用户名: 密码: 验证码:
海南岛中生代两期构造伸展作用的岩浆记录及其大陆动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海南岛位于欧亚板块、印度-澳大利亚板块及菲律宾板块的交汇处,亦是古特提斯构造域与太平洋构造域叠置区,由于其独特的大地构造位置,无疑是联系和理解印支半岛和华南陆块构造演化的关键地区。由于中生代基性岩在海南岛出露少,因此对三叠纪-白垩纪的基性岩的研究程度非常薄弱。本文在野外地质调研的基础上,通过岩石学、岩相学、元素地球化学、同位素地球化学及LA-ICP-MS锆石U-Pb定年等研究方法,对海南岛早中生代和晚中生代的侵入岩体及岩墙群的岩石特征、成岩时代、构造背景及源区性质进行了详细的研究,并据此探讨了海南岛中生代岩浆作用的大陆动力学意义,重点剖析了古特提斯洋在海南岛的东延和晚中生代以来的中国东南部的大陆动力学背景。本次研究主要取得以下几点认识:
     (1)通过LA-ICP-MS锆石U-Pb定年和岩石学特征分析,认为海南岛中生代时期存在两期与伸展作用有关的岩浆事件。第一期岩浆作用形成于240~230Ma,其代表性的岩浆岩主要有:兴隆辉绿岩-花岗岩双峰式侵入岩、万宁辉长岩及辉绿岩脉、分界洲正长岩;第二期岩浆作用形成于100~90Ma,其代表性的岩浆岩主要有:文市、三亚、叉河三地的基性岩墙群,千家岩体、屯昌岩体和保城岩体的花岗岩及其闪长质包体。
     (2)早中生代的基性岩都属于碱性系列,具有富集LREE、LILE (K, Rb, Ba,Th)和Ce,亏损Nb、Ta、Ti,部分还亏损Zr、Hf的岛弧型地球化学特征;早中生代的花岗岩和正长岩都显示出A型花岗岩的特征。Sr-Nd同位素组成显示源区具亏损地幔和EMⅡ地幔混合的特征。通过对微量元素的分析表明,早中生代的岩浆岩形成于造山后伸展的构造环境,其源区可能受到了俯冲流体交代作用的影响。岩石的形成机制可能为玄武质岩浆的底侵作用。
     (3)晚中生代岩浆岩属于弱碱性或亚碱性系列,具有明显富集LREE、LILE (Sr、K、Rb、Ba、Th)和Ce,亏损高场强元素Nb、Ta、Zr、Hf和Ti的特征。Sr-Nd同位素分析显示其源区具有亏损地幔和EMⅡ型地幔混合的特征。通过对微量元素的分析表明,晚中生代岩浆岩形成于板内拉张的构造环境。基性岩墙群可能来源于石榴石相地幔的部分熔融,且地幔源区曾受到俯冲流体的交代作用,在拉张的构造环境中,岩浆迅速上升冷却形成;侵入岩体是由来自地幔的高温基性岩浆注入下地壳较酸性的长英质岩浆并经历了岩浆混合作用形成的。
     (4)对比分析前人对海南岛及其邻区的早中生代岩浆作用及构造演化的研究结果,认为海南岛240~230Ma的岩浆作用与华南板块和印支板块碰撞引发的印支运动有关。东古特提斯洋在二叠纪末—三叠纪初的闭合导致海南岛的三亚块体和琼中块体沿九所-陵水断裂碰撞拼合,240~230Ma为印支造山的应力松弛阶段,形成了一系列造山后碱性岩浆岩。海南岛早中生代的构造演化受特提斯构造域的控制。
     (5)对比分析前人在东南沿海开展的晚中生代岩浆作用的研究成果,认为海南岛100~90Ma的岩浆作用与太平洋板块俯冲后撤引起的弧后拉张作用有关。海南岛90Ma左右的岩墙群与广东、福建同时代的岩墙群构成中国东南沿海90Ma广泛发育的、呈近北北东向展布的岩墙群带,它们具有相同成因机制,指示中国东南部在90Ma左右时经历了强烈区域性拉张作用。中国东南部在100~90Ma处于太平洋板块后撤引起的弧后拉张阶段。
The Hainan Island is located at the convergence of Eurasian plate, India-Australian plate and the Philippine plate, it is also the overlap between Paleo-Tethys tectonic domain and Pacific tectonic domain. Because of its unique geotectonic position, it is important to study the Hainan Island for understanding the structural evolution of Indo-China peninsula and continental segment of south China undoubtedly. As the Mesozoic mafic intrusive rocks in Hainan Island are less exposed, therefore, the research on Triassic Cretaceous basic rocks is very little. Based on the field geological survey, through petrology, petrography, geochemistry, isotope geochemistry and LA-ICP-MS zircon U-Pb dating methods, a more systematic study of the Hainan Island include Early Mesozoic magmatic rocks and the late Mesozoic mafic intrusive rocks and dyke swarms was done in this paper. The petrogenesis, nature of source, forming time and tectonic background of the rocks were studied in detail, and then the continental dynamics implications of the Mesozoic magmatism were dicussed, mainly on the Paleo-Tethys Ocean extending to Hainan Island and the Late Mesozoic background of continental dynamics of southeastern China.
