用户名: 密码: 验证码:
基于征兆分析的多故障智能诊断方法的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业及科学技术的迅速发展,机械设备和工业系统日趋大型化、网络化和自动化,功能不断增多,结构愈加复杂,设备系统故障的相互耦合和影响以及多故障特性,对传统的故障诊断技术如何适应复杂设备系统实际安全运行的需要提出了挑战。
     由于多故障自身的复杂性和不确定性,一种故障可能由多个原因引起,而一个原因又可能引发多种故障,从而成为一种多对多的复杂映射关系。不同的故障和征兆构成了不同的集合或关联域,使得多故障的诊断成为了一个复杂的问题。在一般以单故障诊断方法应用于多故障的系统中,诊断结果与实际故障存在着较大的差异。因此,需要深入分析征兆和多故障的描述和映射关系,研究多故障及其征兆的智能故障诊断方法。
     论文分析了当前多种故障诊断方法,以及在单一故障和多故障诊断中的应用。指出了当前多故障诊断存在的不足、已有方法在多故障诊断中的局限性、以及研究多故障诊断的意义。讨论了故障征兆的描述和多故障的模型描述,根据实际故障体系中故障和征兆多对多的复杂对应关系,研究适用于多故障诊断的故障征兆矢量及其描述,构建了“征兆—故障”映射关系。同时通过不同故障体系中征兆对于多故障的表现,将多故障可由组成其的单一故障的征兆表示的,定义为可分离型多故障;而组成多故障的征兆相互耦合,难以按一般数学方法解耦的成单一故障的,定义为征兆—故障耦合型的多故障,对于这种多故障,本文基于人工神经网络进行了诊断的研究。
     论文按照多故障的征兆特征表现,建立了故障征兆矢量的空间描述,以空间欧氏距离、相似程度、匹配度等指标来作为诊断的依据,同时讨论了归一化和模糊控制在故障征兆矢量取值中的应用。对于“可分离型”多故障,分别讨论了基于逻辑运算、相关系数、征兆的故障概率的多故障诊断方法,该三种方法均是通过数学计算,对征兆进行分析,直观的将待诊断故障与已知故障之间的关系和差异用数值表示出来,以此作为多故障诊断的重要依据和参考.
     针对多故障复合发生诊断的问题,提出了一种基于征兆邻搜索优化聚类的自组织映射多故障诊断算法,建立了具有三级分析结构的SOM网络的多故障诊断模型;给出了一种基于半径搜索的优化算法,以空间最小距离对故障征兆索引集的邻搜索进行了优化和改进,减小了聚类偏差,使得优化后聚类结果的准确率得到较大的提升,突出了SOM网络自组织映射的能力。仿真及应用结果表明优化后提高了多故障诊断的准确率。
     针对离散型征兆的多故障,提出了基于径向基函数与自联想记忆神经网络结合的诊断算法,利用Hopfield网络将征兆与神经元映射记忆样本故障,使网络状态与故障空间对应;根据Hopfield网络的联想记忆能力,建立故障征兆组合和故障间的映射关系并进行辨识,通过网络的反馈将待诊断故障进行联想匹配,利用RBF网络将匹配后的征兆与故障映射,结果表明有效的实现多故障诊断。
     提出了一种改进Hopfield网络的异联想记忆多故障诊断算法,将故障及其征兆分别对应到网络输出和输入,构造联想记忆权值矩阵,并建立网络最小偏差的优化求解方法,使网络输出趋向能量最小的顶点,实现单一故障或多故障的诊断。算法对于输入错误的状态数据有一定的容错性,同时可以方便的对方法进行扩展运算速度快,仿真及应用结果表明该算法对于多故障诊断具有较高的准确性。
     在实际获取到的数据基础上,分析了故障诊断和病害诊断的区别和联系。验证了本文所提出的多种方法的通用性。仿真结果显示本文提出的几种多故障诊断方法能够模拟人的思维模式,较为有效的识别汽轮发电机组故障体系和番茄病害体系中的单一故障(病害)和多故障(病害),提供诊断策略支持,符合故障诊断的需求。
     最后讨论了本文提出的各个方法的优缺点和适用范围,对全文的研究工作进行了总结,并进一步指出了工作的研究方向。
With the rapid development of modern industry and sci-technology, the industry equipments increasingly become large-scaled, continued, networked, high-speeded and automated, which accordingly leads to more and more functions, and more and more complicated structures. Meantime, multi-fault occur simultaneously in mechanical equipment has become frequently, which requires the new development of intelligence fault diagnosis.
