fredlund G G, Tieszen L. T. Modern phytolith assemblages from the North American Great Plains [J]. Journal of Biogeography,1994,21:321-335.
    [254]Alexandre A, Meunier J D, Lezine A M, et al. Phytoliths:indicators of grassland dynamics during the late Holocene in intertropical Africa [J]. Palaeogeograph, Palaeoclimatology, Palaeoecology,1997,136:213-329.
    [255]Abrantes F. A.340,000 year continental climate record from tropical Africa news from opal phytoliths from the equatorial Atlantic [J]. Earth and Planetary Science Letters,2003,209: 165-179.
    [256]顾延生,秦养民,朱宗敏.浙江长兴中—晚更新世红土植桂体与分子化石记录及其环境意义[J].海洋地质与第四纪地质,2007,27(1):125-130
    [257]Boyd M. Phytoliths as paleoenvironmental indicators in a dune field on the northern Great Plains [J]. Journal of Arid Environments,2005,61:357-375.
    [258]Wallis L. A. Environmental history of northwest Australia based on phytolith analysis at Carpenter's Gap 1 [J]. Quaternary International,2001,83-85:103-117.
    [259]Rawlins Andrew J., Bul Ian D., Poirie Natacha, et al. The biochemical transformation of oak (Quercus robur) leaf litter consumed by the pill millipede (Glomeris marginata) [J]. Soil Biology & Biochemistry,2006,38:1063-1076.
    [260]Vandana P., Stromberg Caroline A. E., Habib A., et al. Dinosaur Coprolites and the Early Evolution of Grasses and Grazers [J]. Science,2005,310:1177-1180.
    [261]Shahack-Gross R., Finkelstein I. Subsistence practices in an arid environment:a geoarchaeological investigation in an Iron Age site, the Negev Highlands, Israel [J]. Journal of Archaeological Science,2008,35:965-982.
    [262]Tsartsidou G., Lev-Yadun S., Efstratiou N., et al. Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini):development and application of a Phytolith Difference Index [J]. Journal of Archeological Science,2008,35: 600-613.
    [263]Piperno D. R., Andres T. C., Stothert K. E. Phytoliths in Cucurbita and other Neotropical Cucurbitaceae and their occurrence in early archaeological sites from the lowland American Tropics [J]. Journal of Archaeological Science,2000,27:193-208.
    [264]Portillo M., Albert R. M., Henry D. O. Domestic activities and spatial distribution in Ain Abu Nukhayla (Wadi Rum, Southern Jordan):The use of phytoliths and spherulites studies [J]. Quaternary International,2009,193:174-183.
    [265]Lu Houyuan, Yang Xiaoyan, Ye Maolin et al. Millet noodles in Late Neolithic China [J]. Nature,2005,437:967-968.
    [266]Parker A. G., Eckersley L., Smith M. M. et al. Holocene vegetation dynamics in the northeastern Rub'al-Khali desert, Arabian Peninsula:a pollen, phytolith and carbon isotope study [J]. Journal of Quaternary Science,2004,19:665-676.
    [267]Smith F. A., Anderson K. B. Characterization of organic compounds in phytoliths: improving the resolving power of phytolith δ13C as a tool for paleoecological reconstruction of C3 and C4 grasses. Phytoliths:Applications in Earth [C]. In:Meunier, J.D., Colin, F. (Eds.), Phytoliths: Applications in Earth Science and Human History. A.A. Balkema, Rotterdam,2001. pp.317-327.
    [268]Kelly E., Amundson R. G., Marino B. D., et al. Stable Isotope Ratios of Carbon in Phytoliths as a Quantitative Method of Monitoring Vegetation and Climate Change [J]. Quaternary research, 1991,35:222-233.
    [269]Parr J. F., Sullivan L. A. Soil carbon sequestration in phytoliths. Soil Biology & Biochemistry,2005,37:117-124.
    [270]Smith F. A., White J. W. C. Modern calibration of phytolith carbon signatures for C3/C4 paleograssland reconstruction [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 207:277-304.
