用户名: 密码: 验证码:
利用多种震源测量介质波速度变化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波作为“照亮地球内部的一盏明灯”,是我们获取地球内部结构、物质组成及状态等知识的最重要的研究手段。过去一个多世纪,由于观测技术的不断进步,通过对天然地震激发的地震波的研究,人们对全球地震分布、地球内部圈层结构及动力学过程、物质组成和横向不均匀性等方面的认识取得了巨大的进步,为我们较为完整地勾画出了地球整体结构的三维图像。也是基于对地震波传播特性的研究,人工地震勘探也已成为了解地球浅部能源分布、勘查构造环境的重要手段。
     然而,面对严重的地震灾害、强烈的火山喷发、地下水污染的日趋严重和资源的深度开发,都要求我们必须了解和掌握地球内部的运动变化过程,这些变化过程与地球内部介质的应力场和物性变化关系密切。由于地震波是目前所知唯一能够穿透整个地球的振动,因此研究地球介质应力场和物性变化最有效的手段依然是利用地震波,但这种对变化过程的研究与传统地震学研究的区别在于,要了解地球介质这种运动变化过程,我们必须研究不同时间地震波穿透变化了的地球介质所产生的细微变化,以获取地球介质的短期变化信息为前提。进入新世纪以来,由于观测技术和计算技术的发展,使测量和研究地震波速度的这种短期变化成为可能,并已在火山地震监测、介质物性变化检测等方面获得了应用,为我们研究地球的短期变化提供了很多新的信息。当前,通过精确测量地震波速度的变化探测地球介质的短期变化过程已成为地球物理学新的研究热点和未来重要的发展方向。
     本文围绕着地震波速度变化精确测量这一方向,在全面总结已有的理论研究成果、实验和数据处理方法的基础上,利用人工震源探测实验、天然重复地震波形分析和背景噪声提取Green函数方法等不同震源产生的地震波对地震波速变化这一问题进行了详细地分析与实验研究,通过对地震波速变化的精确测量,获取地球介质短期变化和地震孕育过程中的一些信息,得到了一些有意义的结果,并对引起波速变化的原因、实验的测量精度及有关方法中需要进一步完善和研究的问题、介质波速变化探测的实际应用等方面进行了探讨。本论文的主要工作大致可以分为以三个方面。
     第一,人工震源由于其时间的精确可控和激发波形的高度相似性,是当前地震波速变化精确测量最重要的手段。我们研究小组进行了为期30天的野外主动源探测实验,采用了两套地震观测系统,观测基线分别长250米和1千米。实验结果表明,利用相关检测方法,直达波的波速相对变化测量精度达到了10~(-4)至10~(-5)的量级,脉冲序列的相关检测可有效地提高信号的信噪比,增加信号的探测距离。利用尾波干涉方法测量得到波速相对日变化量达10~(-2)至10~(-3),测量精度是10~(-4),波速在具有长趋势变化的背景上表现出明显的日变化,这种日变化与实验场地附近深井观测的地下水位的日变化显示出同步的关系,并与大气压的变化成负相关关系。实验结果表明,由于应力变化引起的波速变化的敏感性可达10~(-6)/pa。
     第二,2003年7月和10月云南大姚地区先后发生了6.2、6.1级两次地震,震后我们在震区立即布设了较为密集的流动数字化地震观测台网,获得了大量的余震观测资料。利用这些余震的数字化波形资料,我们开发了一套基于距离的聚类分析法重复地震波形识别系统,以不同的波形相关系数为阈值识别出余震序列中的重复地震事件。对相关系数为0.9的两对重复地震事件在固定台站上的记录波形,采用尾波干涉方法对地震波速度变化进行了测量,但我们用天然重复地震并没有得到明显的波速扰动规律性的结果,这显示了由于天然重复构造地震在时间和空间分布上的不可控性,使得这种方法在速度变化监测的应用方面受到很大的限制,对此,尚需进行深入的研究。
     第三,用背景噪声提取Green函数进行地下介质结构的反演和波速变化的监测是近年来地震学研究中的一个新方向。我们利用云南数字地震台网,选取2008年3月21日云南盈江5.0级地震前后七个月的震区附近三个地震台的连续观测资料,提取了Green函数,用干涉的方法对Green函数的变化进行了测量,结果表明,地震发生前,孕震区出现波速的异常变化,不同的路径(台站对之间)波速相对变化有的在震前上升,有的在震前表现为下降,相对变化幅度可达10~(-3)至10~(-2)的量级。用同样的方法,对2009年7月3日云南姚安6.0级地震前后孕震区周围三个台站连续22个月的观测资料进行了分析,不同台站对之间介质的波速变化也显示出类似的现象,波速相对变化最大可达1%。这个结果表明,利用背景噪声提取Green函数通过干涉测量获取地球介质的波速变化的方法可成为对地震孕育过程监测的一种新手段。
     对地球介质波速变化的精确测量,是为了获取地球介质的短期变化信息,使我们对地球的认识从静态的3-D图像发展到与时间过程相关的、动态的4-D图像。本项研究工作是对4-D地震学研究的初步探索,是地震学研究中的一个新的发展方向,这种探索在获取更多的地球运动变化信息深化地球科学研究的同时,必将进一步拓展地震科学的应用领域。本文研究所涉及的三个方面,特别是人工主动源探测、背景噪声的应用将在今后4-D地震学的研究中发挥重要作用。
The seismic-wave, as a light illuminating the Earth's interior, is the most important research tool for us to get knowledge of the Earth's interior structure, material composition and state, and so on. Over the past time period more than a century, due to the continuous progresses in observation technology, through studies of seismic-waves excited by natural earthquakes, the human being has made tremendous progress in understanding the global distribution of earthquakes, the spherical structure, geodynamic process, material composition, lateral heterogeneity, etc, about the Earth's interior, which sketches out for us a relatively complete three-dimensional image of the overall Earth's structure. It is also based on the studies of the characteristics of seismic-wave propagation that the artificial seismic exploration has become an important means for understanding the energy distribution in the superficial part of the Earth and exploring the tectonic environment.