     The conclusions are as follows:
     (1) LA-ICP-MS zircon U-Pb dating results and rock characteristics show that two stages of magmatism related with extension were devoleped during Mesozoic in Hainan Island. The first stage magmatism formed in the 240~230Ma, the representative rocks were:Xinglong bimodal intrusive rocks, Wanning gabbro and diabase veins, Fenjiezhou syenite. The second stage magmatism formed in 100~90Ma, the representive rocks were:Wenshi, Sanya, Chahe mafic dykes and granodiorite and its dioritic bodies of Qianjia rock, Tunchang rock and Baoting rock.
     (2) The early Mesozoic basic rocks belong to alkaline series, and are enriched in LREE, LILE (K, Rb, Ba, Th) and Ce, depleted in high field strength elements Nb, Ta,Ti, some further lock of Zr, Hf. The granite and syenite of early Mesozoic both show the characteristic of A-type granite. Sr-Nd isotope analysis showed that the source of the early Mesozoic magmatic rocks were mixed by depleted mantle and EMⅡ-type mantle. The early Mesozoic rocks from Hainan Island were formed in post-collison intraplate extension setting, and there source were influenced by dive liquid replacement. The formation mechanism of the rocks might be underplating of basaltic magma.
     (3) The late Mesozoic rocks belongs to weak alkaline or subalkaline series, show significant enrichment of LREE and LILE (Sr, K, Rb, Ba, Th) and Ce, deplet in high field strength elements Nb, Ta, Zr, Hf and Ti. Sr-Nd isotope analysis showed that the source area were mixed by depleted mantle and EMⅡ-type mantle. The late Mesozoic rocks were formed in an intraplate entensional tectonic envirornment, Mafic dyke swarm might be derived from partial melting of mantle garnet phase, and the mantle source has been inflenced by the subduction fluid, the magma increased rapidly in the extensional tectonic environment to form mafic dykes. The intrusive rocks were formed by high temperature mafic magma from mantle inject into the more acidic magma from lower crust, and experienced magma mixing.
     (4) Comparative analysis the predecessors study on magmatism and tectonic evolution of Hainan Island and its adjacent areas in the early Mesozoic, we concluded that the 240-230Ma magmatism in Hainan Islang were raleted with the collison of South China and Indo-China plate, The closure of Eastern Paleo-Tethys Ocean in the late Permian-early Triassic led to Sanya block and Qiongzhong block collided along the jiusuo-lingshuii fracture.240-230Ma may be the the extension phase after the collision, The tectonic evolution characteristic of Hainan Island in early Mesozoic controlled by the Tethyan tectonic domain.
     (5) Comparative analysis the predecessors study on late Mesozoic magmatism in the southeast coast, we concluded that the 100-90Ma magmatism in Hainan Island were related with the arc extension caused by the retreatment of pacific plate subduction. The dike swarms from Hainan Island at about 90Ma and the coevality dikes from Guangdong, Fujian province constitute dikes strip which is NNE orientated at about 90Ma of SE China, and they have the same cause of formation, show that it was at strong lithosphere extension stage at about 90Ma. The SE was in the arc extensional phase caused by retreatment of pacific plate.
