用户名: 密码: 验证码:
新型光纤激光器与高灵敏度光纤振动传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器是近年来快速发展的一个热点研究领域,在光纤通信、激光加工和光纤传感等方面拥有越来越广泛的应用。在激光加工领域,由于掺镱光纤激光器高输出功率和光束质量的特性,使其成为激光工业加工领域的优质光源正在得到普及应用。在光纤传感领域,光纤激光器的窄线宽输出特性使其成为光纤传感系统中不可多得的激光光源,能极大地提高光纤传感系统特别是涉及光纤布喇格光栅传感系统的测量灵敏度,为微振动和微应力传感场合提供解决方案。
     本文主要对掺铒环形光纤激光器的波长调谐输出特性和掺镱环形光纤激光器的波长调谐方式做了深入的实验研究,并制作由保偏光纤光栅作为输出镜的线性短腔单频掺铒光纤激光器,同时搭建了由光纤布喇格光栅法布里-玻罗腔(FP)和分布反馈式(DFB)半导体激光器组成的振动传感系统。论文主要工作内容归纳如下:
     首先,将光纤FP滤波器作为波长调谐器件搭建了可调谐环形掺铒光纤激光器,采用掺杂浓度为500ppm的掺铒增益光纤作为环形光纤激光器的增益介质,并相应地构建了光纤FP滤波器的波长调谐驱动电路。本文实验研究了环形掺铒光纤激光器的可调谐输出特性,包括激光的输出功率、输出线宽和波长可调谐范围等等,同时对高浓度掺铒光纤激光器的输出特性进行了实验研究,采用8000ppm高浓度掺铒增益光纤代替500ppm浓度掺铒光纤作为环形光纤激光器的增益介质,获得了从1513nm到1614nm覆盖C+L波段的激光宽调谐范围输出。文中也对掺镱光纤激光器的波长调谐方式进行了实验研究,提出以马赫-泽德干涉仪作为波长调谐器件的环形掺镱光纤激光器波长调谐方法,通过微调马赫-泽德干涉仪两光纤臂的长度之差来改变选择性透过的波长,实现了掺镱光纤激光器在1μm波段20nm以上的波长调谐范围。
     其次,线性短腔单频光纤激光器具有单频率和极窄线宽输出优点,是光纤布喇格光栅传感系统中不可多得的优质光源。由于线性短腔光纤激光器尺寸非常小,因此容易实现激光器工作温度控制,获得稳定和可调谐的激光波长输出。实验中采用保偏光纤刻写的光纤布喇格光栅作为光纤激光器的输出镜,制作了由高浓度掺杂铒增益光纤和光纤布喇格光栅组成的线性短腔掺铒光纤激光器,它在实验室环境下获得了小于3pm的稳定波长输出。
     最后,通过在载氢后的普通光纤上刻写两个反射峰波长位置相同的光纤光栅制成了光纤法布里-玻罗腔,并根据Pound-Drever-Hall(PDH)锁频原理搭建了由光纤法布里-玻罗腔和DFB半导体激光器组成的光纤光栅传感系统,制作了相应的驱动电路实现对半导体激光器的波长调谐输出和激光频率锁定控制。实验测试结果显示此光纤光栅传感系统对800Hz到6kHz振动频率传感性能优良,获得了大于20dB信噪比。为了分析传感系统的测量灵敏度,文中对激光器线宽引起系统噪声进行了分析,指出使用线性短腔单频掺铒光纤激光器作为探测光源时可望进一步改善现有光纤光栅传感系统的探测灵敏度。
In the past decades,fiber lasers have been rapidly developed and applied in vast areas such as optics communication,laser beam machining and fiber-optic sensing. Due to high power output and high beam quality of ytterbium-doped fiber laser,fiber lasers are getting more popular in laser beam machining applications as light source. Also,with the advantage of narrow line-width output,fiber lasers have become the essential light sources in fiber-optic sensing systems.They significantly increase the sensitivity of the fiber sensor,especially in the fiber Bragg grating sensing systems which provide lots of solutions to micro-strain and vibration sensing application.