     Due to single fault may be caused by many reasons, and one reason may cause many faults. Thus, there is a need to form a multiple-to-multiple map. As different faults and symptoms form different aggregations or regions, the multi-fault diagnosis has become a very complicated task. In traditional intelligence fault diagnosis process, the characters of multi-fault are not deeply analyzed and processed. The methods and systems designed to diagnose multi-fault are incomplete, the systematic research is not yet developed widely. Therefore, there are differences between diagnosis results and actual faults in ordinary fault diagnosis system. More researches for designing a multi-fault intelligence diagnosis method and symptoms based multi-fault description are needed. Especially, researches on the description and diagnosis of symptoms are needed as well.
     Many fault diagnosis methods and applications are analysed in this paper. Aiming at the fault that its symptom is numerical or can be converted to numeral, the definition of multi-fault diagnosis is proposed. At the same time, the deficiencies and limitations of existing multi-fault diagnosis methods are analysed. The relationship between multi-fault diagnosis and mono-fault is discussed, and the research direction and route are proposed. The main research results are:
     Both description of fault symptom and multi-fault model are discussed in this paper. Focused on mapping realtionship“multi to multi”between fault and symptom in actual fault system, conducted researches on fault symptom vector and the description for multi-fault diagnosis, the mapping relationship“symptom to fault”is proposed. Meanwhile, according to symptom indications in different kinds of multi-fault, defined multi-fault composed of several symptoms of single faults as separable multi-fault. On the other hand, for multi-fault that composed of the coupled symptoms, hard to be decoupled by normal mathematic methods are defined“symptom couple”multi-fault, artificial neural network (ANN) based researches is conducted as well.
     According to description of multi-fault symptom, symptom is mapped in fault-space, the space-indication of symptom vector is established. Euclidian distance, similarity and marching score are taken as diagnosis coordinates. Application of normalization and fuzzy control for dereferencing fault symptom vector is discussed. For“separable”multi-fault, diagnosis methods based on logic mathematical, correlation coefficient, probability calculation are proposed. Symptom analysises of all of the three methods are using methmatical calculation, the relationship and difference between actual fault and known faults are shown in numerical vaule intuitively, which can be used as important factor and refenrence.
     A multi-fault diagnosis method based on self-organizing map (SOM) and optimization of the adjacent-searching is developed. A SOM neural network that used to multi-fault diagnosis is created. The inaccurate clustering of traditional SOM algorithm is analyzed. According to the analysis, Euclidean distance is taken as the main discrimination, and the adjacent-searching algorithm is optimized. Using the optimized algorithm, the cluster results of input samples are obtained, symptomss of faults are mapped, and a multi-disease diagnosis model is developed. The proposed SOM-based model has three layers. The symptom array of faults can be accurately sorted and clustered using the optimized model.
     A multi-fault diagnosis method based on combining radial base function (RBF) and self-associational memory is developed. Aiming at a problem that the medium Hopfield neural network only has self-associational memory property, according on proposed multi-fault diagnosis method bases on self-associational memory and fuzzy control, RBF neural network is used to improving the method. The associational memory capability of Hopfield neural network, the adaptive capacity and self-learning capacity of RBF nerual network are used to memorizing and classification. Through the implementation of the process, all of the symptom and fault are classified and mapped, and multi-fault diagnosis is achieved.
     A multi-fault diagnosis method based hetero-associative memory is developed. Taking bidirectional associative memory neural network as reference, a Hopfield network that has hetero-associative memory property is proposed. Four weight matrix building method are discussed.
     Based on the actual acquired data, the relationship and deference between fault diagnosis and disease diagnosis are annlysed. The commonality of the multi-fault diagnosis methods proposed in this paper is proved. The turbine generator fault system and tomato disease are taken as inspecting and verifying objects for these methods. The multi-fault character is obvious in the systems that have typicality. The simulation results show that the proposed methods perform well and the proposed multi-fault (disease) diagnosis is effective, and the result corresponds to the diagnosis requirement. On the other hand, the methods can simulate human-thinking, distinguish mono-fault and multi-fault, and provide diagnosis strategy support.
     Finally, the range of applications, merits and demerits of the methods are discussed, all of the research in this paper is summarized. At the same time, the key points of multi-fault diagnosis researching in the future are proposed.