     However, we are now facing with the serious earthquake disasters, strong volcanic eruptions, seriously increased groundwater pollution, and excessively exploiting of the natural resources. All these require us to understand and grasp the processes of the moving and changing of the Earth's interior. These changing processes are closely related to the changes of the stress field and physical properties of the medium in the Earth's interior. The most effective means to study the stress field and the physical property changes of the Earth's medium is still the seismic waves that can penetrate through the deep interior of the Earth. Yet, the present study on the changing processes is different from the traditional seismological researches in that we have to study the subtle changes produced when the seismic-waves penetrate through the changed Earth's medium at different times to obtain information on short-term changes in the Earth's medium as a precondition to understand the Earth's medium change process. Based on the development of observation and computation techniques since the new century, it becomes possible to measure and study the short-term changes of seismic-wave velocity, which has been applied for monitoring the volcanic earthquakes, and test for changes in the physical property of the medium, and provided a lot of new information for us to study the short-term changes of the Earth. At present, it has become a new hot research issue in geophysics and an important future direction of development to explore the short-term change processes of the Earth's medium through the precise measurement of the seismic-wave velocity changes.
     In this dissertation, based on comprehensive summary of the existing theoretical research achievements, experiments and data processing methods, we focused on the precise measurement of seismic-wave velocity changes, conducted detailed analyses and experimental researches using exploration experiments by artificial sources, seismic waveform analyses by repeat natural earthquakes, and Green function methods from ambient noises. Through the precise measurement of seismic-wave velocity changes, we obtained some meaningful results, and discussed the reasons for seismic-wave velocity changes, the experimental measurement accuracy, the problems in the method that need further refinement and study, and practical applications of the exploration for seismic-wave velocity changes in the medium. The main researches of this dissertation can be divided into the following three aspects:
     First, an artificial seismic source is an import means at present to accurately measure the seismic-wave velocity changes, because its time can be precisely controlled, and the waveforms excited have a high degree of similarity. Our research group conducted a 30-day field exploration experiment using active sources and two sets of observation systems with baseline lengths of 250 meters and 1 km respectively. Experimental results show that the correlation test of the first arrivals made the measurement accuracy of seismic-wave velocity up to10~(-4) to 10~(-5). The impulse correlation test can effectively improve the signal to noise ratio, and increase the signal detection range. The relative diurnal variation of seismic-wave velocity changes measured by coda wave interference method was 10~(-2) to 10~(-3) with a measurement accuracy of 10~(-4), and the seismic-wave velocity displayed a clear diurnal variation on the background with a long-term trend change. The diurnal variation showed a synchronous relationship with the diurnal variation of groundwater level in a deep well near the earthquake prediction test site, and a negative correlation relationship with the atmospheric pressure. The experimental results showed that the sensitivity of seismic-wave velocity changes caused by the stress changes was 10~(-6)/Pa.
     Second, we deployed a relatively dense mobile network of digital instruments after the 2 seismic events with M6.2 and M6.1 occurred in Dayao, Yunnan province, in July and October 2003 respectively, and obtained a large number of observation data from the aftershocks. Taking advantage of these digital waveform data from the aftershocks, we developed a system for identification of repeat seismic waveforms based on distance-based clustering analysis method to identify the repeat seismic events in an aftershock sequence with different correlation coefficients as the thresholds for the aftershock sequences. For two pairs of waveform data with correlation coefficient of 0.9 from the repeat events at the fixed stations, we measured the seismic-wave velocity changes in medium using the coda-wave interference method, and did not get a result with apparent regularity of seismic-wave perturbation. This indicated that the method was much limited in application for monitoring the velocity changes due to the uncontrollable nature of the repeat earthquakes in the tempo-spatial distribution, which needs further studies.
     Third, it is a new direction developed in recent years in seismological researches to monitor the seismic-wave velocity changes and invert for the underground medium structure by Green functions extracted from the ambient noises. We selected data recorded continuously at three stations near the earthquake area 7 months before and after the March 21, 2008 Yingjiang M5.0 earthquake, Yunnan province, extracted Green functions from the ambient noises, and measured the Green function changes using the interference method. Results showed that anomalous changes of seismic-wave velocity occurred in the seismogenic area: some of the relative velocity changes for different paths (station to station) increased before the event, while some other decreased with the relative change amplitude up to a degree of 10~(-3)-10~(-2). Using the same method, we analyzed the data continuously observed 22 months before and after the July 3, 2009 Yao'an M6.0 Earthquake in Yunnan province at three stations near the seismogenic area. The seismic-wave velocity changes in medium between different stations also displayed the similar phenomena, and the maximum amplitude of the relative changes of seismic-wave velocity may get to 1%. This result indicated that the measurement of seismic-wave velocity changes by interference of Green functions extracted from the ambient noises can be used as a new means to monitor the seismicgenic process.