     In thesis,experimental researches devoted to erbium-doped fiber laser and ytterbium-doped fiber ring lasers were carried out.A short-cavity fiber laser utilizing a fiber Bragg grating inscribed into a piece of polarization-maintaining optical fiber as the output coupler was successfully developed too.The laser output performance was investigated for its wavelength stability.Also,fiber-optic sensing system constructed with fiber Bragg grating and distributed feedback semiconductor laser was developed.The main works are listed as follows:
     First,a compact erbium-doped ring-shaped fiber laser has been developed by utilizing a tunable fiber Fabry-Perot filter as the tuning element.The performance of the ring-shaped fiber laser configured with a piece of 500ppm concentration erbium-doped fiber was investigated for its power output,line-width and wavelength tunability.Moreover,the performance of the ring-shaped fiber laser configured with a piece of 8000ppm high-concentration erbium-doped fiber was investigated for its larger wavelength tuning range from 1513nm to 1614nm coveting both C-band region and L-band region.Also,a ring-shaped all fiberized tunable ytterbium-doped fiber ring laser with tuning range over 20 nm has been developed by using a fiber Mach-Zenhder interferometer as an intra-cavity filter.Its wavelength tuning was achieved by changing the optical length difference between two interferometer arms.
     Second,single-frequency linear short-cavity fiber laser features the advantage of narrow line-width output,and thus can be an essential laser source in fiber Bragg grating sensing systems.The precise temperature control over linear cavity can be easily achieved to obtain stable and tunable laser frequency output.In our experiments,a single frequency linear short-cavity fiber laser utilizing a piece of high concentration erbium-doped fiber was obtained.The fiber laser utilized a fiber Bragg grating inscribed into a piece of polarization-maintaining optical fiber as the output coupler to ensure stable single frequency laser output.Laser frequency stability was measured to be less than 3pm over 10 minutes
     At last,a fiber Fabry-Perot cavity was fabricated by inscribing two fiber Bragg gratings in hydrogen-loaded single mode fiber.A fiber Bragg grating sensing system based on PDH frequency locking scheme was fabricated using fiber Fabry-Perot cavity and distributed feedback semiconductor laser.The experimental results indicate that it has high vibration sensibility from 800Hz to 6kHz with 20dB signal-to-noise ratio.The limitation to system sensitivity induced by laser line-width was analyzed.The result showed that the sensitivity of fiber Bragg grating sensing system can be greatly improved by utilizing a single-frequency linear short-cavity erbium-doped fiber laser.
引文
[1] Zefeng Wang,Yongming Hu,Zhou Meng, and Ming Ni, Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filter, Opt. Lett.,2008,33(1): 37-39.
    [2] T.Miya,Y.Terunuma,T.Hosaka,Miyashita, Ultimate low-loss single-mode fibre at 1.55μm, Electron. Lett, 1979,15(4): 106-108.
    
    [3] S.Y.Set,B.Dabarsyah,C.S.Goh,K.Katoh,Y.Takushima,K.Kikuchi,Y.Okabe and N.Takeda, A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm, OFC, 2001 p. MC4-1-3
    [4] M.Gupta,H.Jiao, and A.O'Keefe, Cavity-enhanced spectroscopy in optical fibers, Opt. Lett.,2002,27(21): 1878-1880.
    [5] R.W.P.Drever, et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B,1983,31(2): 79-105.
    [6] Snitzer.E, Optical maser action of Nd~(+3) in a barium crown glass, Physical Review Letters, 1961,7(12): 444-446.
    [7] Haus.H.A, Stretehed-paulse Mode-locking in Fiber Ring Laser: Theory and Experiment, IEEE J.Select.Topics Quantum Electron, 1995,31(3): 591-598.
    
    [8] Marc.Eichhorn, Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers, Opt. Lett.,2007,32(9): 1056-1058.
    [9] V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov,E. F. Kustov, and E. M. Dianov A, Bismuth-doped-glass optical fibers-a new medium for lasers and amplifiers, Opt.Lett.,2006,31(20): 2966-2968.
    [10] Zhang.ZX, Xu.K, Wu.J, et al., Two different operation regimes of fiber laser based on nonlinear polarization rotation: Passive mode-locking and multiwavelength emission,IEEE Photon.Technol.Lett.,2008,20(9-12):79-981.
    [11] Chien-Chih Lai,Hann-Jong Tsai, Kuang-Yao Huang,Kuang-Yu Hsu,Zhi-Wei Lin,Kuan-Dong Ji,Wen-Jun Zhuo, and Sheng-Lung Huang, Cr4+:YAG double-clad crystal fiber laser, Opt. Lett.,2008,33(24): 2919-2921.