引文
[1]杨叔子.基于知识的故障诊断技术[M].北京:清华大学出版社, 1993.
    [2]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000.
    [3]梁芬,王改云,朱名日.远程故障诊断技术的发展及应用研究综述[J].机电工程, 2007, 24(8): 17-25.
    [4]朱大奇.电子设备故障诊断原理与实践[M].北京:电子工业出版社, 2004.
    [5]王宏,柴天佑,丁进良,布朗·马丁.数据驱动的故障诊断与容错控制:进展与可能的新方向[J].自动化学报, 2009, 35(6): 739-747. (in English)
    [6]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报, 2009, 35(6):748-758.
    [7] Rolf Isermann. Model-based fault-detection and diagnosis - status and applications [J]. Annual Reviews in Control, 2005, 29: 71-85.
    [8]胡昌华,王青,陈新海.竞争学习模糊神经网络及在导弹故障诊断中的应用[J].宇航学报, 1999, 20(4): 99-103.
    [9]聂彩丽,赵晓顺,陈会莲,刘淑霞.现代农业机械故障诊断技术的发展[J].农机化研究, 2007, 9: 229-231.
    [10]蒋维,钟小强,陈开,李炎.基于优化的支持向量机的机械设备多故障诊断模型[J].计算机应用与软件, 2009, 26(1): 62-63.
    [11]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社, 1996.
    [12]熊小龙,王洁,由大德,王磊.基于数据融合的智能故障诊断仿真研究[J].现代防御技术, 2008, 36(5): 161-164.
    [13]何友,王国宏,陆大金等.多传感器信息融合及应用[M].北京:电子工业出版社, 2000.
    [14] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective [J]. Artificial Intelligence in Medicine, 2001, 23(1): 89-109.
    [15] Serguei V.S. Pakhomov, James D. Buntrock, and Christopher G. Chute. Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques [J]. Journal of the American Medical Informatics Association, 2006, 13(5): 516-525.
    [16]马昕,刘长龙,张贝克.一种基于机器学习的专家系统知识获取方法[J].北京化工大学学报, 2008, 35(5): 89-93.
    [17]李玉榕,乔斌.一种集成遗传算法与模糊推理的粗糙集数据分析算法[J].计算机工程与应用, 2002, 18: 199-201.
    [18]梁武科,罗兴锜,张彦宁,贾嵘.水力发电机组振动故障诊断系统中的信号预处理[J].水力发电学报, 2003, 3: 114-120.
    [19] Zhiyang Mao, Shuang Lu. Fault pattern recognition of rolling bearing based on K-L transformation and support vector machine [J]. Coal Mine Machinery, 2006, 27(6): 1084-1086.
    [20] Jian-Da Wu, Peng-Hsin Chiang, Yo-Wei Chang, and Yao-jung Shiao. An expert system for fault diagnosis in internal combustion engines using probability neural network [J]. Expert System with applications, 2008, 34(4): 2704-2713.
    [21] Ruqiang Li, Jin Chen, and Wu Xing. Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network [J]. Applied Mathematics and Mechanics, 2006, 27(1): 99-108.
    [22] Zengbing Xu, Jianping Xuan, Tielin Shi, Bo Wu, and Youmin Hu. A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique [J]. Expert System with applications, 2009, 36(9): 11801-11807.
    [23]东亚斌,张小龙.基于改进灰色关联度分析的机械故障诊断[J].煤矿机械, 2009, 30(2): 218-220.
    [24]刘思峰,郭天榜.灰色系统理论及其应用[M].北京:科学出版社, 2000.
    [25] Wenyu Chen, Xiaobin Wang, Shixin Sun , and Jingbo Liu. A method of remote fault diagnosis based on multilayer SOM [C]. Cybernetics and Intelligent Systems, 2008 IEEE Conference on, Sept 21-24. 2008, Chengdu, China.
    [26] Qianjin Guo, Haibin Yu, Jingtao Hu, and Aidong Xu. A method for condition monitoring and fault diagnosis in electromechanical system[J]. Neural Computing & Applications, 2008, 17(4): 373-384.
    [27] S. Srinivasan, P. Kanagasabapathy, and N. Selvaganesan. Fault diagnosis in deaerator using neural networks [J]. Iranian Journal of Electrical and Computer Engineering, 2007, 6(1): 62-67.