    [271]Piperno D. R., Sues H. Dinosaurs Dined on Grass [J]. Science,2005,310:1126-1128.
    [272]Ding T. P., Tian S. H., Sun L., et al. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle [J]. Geochimica et Cosmochimica Acta,2008b,72:5600-5615
    [273]Opfergelt S., Cardinal D., Henriet C., et al. Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device [J]. Plant Soil,2006a,285:333-345.
    [274]Piperno D. R. Phytolith analysis:An archaeological and geological perspective [C]. Academic Press:San Diego, etc.,280 pp,1987.
    [275]Carter J. A. Atmospheric carbon isotope signatures in phytolith-occluded carbon [J]. Quaternary International,2009,193:20-29.
    [276]王永吉。植物硅酸体化学成分的研究[J]。黄渤海海洋,1998,16(3):33-37。
    [277]Jones L H P and Handreck K A. Silica in soil, plants and animals [J]。Adv. Argon,1967, 19:107-149.
    [278]水茂兴,杜新,陈德富.法高效硅肥对水稻抗稻瘟病效果分析[J]。浙江农业学报,1995,7(4):289-292
    [279]Elbaum R., Melamed-Bessudo C., Tuross N. New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA [J]. Quaternary International, 2009,193:11-19.
    [280]Elbaum R., Weiner S., Albert R. M., et al. Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths [J]. Journal of Archaeological Science,2003,30:217-226.
    [281]Webb E. A., Longstaffe F. J. The relationship between phytolith-and plant-water 18O values in grasses [J]. Geochimica et Cosmochimica Acta,2003,67:1437-1449.
    [282]Treguer P., Nelson D. M,. Van Bennkom A. J., et al. The silica balance in the world ocean:a reestimate [J]. Science,1995,268:375-379.
    [283]Ding T. P., Ma G. R., Tian S. H., et al. Effect of rice growth on geochemical circle of silicon: Silicon isotope study on rice plants grew in field and laboratory [J]. Geochim.Cosmochim. Acta. 2005,69(10):A551.
    [284]Kellogg E. A. Phylogenetic aspects of the evolution of C4 photosynthesis [M]. C4 Plant Biology,1999, Chapter 12, Pages 411-444.
    [285]Lu Houyuan, Wang Yongji, Wang Guoan, et al. Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils [J]. Chinese Science Bulletin,2000,45 (19):1804-1808.
    [286]Smith Francesca A., White James W. C. Phytolith carbon isotope evidence of Neogene grassland composition, climate and CO2 [C]. (in Geological Society of America,2000 annual meeting, Anonymous,), Abstracts with Programs-Geological Society of America,2000,32 (7):196.
    [287]Arens, N.C., Jahren, A.H., Amundson, R. Can C plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide [J]. Paleobiology,2000,26 (1):137-164.
    [288]Piperno D. R. Stothert K E. Phytolith Evidence for Early Holocene Cucurbita Domestication in Southwest Ecuador [J]. Science,2003,299:1054-1057.
    [289]Krull E. S., Skjemstada J. O., Graetzb D., et al.13C-depleted charcoal from C4 grasses and the role ofoccluded carbon in phytoliths [J]. Organic Geochemistry,2003,34:1337-1352.
    [290]Macko S. A., Engel M. H., Hartley G., et al. Isotopic composition of individual carbohydrates as indicators of early diagenesis of organic matter in peat [J]. Chemical Geology, 1991,93:147-161.
    [291]Harrison C. C., Lu Y.,1994. In vivo and in vitro studies of polymer controlled silicification [J]. Bulletin de l'Institutoce anographique, Monaco 14,151-158.
    [292]Lawton J. R. Observations on the structure of epidermal cells, particularly the cork and silica cells, from flowering stem internode of Lolium temulentum L. (Germinae) [J]. Botanical Journal of the Linnean Society,1980,80:161-177.
    [293]苏英,周永恒,黄武等。石英玻璃与HF酸反应动力学的研究[J]。硅酸盐学报,2004,12:287-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700