    [12] Y.Zaouter,J.Boullet,E.Mottay,and E.Cormier, Transform-limited 100μJ, 340MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor, Opt.Lett.,2008,33(13): 1527-1529.
    [13] Stuart D. Jackson, Alex Sabella, Alex Hemming, Shayne Bennetts, and David G. Lancaster, High-power 83W holmium-doped silica fiber laser operating with high beam quality, Opt. Lett.,2007,32(3): 241-243.
    [14] Knight.J.C, Photonic crystal fibers and fiber lasers,J.Opt.Soc.Am. B,2007,24(8): 1661-1667.
    [15] Nishizawa, N; Mitsuzawa, H; Takayanagi, J, et al., Generation of 0.45-1.38 mu m visible to near-infrared widely broadened supercontinuum using Er-doped ultrashort-pulse fiber laser system J. Opt. Soc. Am. B,2009,26(3): 426-431.
    [16] Laurell, Par Jelger and Fredrik, Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser, Opt. Lett.,2007 32 (24): 3501-3503.
    [17] Chien-Hung Yeh, Fu-Yuan Shih, Chang-Tai Chen,Chien-Nan Lee,Sien Chi, Stabilized dual wavelength erbium doped dual-ring fiber laser, Opt. Exp. , 2007,15(21): 13844-13848.
    [18] C.A.Codemard,P.Dupriez,Y.Jeong,J.K.Sahu,M.Ibsen,and J.Nilsson, High-power continuous-wave cladding-pumped Raman fiber laser, Opt. Lett.,2006,31(15): 2290-2292.
     [19] A.D.Kersey,M.A.Davis,H.J.Patrick,M.LeBlanc,K.P.Koo,C.GAskins,M.A.Putn am,E.J.Friebele, Fiber grating sensors, J. Lightwave Technol., 1997,15(8): 1442-1463.
    [20] J.L.Zyskind, J. W. Sulhoff, J. Stone, D. J. Digiovanni, L. W. Stulz, H. M. Presby, A.Piccirilli,P.E.Pramayon, Electrically tunable, diode-pumped Erbium-doped fiber ring laser with fiber Fabry-Perot etalon, Electron.Lett., 1991,27(21): 1950-1951.
    [21] P.L.Scrivener, E.J.Tarbox, and P. D. Maton, Narrow linewidth tunable operation of Er3+-doped single-mode fiber laser, Electron. Lett, 1989,25(8): 549-550.
    [22] J.L.Zyskind, V.Mizrahi, D.J.DiGiovanni, J.W.Sulhoff, Short single frequency erbium-doped fibre laser, Electron. Lett, 1992,28(15): 1385-1387.
    [23] H.Y.Ryu, D.Lee , K.-D.Park,W.-L.Lee,H.S.Moon,S.K.Kim,H.-S.Suh, Discretely tunable erbium-doped fiber ring laser selecting ITU-T grids of 273 channels x 50-GHz spacing in C- and L-band regions, Appl.Phys.B,2004,79(5): 583-586.
    [24] A. Bellemare, M.Karbsek, C. Riviere, F. Babin,H.Gang, V. Roy and G.W Schinn, A broadly tunable erbium-doped fiber ring laser: experimentation and modeling, IEEE J.Select.Topics Quantum Electron,2001,7(1): 22-29.
    [25] C.-H. Yeh, T. T. Huang, H.-C. Chien, C.-H. Ko, and S. Chi, Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation, Opt. Exp.,2006,15(2): 382-386.
    [26] Chien-Hung Yeh, Ming-Ching Lin, Sien Chi, A tunable erbium-doped fiber ring laser with power-equalized output, Opt. Exp.,2006,14(26): 12828-12831.
    
    [27] D.Richter, D.G.Lancaster, and F.K.Tittel, Development of an automated diode-laser-based multi-component gas sensor, Appl.Opt.,2000,39(24): 4444-4450.
    
    [28] M.Buric,J.Falk,K.P.Chen,L.Cashdollars, and A.Elyamani, Piezo-electric tunable fiber Bragg grating diode laser for chemical sensing using wavelength modulation spectroscopy Opt. Exp.,2006,14(6): 2178-2183.
    
    [29] J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi,D. Romanini,P.Szriftgiser, Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,Appl.Phys.B,2006,83(2): 261-266.