    [28] Hong Rao, Meizhu Li, Mingfu Fu. Equipment diagnosis method based on Hopfield-bp neural networks [C]. Advanced Computer Theory and Engineering, 2008. ICACTE '08. International Conference on, 2008, Dec. 20-22, Phuket, Thailand.
    [29] F. Caccavale, F. Pierri, and L. Villani. Adaptive observer for fault diagnosis in nonlinear discrete-time systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2): 96-102.
    [30] Y. Selaimia, H. A. Abbassi and A. Loudjani. Multi neural network based approach for dault detection and diagnosis of a DC motor [J].Journal of Engineering and Applied Sciences, 2006, 1(2): 143-148.
    [31] Xiaofeng Liu, Lin Ma,,Joseph Mathew. Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 690-700.
    [32]虞娟,倪志伟,罗琴.集成范例推理及其在疾病诊断系统中的应用[J].计算机工程, 2008, 34(7): 209-211.
    [33]王宇,严宏志,樊广军,谢红清.多参量状态监测与故障诊断系统数据库技术研究[J].计算机应用, 2007,27(2): 431-435.
    [34] Antonio Sala, Thierry Marie Guerra, and Robert Babu?ka. Perspectives of fuzzy systems and control [J].Fuzzy Sets and Systems, 2005, 156(3): 432-444.
    [35] A. R. Rao, V. V. Srinivas. Regionalization of watersheds by fuzzy cluster analysis [J]. Journal of Hydrology, 2006, 318(1-4): 57-79.
    [36] Zdzisaw Pawlak. Rough set [J]. International Journal of Parallel Programming, 1982, 11(5): 341-356.
    [37] Gang Niu, Tian Han, Bo-Suk Yang, Andy Chit Chiow Tan. Multi-agent decision fusion for motor fault diagnosis [J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1285-1299.
    [38] Jie Li, Shituan Shen. research on the algorithm of avionic device fault diagnosis based on fuzzy expert system [J]. Chinese Journal of Aeronautics, 2007, 20(3): 223-229.
    [39] Yavuz Kilagiz, Ahmet Baran, Zerrin Yildiz, Murat ?etin. A fuzzy diagnosis and advice system for optimization of emissions and fuel consumption [J]. Expert Systems with Applications, 2005, 28(2): 305-311.
    [40]鲍连承,赵景波,赵海军.基于模糊遗传神经网络的信息融合故障诊断技术及其应用[J].电气传动自动化, 2007, 29(1): 20-22.
    [41]蔡兴国,马平.基于信息融合技术的并发故障诊断的研究[J].中国电机工程学报, 2003, 23(5): 112-115.
    [42]冯长建,丁启全,吴昭同.混合SOM和HMM方法在旋转机械升速全过程故障诊断中的应用[J].中国机械工程, 2002, 13(20): 1711-1715.
    [43]冯惊雷,张喜斌,张恒喜.一种新型粗糙集神经网络的故障诊断方法[J].火力与指挥控制. 2007, 32(1): 84-87.
    [44]冯志鹏,杜金莲,宋希庚,迟忠先,葛玉林,孙玉明.粗糙集与神经网络集成在故障诊断中应用研究[J].大连理工大学学报, 2003, 43(1): 70-76.
    [45]冯志鹏,宋希庚,薛冬新.基于粗糙集与神经网络集成的内燃机故障诊断[J].内燃机学报, 2003, 21(1), 75-80.
    [46]耿志强,朱群雄.基于粗糙神经网络的故障诊断方法研究与应用[J].计算机应用, 2003,23(S2): 194-196.
    [47]谭天乐,宋执环,李平.基于粗糙集的故障诊断方法[J].浙江大学学报, 2003, 37(1): 47-50.
    [48]滕召胜,罗隆福,童调生.智能检测系统与数据融合[M].北京:机械工业出版社, 1999.
    [49]王庆,巴德纯,王晓冬.智能故障诊断的粗糙决策模型[J].东北大学学报, 2005, 26(1): 284-287.
    [50]王荣杰,胡清.基于知识的故障诊断方法的发展现状与展望[J].微计算机信息, 2006, 22(3-1): 218-220.
    [51]王天宇,董彩凤.一种多组并联模糊神经网络用于信息融合诊断[J].哈尔滨工业大学学报, 2004, 36(3): 324-328.
    [52]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策, 2001, 16(5): 518-522.
    [53]王志勇.基于粗糙集与模糊规则的变压器故障诊断方法[J].继电器, 2006, 34(9): 37-40.