     It is for us to obtain the short-term change information in the Earth's medium by the precise measurement of seismic-wave velocity changes in the Earth's medium, so as to understand the Earth from the static 3-D images to the time-related and dynamic 4-D images. This research work is an initial exploration for the 4-D seismological studies, and a new direction of development for the seismological studies. This kind of exploration would obtain more information on changes in the Earth's movement, deepen the Earth science researches, and meanwhile would certainly further expand the application areas of seismology. The three aspects involved in this dissertation, especially the exploration by an artificial active source, and applications of the ambient noises will play an important role in the future studies of the 4-D seismology.
引文
巴特.地震学引论.许立达译,北京:地震出版社,1978.
    白超英,秦保燕.深部剪切形变对浅源地震的控制-立交模式有限源的模拟计算,西北地震学报,12(1):1-11,1990.
    布伦,博尔特.地震学引论.李钦祖,邹其嘉译,北京:学术期刊出版社,1988.
    蔡静观,张喜玲,李永莉等.云南地区近期强震孕育过程中波速比突变的时空演化特征.地震学报,19(05):535-541,1997.
    蔡静观,张喜玲.丽江、宁蒗强震的波速比时空演化图象和数值分析.中国地震,15(1):82-91,1999.
    陈棋福,李丽,李纲等.列车振动的地震记录信号特征.地震学报,26(6):651-659,2004.
    陈颙.地壳岩石的力学性能-理论基础与实验方法.北京:地震出版社,1988.
    陈颙,黄庭芳,刘恩儒.岩石物理学.安徽:中国科学技术大学出版社,2009.
    陈颙,李宜晋.地震波雷达研究展望:用人工震源探测大陆地壳结构.中国科学技术大学学报,37(8):813-819,2007.
    陈颙,史培军.自然灾害.北京:北京师范大学出版社,2007.
    陈颙,张先康,丘学林等.陆地人工激发地震波的一种新方法.科学通报,52(1):1-5,2007.
    陈颙,朱日祥.设立“地下明灯研究计划”的建议.地球科学进展,20(5):485-489,2005.
    刁桂苓,周仕勇,刘杰等.岫岩地震序列的平均波速比前兆异常.华北地震科学,23(4):1-5,2005.
    Han J.,Kamber M.数据挖掘:概念与技术.范明,孟小蜂等译,北京:机械工业出版社,2001,第一版
    房立华,吴建平,吕作勇.华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,52(3):663-671,2009.
    傅容珊,黄建华.地球动力学.北京:高等教育出版社,2001.
    何清.模糊聚类分析理论与应用研究进展.模糊系统与数学,12(2):89-94,1998.
    胡鸿翔,陆涵行,王椿镛等.滇西地区地壳结构的爆破地震研究.地球物理学报,29(2):133-143,1986.
    葛洪魁,林建民,王宝善等.编码震源提高地震探测能力的野外试验研究.地球物理学报,49(3):864-870,2006.
    Garland G.D.地球物理学引论:地幔、地核和地壳.陈颙,唐晓明,赵晓敏译,北京,地震出版社,1987.
    蒋长胜,吴忠良,李宇彤.首都圈地震“重复地震”及其在区域地震台网定位精度评价中的应用.地球物理学报,51(3):817-827,2008.
    阚荣举,韩源.云南遮放至马龙地学断面(说明书).北京:地震出版社,1992.
    李丽,彭文涛,李纲等.可作为新震源的列车振动及实验研究.地球物理学报,47(4):118-122,2004.
    罗桂纯,王宝善,葛洪魁等.气枪震源在地球深部结构探测中的应用研究进展.地球物理学进展,21(2):400-407,2006.
    罗桂纯,葛洪魁,王保善等.利用相关检测进行地震波速变化精确测量研究进展.地球物理学进展,23(1):56-62,2008.
    林建民,王宝善,葛洪魁等.大容量气枪震源特征及地震波传播的震相分析.地球物理学报,51(1):206-212,2008.
    林建民.基于人工震源的长偏移距地震信号检测和探测研究.中国科学技术大学博士学位论文,2008.
    林建民,王宝善,葛洪魁等.重复地震及其在人工探测中的潜在应用.中国地震,22(1):1-9,2006.
    梁慧云,张先康.各国地壳上地幔深地震反射研究计划与进展.地球物理学进展,11(1):42-60,1996.
    齐诚,陈棋福,陈颙.利用背景噪声进行地震成像的新方法.地球物理学进展,22(3):771-777,2007.
    秦保燕,张元生.波速比异常空间演化与主震位置预测.西北地震学报,22(1):6-10,2000.
    秦嘉政,叶建庆,蔡绍平等.云南大姚地震近源数字地震观测与现代新参数报告.北京:地震出版社,2005.
    宋方敏,汪一鹏,俞维贤等.中国活断层研究专辑-小江活动断裂带.北京:地震出版社,1998.
    苏有锦.2003年7月21日、10月16日云南大姚6.2级和6.1级地震预测预报回顾与讨论.国际地震动态,1:18-21,2004.
    唐杰.区域尺度深部探测的人工源震源特性及信号检测研究,中国科学技术大学博士学位论文,2008.