    
    [30] Han Young Ryu, Won-Kyu Lee, Han Seb Moon, Ho Suhng Suh, Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy, Opt. Commun.,2007,275 (2): 379-384.
    
    [31] Michael P. Buric, QingQing Wang, Joel Falk, Kevin P. Chen, and John Canning, 2008, Chemical Sensing Using a Piezo-Electric Tunable Erbium Fiber Ring Distributed Feedback laser, 2008 Joint Conference of the Optp-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology, Sydney, Australia, p. 574-575.
    [32] Changgeng Ye, Mali Gong, Ping Yan ,Qiang Liu,Gang Chen, Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifer with 50W average power, Opt. Exp.,2006,14(17): 7604-7609.
    [33] S.S.Cai, B.Wu Y.H.Shen and, Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal, Optics & Laser Technology,2007,39(6): 1115-1119.
    [34] C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, 83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber, IEEE Photon. Technol. Lett.,2004,16(8): 1825-1827.
    [35] M. Siebold , J.Hein , C.Wandt , S.Klingebiel , F.Krausz , and S.Karsch, High-energy, diode-pumped, nanosecond Yb:YAG MOPA system, Opt. Exp.,2008,16(6): 3674-3679.
    [36] W.H. Loh, R.I. Laming, 1.55μm phase-shifted distributed feedback fiber laser, Electron. Lett,1995,31(17): 1440-1442.
    [37] S.A.Babin, D.V.Churkin, A.E. Ismagulov, S.I. Kablukov, and M.A. Nikulin, Single frequency single polarization DFB fiber laser, Laser Phys. Lett.,2007,4(6): 428-432.
    [38] Yu.O. Barmenkov , A.V. Kir'yanov , P. P'erez-Mill'an , J.L. Cruz and M.V. Andr'es, Experimental study of a symmetrically-pumped distributed feed-back Erbium-doped fiber laser with a tunable phase shift, Laser Phys. Lett.,2008,5(5): 357-360.
    [39] Y. Shen, Y.Qiu, B.Wu, W.Zhao, S.Chen, T.Sun and K.T.V.Grattan, Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range, Opt. Exp.,2007,15(2): 363-370.
    [40] V.M.Paramonov,A.S.Kurkov,O.I.Medvedkov,V.B.Tsvetkov, Single-polarization cladding-pumped Yb-doped fiber laser, Laser Phys.Lett.,2007,4(10):740-742.
    [41] Luo Jian-Hua, Liu Bo, Lan Yu-Wen, Yuan Shu-Zhong, Wang Li-Wei, The experimental study of a polarization orthogonal single-longitudinal-mode distributed Bragg reflector fiber laser, Microwave and Optical Technology Letters,2008,50(6): 1658-1660.
    [42] G.A. Ball, W.H. Glenn, Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors, J. Lightwave Technol., 1992,10(10): 1338-1343.
     [43] F. Liegeois, Y. Hernandez, G. Peigne, F. Roy and D. Hamoir, High-efficiency, single longitudinal mode ring fibre laser,Electron.Lett.,2005,41(13): 729-730.
    [44] S.-Y. Chou, C.-H. Yeh and S. Chi, Unitizations of double-ring structure and Erbium-doped waveguide amplifier for stable and tunable fiber laser, Laser Phys. Lett. ,2007,4(5): 382-384.
    [45] Peter Barnsley, Paul Urquhart, Colin Millar, and Michael Brierley Fiber Fox-Smith resonators: Application to single longitudinal mode operation of fiber lasers, J. Opt. Soc. Am. A, 1988,5(8): 1339-1346.
    [46] Y. Cheng, J.T.Kringlebotn, W.H.Loh, R.I.Laming, and D.N.Payne, Stable single frequency traveling-wave fiber loop laser with integral saturable absorber based tracking narrow-band filter, Opt. Lett., 1995,20(8): 875-877
    [47] Zhou Meng, George Stewart, and Gillian Whitenett Stable single-mode operation of a narrow-linewidth, linearly Polarized, erbium-fiber ring laser using a saturable absorber, J. Lightwave Technol.,2006,24(5): 2179-2183.
    [48] C.-H. Yeh, C.-T. Chen, C.-N. Lee,F.-Y. Shih and S. Chi, Using ring-filter and saturable-absorber-based filter for stable erbium fiber laser, Laser Phys. Lett.,2007,4(7): 543-545.