    [54]彭昭,王文辉,周东华.一类混杂系统传感器与执行器故障的半定性诊断方法[C]. Proceeding. the 5th World Congress on Intelligent Control and Automation, 2004.1771-1774.
    [55] Zhang. P., Ding. S. X., Wang. G. Z., and Zhou. D. H. A frequency domain approach to fault detection in sampled-data systems [J]. Automatica. 2003, 39(8): 1303-1307.
    [56] Li. L. L., Zhou. D. H. Fast and robust fault diagnosis for a class of nonlinear systems: Detectability analysis [J]. Computers and Chemical Engineering. 2004, 18(12): 2635-2646.
    [57] Wang.W.H., Zhou.D.H. Robust state estimation and fault diagnosis for uncertain hybrid systems [J]. Nonlinear Analysis-Theory Methods & Applications, 2006, 65: 2193-2215.
    [58] Allerton. D. J. Distributed data fusion algorithms for inertial network systems [J]. IET Radar, Sonar and Navigation, 2008, 2(1): 51-62.
    [59] He. X., Wang.Zi.Dong., Ji. Y. D., and Zhou D. H. Network-based fault detection for discrete-time state-delay systems: A new measurement model [J]. International Journal of Adaptive Control and Signal Processing, 2008, 22(5): 510-528.
    [60] Bagheri. F., Khaloozaded. H., Abbaszadeh. K. Stator fault detection in induction machines by parameter estimation, using adaptive Kalman filter [C]. 2007 Mediterranean Conference on Control and Automation, MED, 2007.
    [61] Diallo. D., Benbouzid. M. E. H., Hamad. D., and Pierre. X. Fault detection and diagnosis in an induction machine drive: A pattern recognition approach based on concordia stator mean current vector [J]. IEEE Trans on Energy Conversion, 2005, 20(3): 512-519.
    [62] Rajakarunakaran. S., Devaraj. D., Venkat. Ratnam. G. S., Surya. Prakasa. Rao, K. Artificial neural network approach for fault detection in LPG transfer system [J]. Advances inModelling and Analysis B, 2007, 50(1-2): 36-51.
    [63] Wenfu. Ku., Robert. H. Storer., and Christos. Georgakis. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196
    [64] Kresta. J. V., Macgregor. J. F., Marlin. T. E. Multivariate statistical monitoring of process operating performance [J]. Canadian Journal of Chemical Engineering, 2009, 69(1): 35-47.
    [65] Alvaro. Luiz. Guimar?es. Carneiro., , Aucyone. Augusto. da. Silva., and Belle.R. Upadhyaya. Incipient fault detection of motor-operated valves using wavelet transform analysis [J]. Nuclear Engineering and Design, 2008, 238(9): 2453-2459
    [66] Jack. L. B., Nandi. A.K.. Support vector machines for detection and characterization of rolling element bearing faults [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074.
    [67] B. Han., S. J. Lee. A genetic algorithm approach to measurement prescription in fault diagnosis [J]. Information Sciences. 1999, 120(1): 223-237.
    [68] J. Lunze., F. Schiller. Example of fault diagnosis by means of probabilisticlogic reasoning [J]. Control Engineering Practice. 1999, 7(2):271-278.
    [69] L. Wang., Q. Niu., M. Fei. A novel quantum ant colony optimization algorithm and its application to fault diagnosis [J]. Transactions of the Institute of Measurement and Control, 2008, 30(3-4): 313-329.
    [70] V. Purushotham, S. Narayanan, Suryanarayana A.N. Prasad. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition [J]. NDT&E International, 2005, 38(8): 654-664.
    [71] Jianping Jing and Guang Meng. A novel method for multi-fault diagnosis of rotor system [J]. Mechanism and Machine Theory, 2009, 44(4): 697-709.
    [72]张晓梅.多故障诊断方法研究[J].计算机应用研究, 2004, 7:51-53.
    [73]宋华,张洪钺,王行仁.非线性系统多故障诊断方法[J].北京航空航天大学学报, 2005, 31(11): 1198-1203.
    [74]谢涛,陈火旺,张育林.基于集合-覆盖模型的液体火箭发动机多故障诊断研究[J].宇航学报.2000,21(1): 47-54.
    [75]周小勇,叶银忠.基于小波多分辨率分析的并发故障检测方法[J].计算机仿真. 2005, 22(6): 197-200.