    汤效琴,戴汝源.数据挖掘中聚类分析的技术方法.微计算机信息,1:3-4,2003.
    王培德,Klinge K.,Krouger F.,et al.波形极相似的地震丛集中剪切波分裂的变化.地震学报,22(5):501-508,2000.
    徐果明,周惠兰.地震学原理.北京:科学出版社,1982.
    杨光亮,朱元清.可控震源在深部地壳探测中的应用.大地测量与地球动力学,27(5):72-81,2007.
    杨晓松,马瑾,张先进.大陆壳内低速层成因.地质科技情报,22(2):35-41,2003.
    张国民,傅征祥,桂燮泰等.地震预报引论.中国科学院研究生教学丛书,北京:科学出版社,2001.
    张学民,刁桂苓,束沛镒等.华北地区地下介质波速比值(Vp/Vs)研究.地震地质,26(2):138-150,2004.
    赵鸿儒,唐文榜,郭铁栓.超声地震模型试验技术及应用.北京:石油工业出版社,1986.
    郑秀芬,张春贺,孙振凯.美国“地球透镜计划”.国际地震动态,3:22-41,2004.
    周龙泉,刘桂萍,马宏生等.利用重复地震观测地壳介质变化.地震,27(3):1-9,2007a.
    周龙泉,刘杰,张晓东.2003年大姚6.2和6.1级地震前三维波速结构的演化.地震学报,29(1):20-29,2007b.
    庄灿涛.探索预报大城市直下型灾害性地震的一种技术措施.国际地震动态,8:35-37,2002.
    Adams R.D.,Source characteristics of some deep New Zealand earthquakes.New Zealand Journal of Geology and Geophysics,6(2):209-220,1963.
    Aggarwal Y.P.,Sykes L.R.,Armbrusterm J.,et al.Premonitory changes in seismic velocities and prediction of earthquakes.Nature,241:101-104,1973.
    Aki K.Characterization of barriers on an earthquake fault.J.Geophys.Res.,84:6140-6148,1979.
    Aki K.Asperities,barriers,characteristic earthquakes and strong motion prediction.J.Geophys.Res.,89(B7):5867-5872,1984.
    Aki K.Space and time spectra of stationary stochastic waves,with special reference to microtremors.Bull.Earthq.Res.Inst.,35:415-456,1957.
    Aki K.and Richards P.G.Quantitative Seismology.San Francisco,W.H.Freeman and company,1980.
    Aki K.Analysis of the seismic coda of local earthquakes as scattered wave.J.Geophys.Res.,74(2):615-631,1969.
    Aki K.and Chouet B.Origin of coda waves:Source,attenuation,and scattering effects.J.Geophys.Res.,80(23):3322-3342,1975.
    Anderson D.L.and Dziewonski A.M.Seismic tomography.Scientific American,251:60-68,1984.
    Anooshehpoor A.and Brune J.N.Quasi-static slip rate shielding by locked and creeping zones as an explanation for small repeating earthquakes at Parkfield.Bull.Seism.Soc.Amer.,91(2):401-403,2001.
    Anstey N.A.Correlation techniques-A review.J.Can.Soc.Expl.Geophys.,2(1):55-86,1966.
    Aster R.,McNamara D.,Bromirski P.Multi-decadal climate-induced variability in microseisms.Seismological Research Letters 79,doi:10.1785/gssr1.79.2.194,2008.
    Baeten G,Ziolkowski A.The Vibroseis Source.Oxford:Elsevier,1990.
    Baisch S.and Bokelmann G.H.Seismic waveform attributes before and after the Loma Prieta earthquake:Scattering change near the earthquake and temporal recovery.J.Geophys.Res.,106(B8):16323-16338,doi:10.1029/2001JB000151,2001.
    Bensen G.D.,Ritzwoller M.H.,Barmin M.P.,and et al.Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements.Geophys.J.Int.,169:1239 -1260, doi:10.1111/j.l365-246X.2007. 03374.x, 2007.
    Birch F. The velocity of compressional waves in rocks to 10 kilobars, part 1. J. Geophys. Res., 65: 1083-1102,1960.
    Birch F. The velocity of compressional waves in rocks to 10 kilobars, part 2. J. Geophys. Res., 66: 2199-2224,1961.
    Bondár I., Myers S. C., Engdahl E. R. et al. Epicentre accuracy based on seismic network criteria. Geophysical Journal International. 156(3):483-496,2004.
    Brenguier F., Shapiro N. M., Campillo M., and et al. Towards forecasting volcanic eruptions using seismic noise. Nature ,geosciences Published online,doi:10.1038/ngeo104,2008a.
    Brenguier F., Campillo M., Hadziioannou C., Shapiro N.M., Nadeau R.M., Larose E. Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, 321(5895):1478-1481,doi:10.1126/science.ll60943,2008b.
    Bungum H., Risbo T., Hjorenberg E. Precise continuous monitoring of seismic velocity variations and their possibility connection to solid tides. J. Geophy. Res., 11,82(33):5365-5373,1977.
    Campillo M. and Paul A. Long-range correlations in the diffuse seismic coda. Science, 299: 547-549,2003.
    
    Carter G. C. Coherence and time delay estimation. Proc. IEEE,75(2), 236-255,1987.
    Cassereau D., Fink M. Time-reversal of ultrasonic fields Part IH:theory of the closed time-reversal cavity, IEEE Trans. Ultrason., Ferroelectr. Freq. Control ,39(5):579-592,1992.