    [49] S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, 1083 nm single frequency ytterbium doped fiber laser, Laser Phys.Lett.,2005,2(10): 498-501.
    [50] N. Kishi, T. Yazaki, Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning, IEEE Photon.Technol. Lett., 1999,11(2): 182-184.
    [51] Xin Zhang, Ning Hua Zhu, Liang Xie, and Bo Xue Feng, A Stabilized and Tunable Single-Frequency Erbium-Doped Fiber Ring Laser Employing External Injection Locking, J. Lightwave Technol.,2007,25(4): 1027-1033.
    [52] Yamashita, Kevin Hsu and Shinji, Single-Polarization Generation in Fiber Fabry-Perot Laser by Self-Injection Locking in Short Feedback Cavity, J. Lightwave Technol.,2001,19(4): 520-526.
    [53] Mansuripur, Khanh Kieu and Masud, Fiber laser using a microsphere resonator as a feedback element, Opt. Lett.,2007,32(3): 244-246.
    [54] Jong H.Chow, Ian C.M.Littler, Glenn de Vine, David E.McClelland and Malcolm B.Gray, Phase-Sensitive Interrogation of Fiber Bragg Grating Resonators for Sensing Applications, J. Lightwave Technol.,2005,23(5): 1881-1889.
    [55] K.O.Hill, Y.Fujii, D.C.Johnson,B.S.Kawasaki, Photosensitivity in Optical Fiber Waveguides Application to Reflection Filter Fabrication ,Appl.Phys.Lett. , 1978,32(10): 647-649.
    [56] A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, Distributed feedback fiber laser sensor for hydrostatic pressure, IEEE Photon. Technol. Lett.,2003,15(12): 1758-1760.
    [57] Yiping Wang, Yiping Cui, and Binfeng Yun, A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements With a Wavelength-Swept Fiber Laser, IEEE Photon.Technol. Lett. ,2006,18(14): 1539-1541.
    [58] Ady Arie, Boaz Lissak, and Moshe Tur, Static Fiber-Bragg Grating Strain Sensing Using Frequency-Locked Lasers, J. Lightwave Technol.,1999,17(10): 1849-1855.
    [59] Chang.J, Wang.Q, Zhang.X, et al, A fiber bragg grating acceleration sensor interrogated by a DFB laser diode, Laser Physics,2009 19(1): 134-137.
    
    [60] A.D.Kersey, M.J.Marrone, Fiber Bragg Grating High-Magnetic-Field Probe, 10th Optical Fiber Sensors Conference, 1994, p. 53-56.
    [61] W.W.Morey, GMeltz, and J.M.Weiss, Recent advances in fiber grating sensors for utility industry applications, Proc. SPIE, Self Calibrated Intelligent Optical Sensors and Systems,1995,p.90-98.
    [62]胡江,苏怀智,张跃东,光纤传感技术在大坝裂缝预测和监测中的可行性探讨,水电自动化与大坝监测,2008,32(5):52-57.
    [63]Edgar A.Mendoza,Cornelia Kempen,Allan Panahi,Craig Lopatin,Miniature fiber Bragg grating sensor interrogator(FBG-Transceiver)system for use in aerospace and automotive health monitoring systems:Proc.SPIE,2007,p.67580B-1-10.
    [64]Nobuaki Takahashi,Akihiro Hirose and Sumio Takahashi,Underwater Acoustic Sensor with Fiber Bragg Grating,Optical Review,1997,4(6):691-694.
    [65]石智栋,张永庆,侯培虎,刘统玉,光纤光栅温度在线监测系统在电力安全监测中的应用,ShangDong Science(山东科学),2008,21(6):45-49.
    [66]Deniz Gurkan,Dmitry Starodubov,Xiaojing Yuan,Monitoring of the Heartbeat Sounds using an Optical Fiber Bragg Grating Sensor,IEEE Sensors Journal,2005,1-2:306-309.
    [67]Augustin Grillet,Damien Kinet,Jens Witt,Marcus Schukar,Katerina Krebber,Fabrice Pirotte,and Annick Depre,Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,IEEE Sensors Journal,2008,8(7):1215-1222.
    [68]G.L.Cote,R.M.Lec,M.V.Pishko,Emerging biomedical sensing technologies and their applications,IEEE Sensors Journal,2003,3(3):251-266.
    [69]B.Lissak,A.Arie,and M.Tur,Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,Opt.Lett.,1998,23(24):1930-1932.