    [76]蔡兴国,马平.基于证据理论的并发故障诊断方法[J].哈尔滨工业大学学报. 2003, 35(4): 447-450.
    [77] Yongwei Lv, Muqin Tian, and Xiaoling Wang. Multi-fault diagnosis information fusion[C].Proceedings of the 2009 International Conference on New Trends in Information and Service Science, IEEE Computer Society, June 30-July 02, Beijing, China.
    [78]张彼德,欧健,孙才新,王柯柯,潘凌.汽轮发电机多故障诊断的SOM神经网络方法[J].重庆大学学报(自然科学版). 2005, 28(2): 36-38.
    [79] Hak-yeong. Chung., Zeungnam. Bien., Joo-hyun. Park., and Poong-hyun. Seong. Incipient multiple fault diagnosis in real time with application to large-scale systems [J]. IEEE Transactions on Nuclear Science. 1994, 41(4):1692-1703.
    [80]李戎.基于多传感器的多故障诊断研究[J].传感检测技术. 2006, 3:69-70.
    [81]宋华,张洪钺.多故障的奇偶方程-参数估计诊断方法[J].控制与决策. 2003, 18(4): 413-417.
    [82]徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报. 2005, 25(1): 15-18.
    [83]欧阳一鸣,鲁传武,梁华国.基于多故障模型的并发测试生成方法[J].计算机工程与应用, 2007, 43(29): 113-116.
    [84]连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报. 2007, 28(6): 1029-1034.
    [85]张庆,徐光华,王晶,梁霖.基于支持向量域描述的多故障诊断动态模型[J].西安交通大学学报. 2007, 41(5): 593-597.
    [86]袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报. 2007, 43(4): 152-158.
    [87]梁武科,彭文季,罗兴铸.基于LVQ网络的水电机组振动多故障诊断方法[J].农业机械学报. 2007, 38(1): 208-210.
    [88]张彼德,陈光偊.汽轮发电机组振动多故障诊断的遗传算法研究[J].汽轮机技术, 2006, 48(4): 278-280.
    [89]周福娜,汤天浩,文成林.一种数据驱动的多故障诊断方法研究[J].控制工程. 2008, 15(4): 470-473.
    [90]杨鹏,邱静,刘冠军.多故障诊断策略优化生成技术研究[J].兵工学报. 2008, 29(11): 1379-1383.
    [91]张小平,许光明,寇昆湖.导航自动驾驶仪的多故障诊断方法[J].海军航空工程学院学报. 2008, 23(5): 578-580.
    [92]曲东才,陈琪,张睿智. Elman网络在某型自动驾驶仪飞控盒多故障诊断中的仿真研究[J].飞机设计. 2008, 28(2): 62-66.
    [93]何静,邱静,张昌凡.一种滑模观测器的多故障诊断方法[J].动力学与控制学报. 2009, 7(1): 84-92.
    [94]张炜,张玉祥,黄先祥.基于神经网络的涡轮泵多故障诊断[J].推进技术. 2003, 24(1): 17-21.
    [95] Long Zhang, Guoliang Xiong, Hesheng Liu, Huijun Zou and Weizhong Guo. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference [J]. Expert Systems with Applications. 2010, 37(8): 6077-6085.
    [96] V. Purushotham., S. Narayanan., Suryanarayana A.N. Prasad. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition [J]. NDT & E International. 2005, 38(8): 654-664.
    [97] Daqi Zhu, Jie Bai, and Simon X. Yang. A multi-fault diagnosis method for sensor systems based on principle component analysis [J]. Sensors, 2010, 10(1): 241-253.
    [98] Xianlun Tang , Ling Zhuang, Jun Cai and Changbing Li. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization [J]. Knowledge-Based Systems.2010, 23(5): 486-490.
    [99] Liping Shi, Li Han, Kewu Wang and Chuanjuan Zhang. Mine ventilator fault diagnosis based on information fusion technique [J]. Procedia Earth and Planetary Science, 2009, 1(1): 1484-1488.
    [100] S. Abbasiona, A. Rafsanjania, A. Farshidianfarb, and N. Iranic. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J]. Mechanical Systems and Signal Processing, 2007, 21(7): 2933-2945.
    [101] Blough. D. M., Sullivan. G. F., Masson. G. M. Efficient diagnosis of multi-processor systems under probabilistic models [J]. IEEE Trans, 1992, COMP-41(9): 1126-1136.