引文
1 Abdalla J A, Said A A, Vison D. New geochemical and petrographic data on the Gabbro-Syenite Suite between Hargeysa and Berbera-Shiikh (northern Somalia). 1 Journal of African Earth Sciences,1996,23(3):363-373
    2 Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkli-calcic and alkaline post-orogenic (PO) granite magmatism:Petrologic constraints and geodynamic settings. Lithos, 1998,45:45-70
    3 Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two constasting, mantle and crustal, sources? A review. Lithos,2004,78:1-24
    4 Boynton W V. Geochemistry of the rare earth elements:meteorite studies. Henderson p. Rare earth element geochemistry. Amsterdam:Elsevier,1984,63-114.
    5 Carter A, Rogues D, Bristar C, et al. Understanding Mesozoic accretion in Southeast Asia:Significance of Triassic thermotectonism (Indosininan orogeny) in Vietnam. Geology,2001,29:211-214
    6 Cliff S J Shaw. The petrology of the layered gabbro intrusion, eastern gabbro, Coldwell alkaline complex, Northwestern Ontario, Canada:evidence for multiple phases of intrusion in a ring dyke. Lithos,1997,40:243-259
    7 Chen H H, Shu S, Hsu K J, et al.Tectonics of the Hainan Orogenic belt:A preliminary study.Memoir of lithospheric tectonic research,1992,1:43-48
    8 Chen Y L, Luo Z H, Zhao J X, et al. Petrogenesis and dating of the Kangding complex, Sichuan Province. Science in China(Serials D),2005,48 (5):622-634
    9 Christian P, Paquette J L. A mantle derived bimodal in the Hercynian Belt:Nd isotope and element evidence for a subduction-related rift origin of Late Devonian Brevenne metavolcanics, Massif Cental (France). Contributions to Mineralogy and Petrology,1997,129:222-238
    10 Davis J, Hawkesworth C. The petrogenesis of 30-20 Ma basic and intermediate volcanics from the Mogollon-Dutil Volcanic Field. New Mexico, USA. Contributions to Mineralogy and Petrology,1993,115:165-183.
    11 Eby G N. Chemical subdivision of the A 2 type granitoids:petrogenetic and tectonic imp lications. Geo logy,1992,20:641-644
    12 England P C and Thompson A B. p-T-t paths of regions metamorphism. Ⅰ:Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology,1984,25:894-928
    13 Gill J B. Orogenic andesites and piate tectonics. Berlin:Springer-Verlag,1981, 358-360
    14 Grazina S, Janina W, Jean-Clair D. Ferro-potassic A-typegranites and related rocks in NE Poland and S Lithuania:West of the East European Craton. Precambrian Research,2003,124:305-326
    15 Halls H C and Fahrig W F. Mafic Dyke Swarms.Geological Association of Canada Special Paper,1987,34,1-503
    16 Hart S R. Heterogeneous mantle domains Signature genesis and mining chronologies. Earth and Planetary Science Letters,1998,90:273-296
    17 Hawkesworth C, Turner S, Gallagher K, et al. Calc-alkline magrnatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res,1995.100:10271-10 286
    18 Hoek J D and Seitz H M. Continental mafic dyke swarms as tectonic indicators:An example from the Vestfold Hills, East Antarctica. Precambrian Research,1995,75 (3-4):121-139
    19 Hoffman A W, Jochum K P, Seufert M, et al. Nd and Pb in oceanic basalts:new constraints on mantle evolution. Earth and Planetary Science Letters,1986,79:33-45
    20 Hou G T, Liu Y L, Li J H. Evidence for~1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Science,2006a,27(4):392-401
    21 Hou G T, Wang C C, Li J H, et al. Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton. Tectonophysics,2006b,422:89-98