    [70]M.LeBlanc,A.D.Kersey,T.-E.Tsai,Sub-nanostrain strain measurements using a pi-phase shifted grating,Proc.12 Int.Conf.Optical Fiber Sensors(OFS 1997),Williamsburg,VA,1997,p.28-30.
    [71]Wentao Zhang,Yuliang Liu and Fang Li,Fiber Bragg grating hydrophone with high sensitivity,Chinese Optics Letters,2008,6(9):631-633.
    [72]J.T.Kringlebotn,J.Archambault,L.Reekie,and D.N.Payne,Er~(3+):Yb~(3+)-codoped fiber distributed-feedback laser,Opt.Lett.,1994,19(24):2101-2103
    [73]Fanting Kong,Liping Liu,Yi Zhou,Shou-Huan Zhou,Y.C.Chen,Phase locking of short-pulse Q-switched lasers, Opt. Commun.,2009,282(8): 1622-1625.
    [74] Snitzer .E, H.Po, F Hakimi.et al, Double-Clad,Offset Core Nd Fiber Laser, OFS, New Orleans, 1988,p. PD5-1~4.
    [75] Xinhuan Feng, Hwa-yaw Tarn, and P. K. A. Wai, Stable and uniform multiwavelength erbiumdoped fiber laser using nonlinear polarization rotation, Opt. Exp.,2006 14(18): 8205-8210.
    [76] D.-M. Liang, X.-F. Xu, Y. Li, J.-H. Pei, Y. Jiang, Z.-H. Kang, and J.-Y. Gao, Multiwavelength fiber laser based on a highbirefringence fiber loop mirror, Laser Phys. Lett. ,2007,4(1): 57-60.
    [77] C. Y. Chen, M. M. Choy, M. J. Andrejco, M. A. Saifi and C. Lin, A widely tunable erbium-doped fiber laser pumped at 532 nm, IEEE Photon. Technol. Lett.,1990,2(1): 18-20.
    [78] C.R.A.Cochlain, R.J.Mears, Broadband tunable single frequency diode-pumped erbium doped fibre laser, Electron. Lett.,1992,28(2): 124-126.
    [79] D.A.Smith, M.W.Maeda, J.J.Johnson, J.S.Patel, M.A.Saifi and A.Von.Lehman, Acoustically tuned erbium-doped fiber ring laser,Opt.Lett., 1991,16(6): 387-389.
    [80] N. Park, J. W. Dawson and K. J. Vahala, All fiber, low threshold,widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter, Appl. Phys.Lett.,1991,59(19): 2369-2371.
    [81] S.Yamashita, Widely tunable erbium-doped fiber ring laser covering both C-bandand L-band, IEEE J.Select.Topics Quantum Electron,2001,7(1): 41-43.
     [82] Yew Tai Chieng and R. A. Minasian, Tunable Erbium Doped Fiber Laser with a Reflection Mach-Zehnder Interferometer, IEEE Photon.Technol. Lett., 1994,6(2): 153-156.
    [83] Asano, Shinji Yamashita and Masahiro, Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning, Opt. Exp.,2006,14(20): 9299-9306.
    [84] Bowers, P. D. Humphrey and J. E., Fiber-birefringence tuning technique for an erbium-doped fiber ring laser, IEEE Photon. Technol. Lett.,1993,5(1): 32-34.
    [85] Morey, G.A. Ball and W. W., Compression-tuned single-frequency Bragg grating fiber laser, Opt. Lett., 1994,19(23): 1979-1981.
    [86] Gong-Ru Lin, Hai-Han Lu, and Jun-Yuan Chang, Wavelength Tunability of a Coupler and Air-Gap Etalon Controlled High-Efficiency L-Band Mode-Locked Erbium-Doped Fiber Laser,IEEE Photon. Technol. Lett.,2006,18(21): 2233-2235.
    [87] Xinyong Dong, Nam Quoc Ngo, and Ping Shum,Hwa-Yaw Tam and Xiaoyi Dong, Linear cavity erbium-doped fiber laser with over 100 nm tuning range, Opt. Exp.,2003,11(14): 1689-1694.
    [88] J. J. Pan, Y. Shi, and T. Zhu, Continuously tunable high power fiber lasers with 11 nm tunability, OFC'99, San Diego, CA, 1999,p. 199-201.