    Cespedes I., Huang Y., Ophir J. and Spratt S. Methods for estimation of subsample time delays of digitized echo signals. Ultrasonic Imaging, 17:142-171,1995.
    Chapman W. L.,Brown G. L., Fair D. W. The vibroseis system:A high-frequency tool. Geophysics 46:1657-1666,1981.
    Chaput J., Bostock M.G. Seismic interferometry using non-volcanic tremor in Cascadia. Geophys. Res. Lett., 34:L07304, doi:10.1029/2007/GL028987, 2007.
    Chouet B.,Aki K.,Tsujiura M. Regional variation of the scaling law of earthquake source spectra. Bull.Seism.Soc. Amer.,68(1):49-79,1978.
    Claerbout J. F. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33:264-269,1968.
    Cole S. Scattering analysis of passive seismic data. Stanford Exploration Project, Report61: 115-132,1989.
    Cox H. Spatial Correlation in Arbitrary Noise Field with Application to Ambient Sea Noise. J. Acoust. Soc. Am., 54:1289-1301,1973.
    De Fazio T.L., Aki K. and Alba J. Solid earth tide and observed change in the in situ seismic velocity. J. Geophys. Res., 78:1319-1322,1973.
    Derode A., Tourin A., Fink M. Random multiple scattering of ultrasound II :Is time-reversal a self-averaging process?. Phys. Rev. E, 64(3):036606-036618,2001.
    Derode A., Larose E., Tanter M., and et al. Recovering the Green's function from field-field correlations in an open scattering medium. J. acoust. Soc. Am., 113:2973-2976,2003.
    Dvorkin J., Nur A. and Chaika C. Stress sensitivity of sandstones. Geophysics, 61(2):444-455, 1996.
    Ellsworth W. L. 1975, Bear Valley, California, earthquake sequence of February-March. Bull. Seism. Soc. Amer., 65(2):483-506,1972.
    Furumoto M., Ichimori Y., Hayashi N., Hiramatsu Y. and Satoh T. Seismic wave velocity changes and stress build-up in the crust of the Kanto-Tokai region. Geophys. Res. Lett., 28:3737-3740, 2001.
    Furumoto J. and Tsuda T. Characteristics of Energy Dissipation Rate and Effect of Humidity on Turbulence Echo Power Revealed by MU radar-RASS Measurements. J. Atmos. Solar-Terr. Phys., 63(2-3): 285-294,2001.
    Geller R.J., Mueller C.S. Four similar earthquakes in Central California. Geophys. Res. Lett., 7(10):821-824, 1980.
    Gibbons S.J., Ringdal F. The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(l):149-166,2006.
    Gret A, Snieder R. and Ozbay U. Monitoring in situ stress changes in a mining environment with coda wave interferometry. Geophys. J. Int., 167:504-508, doi:10.1111/j.1365-246X.2006. 03097.x, 2006a.
    Gret, A., Snieder R. and Scales J. Time-lapse monitoring of rock properties with coda wave interferometry. J. Geophys. Res., 111, B03305, doi:10.1029/2004JB003354,2006b.
    Gret A., Snieder R., Aster R.C., Kyle P. R. Monitoring rapid temporal change in a volcano with coda wave interferomet ry. Geophys. Res. Lett., 32 : L06304, doi:10.1029/2004GL021143,2005.
    Gutenberg B., Richter C F. Seismicity of the earth and associated phenomena. Princeton N. J.: Princeton University Press, 1954.
    
    Herraiz M.and Espinosa A.F. Coda wave: A review. Pure Appl. Geophys., 125(4):499-577, 1987.
    Igarashi T, Matsuzawa T. and Hasegawa A. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. J.Geophys. Res., 108(B5), 2249, doi:10.1029 /2002JB 001920,2003.
    Ikuta R. and Yamaoka K. Temporal variation in the shear wave anisotropy detected using Accurately Controlled Routinely Operated Signal System (ACROSS). J. Geophys. Res., 109, B09305, doi:10.1029/2003JB002901,2004.
    Isacks B. L.,Sykes L. R.,Oliver J. Spatial and temporal clustering of deep and shallow earthquakes in the Fiji-Tonga kermadec region. Bull. Seism. Soc. Amer., 57(5):935-958,1967.
    Israel M. and Nur A. A complete solution of a one-dimensional propagating fault with nonuniform stress and strength. Journal of Geophysical Research, 84 (B5):2223-2234,1979.
    Jeffreys H.,Bullen K. E. Seismological Tables. London: British Association for the Advancement of Science, 1940.
    Johnson L. R. and Nadeau R. M. Asperity model of an earthquake: Static problem. Bull. Seism. Soc. Amer., 92:672-686, 2002.
    
    Kanamori H. Mechanics of Earthquakes. Ann. Rev. Earth & Planetary Sciences,22:207-237,1994.
    Kanamori H. and Fuis G. Variation of P-wave velocity before and after the Galway Lake earthquake (ML = 5.2) and the Goat Mountain earthquakes (ML = 4.7,4.7), 1975, in the Mojave Desert, California. Bull. Seism. Soc. Amer., 66(6):2017-2037,1976.
    Kanamori H. and Hadley D. Crustal structure and temporal velocity change in southern California. Pure and Appl. Geophys., 113:257-280,1975.