    22 Hsu K J, Li J L, Chen H H, et al. Tectonics of South China:key to Tectonophysics understanding west Pacific geology. Tectonophysics,1990,183:9-39
    23 Jackson S E, Pearson N J, Griffin L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211(1-2):47-69
    24 Jochum K P, M cdonough W F, Palame H, et al. Compositional constrains on the continental lithosperic mantle from trace elements in spinel peridotitex enoliths. Nature,1989,340:548-550
    25 Lan C Y, Chung S L, mertzam S A, et al. Mafic dikes from Chimen and Liehyu off southeast China:Petrochemical characteristics and tectonic implications. J. Geol. Soc. China,1995,38 (3):183-213
    26 Langmuir C H, Vocke R D, Hanson G N, et al. A general mixing eqution with applications to Icelandic basalts. Earth and Planetary Science Letters,1978,37: 380-392
    27 Le Bas M J, LeMaitre R W, Streckelsen A. A chemical classification of volcanic rocks based on the total alkli-slica diagram. J. Petrology,1986,27 (6):745-750
    28 Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. J. Asian Earth Sci.,2000,18:293-305
    29 Li X H, Li Z H, Li W H, et al. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. Journal of Geology,2006, 114:341-353
    30 Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites. Abstracts with Geological Society of America,1979,11:468
    31 Maruyama S, Liou J G, Seno T. Mesozoic and Cenozoic evolution of Asia. In:Ben-Avraham Z ed. The evolution of the Pacific Ocean margins, Oxford University Press, 1989,75-99
    32 Mactin H, Bonin B, Capdevila R et al. The Kui. ipealkline granitic complex (SE China):Petrology and geochemistry. J. Petrology,1994,35:983-1015
    33 Meschede M.1986. A method of discriminating between different type of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56:207-218
    34 Metcalfe I, Shergold I H, Li Z X. IGCP 321 Gondwana dispersion and Asian accretion:fieldwork on Hainan Island. Episodes,1993,16:443-447
    35 Metcalf R V, Smith E I. Introduction to special:Magmatism and extension. J Geophys Res,1995,100:10 249-10 253
    36 Mingram B, Trumbull R B, Littman S, et al. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:evidence for mixing of crust and mantle-derived components. Lithos,2000,54(1-2):1-22
    37 Pearce J A and Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol,1979,69:33-47
    38 Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. Thrope R S, Andesites. Wiley, New York,1982,525-548
    39 Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In:Hawkewprth C J and Norry M J (eds.). Continental basalts and mantle xenoliths. Nantwich:Shiva,1983,230-249
    40 Peng P, Zhai M G, Ernst R, et al. A 1.78 Ga Large Igneous Province in the North China Craton:The Xiong'er Volcanic Province and the North China dyke swarm. Lithos,2008,101(3-4):260-280
    41 Richards M S. Prospecting for Jurassic slabs. Nature,1999,397:203-204
    42 Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 1982,59:101-118
    43 Solpmovich L I. Postcollisional magmatism in the South Tien Shan Variscan Orogenic Belt, Kyrgyzstan:Evidence for high-temperature and high-pressure collision. Jpurnal of Asian Earth Sciences,2007,30:142-153
    44 Stolz A J, Jochum k P, Spettel B, et al. Fluid and melt-related enrichment in the subarc mantle:Evidence from Nb/Ta variations in island-arc basalts. Geology,1996, 24(7):587-590
    45 Sun S S and Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In:Saundeis AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ.,1989, (42):313-345