    [89] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, J. Feinberg, 40-nm-Wide Tunable Fiber Ring Laser With Single-Mode Operation Using a Highly Stretchable FBG, IEEE Photon.Technol.Lett.,2001,13(11): 1167-1169.
    [90] A.Othonos, Fibre Bragg Gratings, Rev. Sci. Instrum, 1997,68: 4309-4341.
    
    [91] A. Dandridge, A. B. Tveten, and T. G.Giallorenzi, Homodyne demodulation scheme for fiber optic sensors using phase generated carrier, IEEE J.Select-Topics Quantum Electron, 1982,QE-18(10): 1647-1653.
    [92] N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J.W. Hand, L. Zhang, and I. Bennion, Ultrasonic hydrophone based on short in-fiber Bragg gratings, Appl. Opt.,1998,37(34): 8120-8128.
    [93] M. Song, S. Yin, and P. B. Ruffin, Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer, Appl. Opt.,2000,39(7): 1106-1111.
    [94] A.D.Kersey, T.A.Berkoff, and W.W.Morey, Fiber-optic Bragg gratin strain sensor with drift-compensated high resolution interferometric wavelength shift detection, Opt. Lett.,1993,18(1): 72-74.
    [95] Sceats, J. Canning and M. G.,π-phase-shifted periodic distributed structures in optical fibers by UV post-processing, Electron.Lett.,1994,30(16): 1344-1345.
    [96] M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings, Opt.Lett., 1999,24(16): 1091-1093.
    [97] Bram J.J. Slagmolen, Malcolm B.Gray,karl GBaigent, and David E.McClelland, Phase-sensitive reflection technique for characterization of a Fabry-Perot interferometer, Appl. Opt.,2000,39(21): 3638-3643.
    [98] Black, Eric D., An introduction to Pound-Drever-Hall laser frequency stabilization, Am. J. Phys.,2001,69(1): 79-87.
    [99] Kenneth A. Strain, Guido Mu¨Her, Tom Delker, David H. Reitze, David B. Tanner,James E. Mason, Phil A. Willems, Daniel A. Shaddock, Malcolm B. Gray,Conor Mow-Lowry, and David E. McClelland, Sensing and control in dual-recycling laser interferometer gravitational-wave detectors, Appl. Opt. ,2003,42(7): 1244-1256.
    [100] Willems,James E.Mason and Phil A., Signal extraction and optical design for an advanced gravitational-wave interferometer,Appl.Opt.,2003,42(7): 1269-1282.
    [101] Guido Mu¨Her, Tom Delker, David B. Tanner, and David Re, Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection, Appl. Opt.,2003,42(7): 1257-1268.
    [102] Taylor, Xiaoke Wan and Henry F., Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors, Opt. Lett.,2002,27(16): 1388-1390.
    [103] Yonghang Shen, Tong Sun, Kenneth T. V. Grattan, and Mingwu Sun, Highly photosensitive Sb/ Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability, Opt.Lett.,2003,28(21): 2025-2027.
    [104] F. Auzel, D. Meichenin, A. Mendorioz, et al, Determination of the quantum efficiency of Er~(3+) in glasses: indirect and direct methods, Journal of Luminescence, 1997,72-74: 152-154.
    [105] H.L. An, X.Z. Lin, E.Y.B. Pun, H.D. Liu, Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter, Opt. Commun.,1999,169(1-6): 159-165.
    [106] Edvard Cibula, Denis Donlagic, Miniature fiber-optic pressure sensor with a polymer diaphragm, Appl. Opt.,2005,44(14): 2736-2744.
    [107] Yuhang Li , Limin Tong, Mach-Zehnder interferometers assembled with optical microfibers or nanofibers, Opt. Lett.,2008,33(4): 303-305.
    [108] W. S. Man, Y. Z. Xu, H. Y. Tam and M. S. Demokan, Frequency Instability in Er/Yb Fiber Grating Lasers due to Heating by Nonradiative Transitions, IEEE Photon. Technol. Lett.,1999,11(11): 1390-1392.
    [109] B.S.Kawasaki, K.O.Hill, D.C.Johnson,Y.Fujii, Narrow-Band Bragg Reflectors in Optical Fibers, Opt. Lett., 1978,3(2): 66-68.
    [110] Russell, D. P. Hand and P. St. J., photoinduced refractive-index changes in germanosilicate fibres, Opt. Lett., 1990,15(2): 102-104.