    Karageorgi E., Clymer R., McEvilly T. V. Seismological studies at Parkfield II :Search for temporal variations in wave propagation using vibroseis. Bull. Seism. Soc. Amer., 82:1388 -1415,1992.
    Karageorgi E., McEvilly T. V. and Clymer R. Seismological studies at Parkfield IV: Variations in controlled-source waveform parameters and their correlation with seismicity, 1987 to 1995. Bull. Seism. Soc. Amer., 87:39-49,1997.
    Korneev V. A., McEvilly T. V., Karageorgi E. D. Seismological Studies at Parkfield VIII: Modeling the Observed Travel-Time Changes. Bull. Seism. Soc. Amer., 90(3):702-708; doi: 10.1785/0119990038,2000.
    Lagendijk A. and van Tiggelen B.A. Resonant multiple scattering of light. Phys. Rep., 270:143 -215,1996.
    Larose E., Campillo M., Khan A., et al. Lunar Subsurface Investigated from Correlation of Seismic Noise. Geophys. Res. Lett., 32 (16):L16201,doi:10.1029/2005GL023518,2005.
    Leary P. C., Malin P. E., Phinny R. A., et al. Systematic monitoring of millisecond traveltime variations near Palmdale, California. J. Geophys. Res., 84: 659-666,1979.
    Lee W.H.K.,Igel H., Trifunac M.D.. Recent advances in rotational seismology. Seismological Research Letters, 80(3):479-490,2009.
    Li Y.G., Vidale J.E. Aki K., et al. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake. Science, 279(5348):217-219, doi :10.1126/science.279.5348. 217,1998.
    Li Y.G., Vidale J.E., Day S.M., et al. Postseismic fault healing on the rupture zone of the 1999 M7.1 Hector Mine, California, earthquake. Bull. Seism. Soc. Amer., 93(2):854-869, doi:10. 1785/0120020131,2003.
    Li Y.G., Chen P., Cochran E.S., et al. Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield earthquake and their implications. Earth Planets Space, 59:21-31, 2007.
    Li Y.G., Chen P., Cochran E. S., et al. Seismic Evidence for Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake. Bull. Seism. Soc. Amer., 96(4B):s349-s363, doi:10.1785/ 0120050803,2006.
    Lin F.C., Ritwoller M. H., Townend J., et al. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int., 170(2):649-666, doi: 10.111/j.1365-246 X.2007.03414x,2007.
    Lobkis O.I. and Weaver R.L. On the emergence of the Green's function in the correlations of a diffuse field. J. acoust. Soc. Am.,110(6):3011-3017,2001.
    Longuet-Higgins, M. A theory of the origin of microseisms. Phil, Trans. Royal Soc. London, Series A., Mathematical and Physical Sciences, 243 1-35, 1950.
    Maret G. Recent Experiments on Multiple Scattering and Localization of Light. In: Mesoscopic Quantum Physics, Les Houches Lecture Notes in Theoretical Physics, E. Akkermans, G. Montambaux and L. Picard Eds., Elsevier Sci. Publ., 147-179,1995.
    Marone C., Vidale J. E., Ellsworth W. Fault healing inferred from time dependent variations in source properties of repeating earthquakes. Geophys. Res. Lett., 22(22):3095-3098,1995.
    McEvilly T. V. and Johnson L. R. Stability of P and S velocities from central California quarry blasts. Bull. Seism. Soc. Amer., 64:343-353,1974.
    Montgomery D. R. and Manga M. Streamflow and water well responses to earthquakes. Science, 300:2047-2049,2003.
    Morgan W.J. Plate motions and deep mantle convection. Geol. Society of America Memoir, 132:7— 22, 1972.
    Nadeau R.M. and Johnson L. R. Seismological Studies at Parkfield VI: Moment Release Rates and Estimates of Source Parameters for Small Repeating Earthquakes. Bull. Seism. Soc. Amer., 88:790-814,1998.
    Nadeau R. M., and McEvilly T. V. Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science, 28S(5428):718-721 ,doi: 10.1126/ science.285.5428.718,1999.
    Nadeau R.M., Foxall W., McEvilly T.V. Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science, 267:503-507,1995.
    Nakahara H. A systematic study of theoretical relations between spatial correlation and Green's function in one-, two- and three-dimensional random scalar wavefields. Geophys. J. Int., 167:1097-1105, doi: 10.1111/j.l365-246X.2006.03170.x,2006.
    Nersesov I.L., Semenova A.N.,Simbireva I.G. Space-time distribution of the travel-time ratios of transverse and longitudinal wave in the Gram area. In: The Physical Basis of foreshocks, Nauka, Moscow, 1969.
    Nishenko S. P. and Buland R. A generic interval distribution for earthquake forecasting. Bull. Seism. Soc. Amer., 77(4): 1382-1399,1987.
    Niu F.L., Silver P.G., Daley T.M., et al. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature,454:204-209.doi:10.1038/nature07111, 2008.
    Niu F., Silver P. G., Nadeau R. M, et al. Migration of seismic scatterers associated with the 1993 Parkfield aseismic transient event. Nature, 426:544-548,2003.
    Niu F. and Perez A.M. Seismic anisotropy in the lower mantle: a comparison of waveform splitting of SKS and SKKS. Geophys. Res. Lett., 31,10.1029/2004GL021196,2004.