    46 Sun W D, Ding X, Hu Y H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters,2007,262: 533-542
    47 Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraint on "postorogenic" magmatism. Geology,1992,20:931-934
    48 Upadhyay D, Raith M M, Mezger K, et al. Mesoproterozuic rift-related alkaline magmatism at Elchvru Prakasam Alkaline Province, SE India. Lithos,2006, 89:447-477
    49 Van der voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia. Nature,1999,397:246-249
    50 Wallick B P, Steiner M B. Paleomagnetic and rock magnetic properties of Jurassic Quiet Zone Basalts, hole 801c in Procecding of Ocean Drilling Program. Science Results,1992,129
    51 Wang Z H. The origin of the Cretaceous gabbros in the Fujian coastal region of SE China:implications for deformation-accompanied magmatism. Contributions to Mineralogy and Petrology,2002,144:230-40
    52 Weaver B L&Tarney J. The Scourie dyke suite:petrogenesis and geochemical nature of the Proterozoic subcontinental mantle. Contrib Mineral Petra,1981,78:175-188
    53 Windley B F. The evolving cont Edinents (3rd ed). New York:John Wiley&Sons, 1995,1-526
    54 Xu D R, Xia B D, Bakun C N, et al. Geochemistry and Sr-Nd isotope systematic of metabasites in the Tunchang area, Hainan Island, South China:implications for petrogenesis and tectonic setting. Mineralogy and Petrology,2008,92:361-391
    55 Xu Y G, Ma J L, Frey F A, et al. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geologey,2005,224:247-271
    56 Yu Z Y, Shi Y S, Yang S F. Hainan island:A fragment of Gondwana. in:Wiley D G and Wong F L. eds.Terrane Analysis of China and the Pacific Rim. Circum-Pacific Council for Energy and M ineral Resources Earth Scinence Series 13,1990, Houston: 283-284
    57 Zhang K. J and Cai J X. NE-SW-trending Hepu-Hetai dextral shear zone in southern China:Penetration of the Yunkai Promontory of South China into Indochina. Journal of Structural Geology,2009,31:737-748
    58 Zhai Y, Seguin M K, Zhou Y, et al. New paleomagnetic data from the Huanan Block, China and Cretaceous tectonics in eastern China. Earth and Planetary Science Letters, 1992,73:163-188
    59 Zhou X M, Sun T, Shen W Z. et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,2006,29(1):26-33
    60 Zhou X M and Li W X. Origin of late Mesozoic igneous racks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,2000,326:269-287
    61 陈惠芳.海南岛前寒武纪结晶基底和科马提岩的发现.大地构造与成矿学,1991,15(1):62
    62 陈惠芳,侯威,梁新权.海南岛两项重要新发现.中国地质,1991, (6):29-30
    63 陈润生,林东燕,江剑丽.福建早侏罗世火山作用的动力学机制及大地构造学意义探讨.福建地质,2007,156(2):156-165
    64 陈新跃,王岳军,韦牧,等.海南公爱NW向韧性剪切带构造特征及其40Ar-39Ar年代学约束.大地构造与成矿学,2006,110(3):312-319
    65 丁式江.琼西戈枕侵入体的地质特征及其发现意义.大地构造与成矿学,1995,19(4):336-343
    66 丁式江,许长海,龙文国,等.海南屯昌变火山岩构造属性及其年代学研究.岩石学报,2002,18:83-90
    67 董传万,张登荣,徐夕生,等.福建晋江中-基性岩墙群的锆石SHRIMP U-Pb定年和岩石地球化学.岩石学报,2006,22(6):1969-1701
    68 董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007,18(11):1449-1461
    69 范蔚茗,彭头平,王岳军.滇西古特提斯俯冲-碰撞过程的岩浆作用记录.地学前缘,2009,16(06):291-302
    70 方中,徐士进,陈克荣,等.海南岛石碌群中双峰Sm-Nd同位素特征兼论石碌铁矿成矿背景.地球化学,1993,22(4):326-336
    71 方中,于津海,夏邦栋,等.海南岛海西一印支期花岗岩和暗色包体的Sm-Nd同位素特征.南京大学学报,1995,31(2):238-243
    72 高剑峰,陆建军,赖鸣远,等.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报(自然科学版),2003,39(6):844-850
    73 葛小月.海南岛中生代岩浆作用及其构造意义-年代学、地球化学及Sr-Nd同位素 证据:[博士学位论文].广州:中国科学院广州地球化学研究所,2003
    74 葛小月,李献华,周汉文.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究.地球化学,2003,32(1):11-20
    75 郭令智,施央申,马瑞士.华南大地构造格架与地壳演化,国际交流地质学术论文集(一).地质出版社,1980,109-116