    [111] J.P.Bernardin , N.M.lawandy Dynamics of the formation of Bragg gratings in germanosilicate optical fibers, Opt. Commun., 1990,79(3-4): 194-199.
    [112] Yonghang Shen, Jinglei He, Tong Sun and Kenneth T.V.Grattan, High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing, Opt. Lett.,2004,29(6): 554-556.
    [113] C. Fiori, R.A.B. Devine, 1986, Ultraviolet irradiation induced compaction and photoetching in amorphous thermal SiO2: Material Research Society Symposium Proceedings, p. 187-195.
    [114] P.J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, High-Pressure H2 Loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers, Electron. Lett,1993,29(13): 1191-1193.
    [115] H. Patric, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, Annealing of Bragg Gratings in Hydrogen-loaded Optical Fiber, Journal of Applied Physics, 1995,78(5): 2940-2945.
    [116] T. Edorgan, V. Mizrahi, P.J.Lemaire, Decay of Ultraviolet-Induced Fiber Bragg Gratings, Journal of Applied Physics, 1994,76(1): 73-80.
    [117] D.L. Williams, B.J. Ainslie, J.R Armitage, J.R. Kashyap, Direct observation of UV induced bleaching of 240 nm absorption band in photosensitive germanosilicate glass fibres, Electron. Lett., 1992,28(4): 369-371.
    [118] G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett., 1989,14(15): 823-825.
    [119] Malo.B,Hill.K.O,Bilodeau.F,Johnson.D.C, Albert. J, Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques, Electron.Lett,1993,29(18): 1668-1669.
    [120] K.O.Hill, B.Malo, F.Bilodeau, D.C.Johnson, and J.Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys.Lett.,1993,62(10): 1035-1037.
    [121] D.Z.Anderson, V.Mizrahi, T.Erdogan, and A.E.White, Production of in-fiber gratings using a diffractive optical element Electron.Lett.,1993,29(6): 566-568.
    [122] Yu.O.Barmenkov,J.L.Cruz,M.V.Andres,Polarization switchable Erbium-doped all-fiber laser, Laser Phys. Lett.,2008,5(9): 676-679.
    
    [123] R.V.Pound, Electronic Frequency Stabilization of Microwave Oscillators, Rev. Sci. Instrum., 1946,17(11): 490-505.
    [124] Ferguson,Feng Zhou, Frequency stabilization of a diode-laser-pumped microchip Nd:YAG laser at 1.3 ,um, Opt. Lett., 1991,16(2): 79-81.
    
    [125] D.S.Elliott, R.Roy, S.J.Smith, Extracavity laser band-shape and bandwidth modification, Phys.Rev.A,1982,26(1): 12-18.
    [126] T.-C. Zhang, J.-P. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A.Bramati, V. Jost, M. D. Levenson, and E. Giacobino, Quantum noise of free-running and externally-stabilized laser diodes, Opt. Commun., 1995,7(4): 601-613.
    [127] Timothy Day, Eric K. Gustafson, and Robert L. Byer, Sub-Hertz Relative Frequency Stabilization of Two-Diode Laser-Pumped Nd:YAG Lasers Locked to a Fabry-Perot Interferometer, IEEE J.Select.Topics Quantum Electron, 1992,28(4): 1106-1117.
    [128] A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10~5, Opt. Lett.,2001,26(20): 1562-1564.
    [129] M.W.Regehr, F.J.Raab, and S.E.Whitcomb,Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation, Opt. Lett.,1995,20(13): 1507-1509.
    [130] M. Evans, N. Mavalvala, P. Fritschel, R. Bork, B. Bhawal, R. Gustafson, W. Kells, M. Landry,D. Sigg, R. Weiss, S. Whitcomb, and H. Yamamoto, Lock acquisition of a gravitational-wave interferometer, Opt.Lett.,2002,27(8): 598-600.
    [131] Daniel A. Shaddock, Malcolm B. Gray, Conor Mow-Lowry, and David E. McClelland, Power-recycled Michelson interferometer with resonant sideband extraction, Appl. Opt. ,2003 42(7): 1283-1295.
    [132] Evan M. Lally, Bo Dong, and Anbo Wang, Laser Linewidth Reduction at 1550nm Using the Pound-Drever-Hall Technique, Optical Combs, Frequency References and Spectroscopy Rochester, NY, 2008, p. LTuF5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700