    Niu F., Levander A., Cooper C.M., Aeolus Lee C.T., Lenardic A., James D.E. Seismic constraints on the depth and composition of the mantle keel beneath the Kaapvaal craton. Earth Planet. Sci. Lett., 224:337-346,2004
    Nur A. and Simmons G. Stress-induced velocity anisotropy in rock: An experimental study. J. Geophy. Res,74(27):6667-6674,1969.
    Nur A.and Simmons G. The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett., 7:183-193,1969.
    O'Connell R. J. and Budiansky B. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79:5412-5426, 1974.
    Oliver J., Cook F., Brown L. COCORP and the continental crust. J.Geophy.Res., 88(B4):3329 -3347,1983.
    Peng J.Y., Aki K., Chouet B., et al. Temporal change in coda associated with the Round Valley, California, earthquake of November 23, 1984. J.Geophys.Res,92(B5):3507-3526, doi:10.1029/ J B092 iB05p03507, 1987.
    Poupinet G., Ellsworth W.L., Frechet J. Monitoring velocity variations in the crust using earthquake doublets:an application to the Calaveras Fault, California. J Geophys. Res., 89 (B7):5719-5731,1984.
    Ratdomopurbo A. and Poupinet G. Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt.Merapi(Indonesia). Geophys. Res.Lett., 22(7):775-778, 1995.
    Reasenberg P. and Aki K. A precise continuous measurement of seismic velocity for monitoring in situ stress. J. Geophys. Res., 79: 399-406, 1974.
    Rhie J. and Romanowicz B. Excitation of earth's incessant free oscillations by Atmosphere-Ocean -Seafloor coupling. Nature, 431:552-556,2004.
    Rice J.R. Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault. in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.F. Wong, 475-503, Academic Press, San Diego,CA, 1992.
    
    Richter, C. F. An instrumental magnitude scale, Bull. Seism. Soc. Amer., 25:1-32, 1935.
    Rickett J., Claerbout J. Acoustic daylight imaging via spectral factorization: helioseismology and reservoir monitoring. The Leading Edge, 18:957-960,1999.
    Roberts P. M., Phillips W. S., Fehler M. C. Development of the active doublet method for measuring small velocity and attenuation changes in solids. J. Acoust. Soc. Am.,91(6):3291 -3302,1992.
    Robinson D., Snieder R., Sambridge M. Using coda wave interferometry for estimating the variation in source mechanism between double couple events. J. Geophy. Res., 112, B12302, doi: 10.1029/2007JB004925,2007.
    Rost S. and Thomas C. Array seismology: Methods and applications. Rev. Geophys., 40(3), 1008, doi:10.1029/2000RG000100,2002.
    Roux P., Sabra K.G., Gerstoft P., et al. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett., 32:L19393, doi:10.1029/2005GL023803,2005.
    
    Rubin A. M. Using repeating earthquakes to correct high-precision earthquake catalogs for time-dependent station delays. Bull. Seism. Soc. Amer., 92(5): 1647-1659,2002.
    Sabra K.G., Gerstoft P., Roux P., et al. Extracting time-domain Green's function estimates from ambient seismic noise. Geophys. Res. Lett., 32:L03310, doi:10.1029/2004GL021862,2005a.
    Sabra K.G., Gerstoft P., Roux P., et al. Surfacewave tomography from microseism in southern California. Geophys. Res. Lett., 32:L14311, doi:10.1029/2005GL023155.,2005b.
    Saiga A., Yamaoka K., Kunitomo T., Watanabe T. Continuous observation of seismic wave velocity and apparent velocity using a precise seismic array and ACROSS seismic source. Earth Planets Space, 58:993-1005,2006.
    Sato H. Temporal change in scattering and attenuation associated with the earthquake occurrence- areview of recent studies on coda waves. Pure Appl. Geophys., 126(2):465-497, 1988.
    Savarensky E. F. and Peshkov A. B. The use of surface wave velocities for selection of models of crustal structure. Izv. Earth Physics, 10:79-87,1968.
    Savarensky, E. F. On the prediction of earthquakes. Tectonophysics, 6:17-27,1968.
    
    Schaff D. P., Beroza G. C. Shaw B. E. Postseismic response of repeating aftershocks. Geophys. Res. Lett., 25 (24):4549-4552, doi:10.1029/1998GL900192,1998.
    Schaff D.P., Beroza G. C. Coseismic and postseismic velocity changes measured by repeating earthquakes. J. Geophys. Res., 109:B10302,doi:10.1029/2004JB003011,2004.
    Schaff D.P., Richards P.G. Repeating seismic events in China. Science, 303:1176-1178,2004.
    Scholz C.H. Microfracturing and the inelastic deformation of rock in compression. J. Geophys. Res. 73:1417-1432,1968.
    Scholz C.H. The frequency magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seism. Soc. Amer., 58 (1):399-415,1968.
    Scholz C.H., Sukes L.R., Aggarwal Y.P. Earthquake prediction: a physical basis. Science, 181: 803-810,1973.
    Semenov A. N. Variation in the travel-time of transverse and longitudinal waves before violent earthquakes. Bull. Acad. Sci. USSR, Phys. Solid Earth, 3:245-248,1969.
    Sens-Schonfelder C., Wegler U. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys.Res.Lett., 33:L21302, doi:10.1029 /2006GL 027797,2006.
    Shapiro N., Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019491,2004.
    Shapiro N.M., Campillo M., Stehly L. et al. High resolution surface wave tomography from ambient seismic noise. Science, 307:1615-1618,2005.