    76 何家雄,姚永坚,刘海龄,等.南海北部边缘盆地天然气成因类型及气源构成特点.中国地质,2008,35(5):1007-1016
    77 侯贵廷,刘玉琳,李江海,等.关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨-以鲁西莱芜辉绿岩岩墙为例.岩石矿物学杂志,2005,24(3):81-481
    78 侯威.海南岛地壳演化的基本特征.大地构造与成矿学,1992,16(2):131-140
    79 胡宁,张仁杰,冯少男.海南岛泥盆-石炭系界限研究.地质科学,2002,37(3):312-319
    80 胡宁,张仁杰,冯少男.海南岛泥盆纪地层的发现及泥盆-石炭系界限划分.湖北地矿,2001,(4):23-30
    81 胡瑞忠,毕献武,苏文超,等.华南白垩-第三纪地壳拉张与铀成矿的关系.地学前缘.2004,11(1):153-160
    82 雷裕红,丁式江,马昌前,等.海南岛地壳生长和基底性质的Nd同位素制约.地质科学,2005,40(3):439-456
    83 李孙雄,云平,范渊,等.海南岛琼中地区琼中岩体石U-Pb年龄及其地质意义.大地构造与成矿学,2005,29(2):227-233
    84 李孙雄,范渊,莫位明,等.海南岛古生代弧状构造带的特征及其地质意义矿产与地质,2006,20(03):232-236
    85 李献华,周汉文,丁式江,等.海南岛洋中脊型变质基性岩:古特提斯洋壳的残片?科学通报,2000a,45(01):84-89
    86 李献华,周汉文,丁式江,等.海南岛“邦溪-晨星蛇绿岩片”的时代及其构造意义-Sm-Nd同位素制约.岩石学报,2000b,16(3):425-432
    87 李献华,周汉文,李正祥,等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学,2001,30(4):315-322
    88 李献华,胡瑞忠,铙冰.粤北白垩纪基性岩脉的年代学与地球化学.地球化学,1997,26(2):14-31
    89 李献华,周汉文,刘颖,等.粤西阳春中生代钾玄质侵入岩及其构造意义:岩石学和同位素地质年代学.地球化学,2000,29(6):513-526
    90 李献华,周汉文,刘颖,等.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球化学.地球化学,2001,30(1):57-65
    91 李晓勇,郭峰,王岳军.造山后构造岩浆作用研究评述.高校地质学报,2002,8(1):68-78
    92 刘本培,冯庆来,C.Chonglakmani D.滇西古特提斯多岛洋的结构及其南北延伸地学前缘,2002,9(3):161-171
    93 刘光鼎.中国海区及邻区地质地球物理特征.北京:科学出版社,1992
    94 刘海龄,阎贫,张伯友,等.南海前新生代基底与东特提斯构造域.海洋地质与第四纪地质,2004,24(1):15-26
    95 刘海龄,阎贫,刘迎春,等.南海北缘琼南缝合带的存在.科学通报,2006,51(增刊Ⅱ):92-101
    96 龙文国,丁式江,马大铨,等.海南岛前寒武纪基底组成及演化.地球科学-中国地质大学学报,2005,30(4):421-429
    97 倪金龙,夏斌,刘海龄.南海及邻区前中生代构造演化与东特提斯构造域.海洋地质动态,2005,21(10):11-16
    98 钱青,王焰.不同构造环境中双峰式火山岩的地球化学特征.地质地球化学,1999,27(4):29-32
    99 任纪舜,王作勋,陈炳蔚,等.中国及邻区大地构造图(1/500万)及简要说明书-从全球看中国大地构造.北京:地质出版社,1999,6-9
    100 宋彪,张玉海,万渝生.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26-30
    101 舒良树,周新民.中国东南部晚中生代构造作用.地质论评,2002,48(3):249-260
    102 水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系.地质学报,1989,60(3):204-216
    103 孙书勤,张成江,黄润秋.板块汇聚边缘玄武岩大地构造环境的Th、Nb、Zr判别.地球科学进展,2006,21(6):594-598
    104 孙书勤,张成江,赵松江.大陆板内构造环境的微量元素判别.大地构造与成矿学,2007,31(1):104-109
    105 孙涛,周新民.中国东南部晚中生代伸展应力体制的岩石学标志.南京大学学报(自然科学版),2002,38(6):737-745
    106 孙卫东,凌明星,汪方跃,等.太平洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学通报,2008,27(03):218-225
    107 唐红峰.海南岛晨星玄武岩地球化学特征及其构造环境含义.大地构造与成矿学,1999,23(4):323-327
    108 王大英,云平.海南乐东地区晚三叠世A型花岗岩基本特征.广东地质,1999,14(4):19-21
    109 王德滋.华南花岗岩研究的回顾与展望.高校地质学报,2004,10(3):305-314
    110 王强,赵振华,简平,等.武夷山洋坊霓辉石正长岩的锆石SHRIMP U-Pb年龄及其构造意义.科学通报,2003,48(14):1582-1588
    111 汪啸风,马大栓,蒋大海.海南岛地质(二)岩浆岩,1991,1-274
    112 王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征.岩石学报,2000,16(2):169-173
    113 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16):1589-1604
    114 夏邦栋,于津海.海南岛海西-印支期花岗岩的地球化学特征及成因.地球化学.,1990,(4):365-373
    115 肖庆辉,卢欣祥.花岗岩构造环境判别方法.见:肖庆辉等,花岗岩研究思维与方法.北京:地质出版社,2002,12-52
    116 谢才富,张开明,黄照先,等.琼东乐来地区侵入岩岩石谱系单位的地质特征及同位素年代学研究.华南地质与矿产,1999,(1):26-27
    117 谢才富,朱金初,赵子杰,等.三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄:对海南岛海西-印支期构造演化的制约.高校地质学报,2005,11(1):47-57
    118 谢桂青,胡瑞忠,贾大成.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,2002,31(4):229-337
    119 许德如,陈广浩,夏斌,等.海南岛几个重大基础地质问题评述.地质科学情报,2003,22(4):37-44
    120 许德如,林炯,梁新权,等.海南岛前寒武纪岩石圈演化的记录-基性岩类岩石地球化学证据.岩石学报,2001,17:589-609
    121 阎贫,刘海龄.南海及其周缘中新生代火山活动时空特征与南海的形成模式.热带海洋学报,2005,24(2):33-41
    122 杨经绥,吴才来,夏林圻,等.火成岩的10年研究进展和未来的挑战.地质评论,2009,55(3):406-419
    123 杨树锋,虞子冶,郭令智,等.海南岛的地体划分、古地磁研究及其板块构造意义.南京大学学报(地球科学),1989,1(1-2):38-46
    124 云平,雷裕红,吕嫦艳.海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意义.大地构造与成矿学,2005,29(2):234-241.