    Silver P. G., Daley T. M., Niu, F. et al. Active source monitoring of corsswell seismic travel time for stress induced changes. Bull. Seism. Soc. Amer., 97:281-293, 2007.
    Snieder R. and Scales J.A.Time reversed imaging as a diagnostic of wave and particle chaos.Phys. Rev., E, 58, 5668-5675,1998.
    Snieder R., Gret A., Douma H. et al. Coda wave interferometry for estimating nonlinear behaviour in seismic velocity. Science, 295:2253-2255,2002.
    Snieder R. and Hagerty M. Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophys. Res. Lett., 31, L09608, doi:10.1029 /2004GL019670,2004a.
    Snieder R. Extracting the Green function from the correlation of coda wave: A derivation based on stationary phase. Phys. Rev.,E69:046610,doi:10.1103/PhysRevE.69.046610,2004b.
    Snieder R. and Vrijlandt M. Constraining the source separation with coda wave interferometry: Theory and application to earthquake doublets in the Hayward fault, California. J. Geophys. Res., 110, B04301, doi:10.1029/2004JB003317, 2005.
    Snieder R. The theory of coda wave interferometry. Pure Appl.Geophys., 163:455-473, doi10.1007 /s00, 024-005-0026-6,2006.
    Song X.D. and Richards P.G. Seismological evidence for differential rotation of the earth's inner core. Nature, 382:221-224,1996.
    Stehly L., Campillo M., Shapiro N. M. Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys. J. Int., 171: 223-230, doi:10.1111 /j.1365 -246X. 2007. 03492.x, 2007.
    Teal P. D., Abhayapala T. D., Kennedy R.A. Spatial correlation for general distributions of scatterers. IEEE signal processing lett., 9, 305-308,2002.
    Vidale J. E., Ellsworth W. L., Cole A. et al. Variations in rupture process with recurrence interval in a repeated small earthquake. Nature, 368:624-626,1994.
    Waldhauser F. and Ellsworth W. L. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seism. Soc. Amer., 90(6):1353-1368; doi: 10.1785/0120000006,2000.
    Walker W. F. and Trahey G. Limits on the performance of nearfield phase aberration correction. IEEE Ultrason. Symp., 2:1461-1465,1995.
    Wang B., Xu Z.Y., Yin X.C., et al. Experimental study of the earthquake recurrence period and the trend of post-seismic development. Pure Appl. Geophys., 163:2545-2560,0033-4553/06/122545 -16, doi:10.1007/s00024 -006-0139-6,2006.
    Wang B.S.,Zhu P. Chen Y., Niu F.L.,and Wang B. Continuous subsurface velocity measurement with coda wave interferometry. J.Geophys.Res. 113(B12313) ,doi:10.1029/2007JB005023,2008.
    Wapenaar K., Thorbecke J., Draganov D. Relations between reflection and transmission response of three-dimensional inhomogeneous media. Geophysical Journal International, 156:179-194, 2004.
    Weaver R.L., Lobkis O.I. Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies. Phys. Rev. Lett., 87, doi:10.1103/PhysRevLett.87.134301,2001.
    
    Weaver R.L. Information from seismic noise. Science,307:1568-1569,2005.
    Wegler U. and Sens-Schonfelder C. Fault zone monitoring with passive image interferometry. Geophys. J. Int., 168: 1029-1033, doi:10.1111/j.1365-246X. 2006.03284.x,2007.
    Wegler U., Nakahara H., Sens-Schonfelder C., Korn M. and Shiomi K. Sudden drop of seismic velocity after the 2004 Mw 6.6 mid-Niigata earthquake, Japan, observed with Passive Image Interferometry. J. Geophys. Res., 114, B06305, doi:10.1029/2008JB005869,2009.
    Wegler U., Luehr B. Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment. Geophysical Journal International, 147:579-592,2001.
    Wenzel H.G. The nanogal software: Earth tide data processing package ETERNA 3.30. Bull. Inf. Maree's Terr., 124,:9425-9439,1996.
    Whitcomb J.H., Garmany J.D.,Anderson D.L. Earthquake Prediction: Variation of Seismic Velocities before the San Francisco Earthquake. Science, 180:632-635,doi: 10.1126/science.180. 4086.632,1973.
    Wiens D. A. and Snider N. O. Repeating deep earthquakes: Evidence for fault reactivation at great depth. Science, 293:1463-1466,2001.
    Yamamura K., Sano O., Utada H., and et al. Long-term observation of in situ seismic velocity and attenuation. J.Geophys. Res., 108,1029/2002JB002005,2003.
    Yang Y., Ritzwoller M.H., Levshin A.L. et al. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int., 168:259-274,2007.
    Yao H., Beghein C., van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys. J. Int., 173:205-219, doi: 10.1111/j. 1365-246X.2007.03696.x,2008.
    Yao H., van der Hilst R.D., de Hoop M.V. Surface-wave tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps. Geophys. J. Int., 166:732-744, doi:10.1111/j.l365-246X.2006.03028.x.,2006.
    Yukutake H., Nakajima T., Doi K. In situ measurements of elastic wave velocity in a mine, and the effects of water and stress on their variation. Tectonophysics, 149:165-175,1988.
    Zheng S., Sun X., Song X., Yang Y. et al. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst.,9,Q0502, doi:10.1029/2008G C001981, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700