    125 云平,谢盛智,谢盛周,等.海南岛烟塘岩体的成因及其构造意义.华南地质与矿产,2004,(2):40-45
    126 云平,吴育波,谢盛周.海南岛燕山晚期典型侵入岩矿物成分特征及其地质意义广东地质,2004a,19(1):14-21
    127 云平,吴育波,谢盛周.海南岛燕山晚期典型侵入岩成因矿物学研究及其地质意义.华南地质与矿产,2004b,(4):1-8
    128 云平,谢盛周.海南岛晚中生代屯昌岩体的成因类型及其构造意义.广东地质,2003a,18(4):9-14
    129 云平,范渊,莫位任,等.海南岛晚中生代壳幔岩浆混合作用—来自闪长质淬冷包体的证据.华南地质与矿产,2003b,(2):30-35
    130 云平,莫位任.海南岛中部侏罗纪基性小岩体岩石地球化学特征及其构造意义.广东地质,2002,17(4):9-16
    131 张贵山,温汉捷,胡瑞忠,等.闽东南基性岩脉成因及动力学背景研究:Sr-Nd同位素、元素地球化学.岩石学报,2007,23(4):794-803
    132 张贵山,温汉捷,李石磊,等.闽北角山辉长岩的地球化学特征及其地球动力学意义.矿物学报,2009,29(2):243-251
    133 张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究的思考之三.岩石学报,2007(11):2683-2698
    134 张旗,金惟俊,李承东,等.“上山”找铜矿,“下山”找钨矿及其理由.地球科学,2009,34(4):547-568
    135 张旗,王焰,李成东,等.花岗岩的Sr-Yb分类及其地质意义.岩石学报,2006,22(9):2249-2269
    136 张旗,王元龙,金惟俊,等.造山前、造山和造山后花岗岩的识别.地质通报,2008a,27(1):1-18
    137 张旗,王焰,潘国强,等.花岗岩源岩问题—关于花岗岩研究的思考之四.岩石学报,2008b,24(6):1193-1204
    138 张业明,付建明,吴桂捷,等.海南岛昌江-邦溪地区海西构造层的变形构造特征及其动力学成因.华南地质与矿产,1997a,(2):43-50
    139 张业明,张仁杰,姚华舟,等.海南岛前寒武地壳构造演化.地球科学,1997b,22(4):395-400
    140 张岳桥,董树文,赵越,等.华北侏罗纪大地构造:综评与新认识.地质学报,2007,81(11):1462-1480
    141 赵军红.福建省基性岩的年代学和地球化学:晚中生代以来中国东南部地幔演化:[博士论文].广州:中国科学院地球化学研究所,2004
    142 赵越,徐刚,张拴红.燕山运动与东亚构造体制的转变.地学前缘,2004,11(3):319-328
    143 周新民.对华南花岗岩研究的若干思考.高校地质学报,2003,9(4):556-565
    144 周询若,吴克隆.漳洲Ⅰ-A型花岗岩.北京:科学出版社,1994,1-148
    145 朱捌,凌洪飞,沈渭洲,等.粤北下庄矿田晚白垩世辉绿玢岩的地球化学特征及其构造意义.地质评论,2008,54(1):27-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700