    [102]刘建辉,胡立红,刘琼.原创协同故障诊断综述及研究[J].继电器, 2006, 34(20): 76-80.
    [103]杨苹,吴捷.复杂系统故障诊断综述[J].测控技术, 1998, 17(2): 8-10.
    [104]李红芳,张清华,谢克明.旋转机械的并发故障诊断技术研究进展[J].噪声与振动控制, 2008, 3:67-70.
    [105]张彼德.汽轮发电机组振动多故障诊断模型及方法研究[D].重庆大学博士学位论文, 2002, 9.
    [106] D. Freedman., R. Pisani., R. Purves. Statistics (4th Edition) [M]. New York: W W Norton & Company, 2007.
    [107] J. R. Munkres. Topology (2nd Edition) [M]. New Jersey: Prentice Hall, 2000.
    [108]刘兵,张大方,段智勇,吴俊.基于贪婪算法的系统级故障的概率诊断[J].电子学报, 2004, 32(8): 1360-1363.
    [109] Krzysztof. Kiks., Andrzej. Pelc. Globally optimal diagnosis in system with random faults [J]. IEEE Trans, 1997, COMP-46(2): 200-204.
    [110] A. K. Somani., V. K. Agrawal. Diagnosis algorithms for regular interconnected structures [J]. IEEE Trans, 1992, COMP-41(5): 899-906.
    [111] Chen. J. H., Chen, C. S. Fuzzy kernel perception [J]. IEEE Transactions on Neural Networks , 2006, 13(6): 1364-1373.
    [112] Kohonen.T. Self-organized formation of topologically correct feature maps [J]. Biol Cyber, 1982, 43:59-69.
    [113] Kohonen. T. The self-organizing map [J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480.
    [114] Kohonen. T. Self-organization maps [M]. New York: Springer-Vevlag, 2000.
    [115] Yi Chai,Xiaohu Qin. A method of abnormal state diagnosis based on ANN [J]. Dynamics of Continuous Discrete and Impulsive System-Series B- Applications & Algorithms. Suppl. S, 2003: 265-268.
    [116] Aras N, et al. A kohonen like decomposition method for the eucliden TSP [J].IEEE Trans NN, 2003, 14: 869-890.
    [117] Han. Jiawei., Kamber. Micheline., et al. Data mining concepts and techniques [M]. San Francisco: Morgan Kunfmann Publishers, 2001.
    [118] Zhong. Fei., Shi. Tielin., He. Tao. Fault diagnosis of motor bearing using self-organizing maps [C]. Electrical Machines and Systems, 2005. ICEMS 2005 . Proceedings of the Eighth International Conference on, Volume 3, 27-29 Sept. 2005: 2411-2414.
    [119]杨志荣,李磊.用SOM聚类实现多级高维点数据索引[J].计算机研究与发展, 2003, 40(1): 100-106.
    [120] Li. Daoliang., Fu. Zetian., Duan. Yanqing. Fish-Expert: a web-based expert system for fish disease diagnosis [J]. Expert Systems with Applications, 2002, 23(3): 311–320.
    [121] Wang. Xuewei., Qu. Haibin., Liu. Ping., Cheng. Yiyu. A self-learning expert system for diagnosis in traditional Chinese medicine. Expert Systems with Applications, 2004, 26(4): 557–566.
    [122]刘立平,孟志青.一种选取聚类中心的方法[J].计算机工程与应用, 2004, 8:179-180.
    [123] Samsonova, Elena V. Kok, Joost N., IJzerman, Ad P. TreeSOM: Cluster analysis in the self-organizing map [J]. Neural Networks, 2006, 19(6-7): 935-949.
    [124] Hearst. M., Hirsh. H. AI’s greatest trends and controversies [J]. IEEE Intelligent Systems, 2000, 15(1): 8-17.
    [125]李德毅,刘常昱.不确定性人工智能[J].软件学报, 2004, 15(11): 1583-1594.
    [126]唐良荣,吴建华,徐蔚鸿.参数化模糊联想记忆网络的学习算法[J].计算机工程与应用, 2009, 45(12): 45-47.
    [127] Martin. Rehn., Friedrich. T. Sommer. Storing and restoring visual input with collaborativerank coding and associative memory [J]. Neurocomputing, 2006, 69(10-12): 1219- 1223.
    [128] Friedrich. T. Sommer., Thomas. Wennekers. Associative memory in networks of spiking neurons [J] .Neural networks, 2001, 14(6-7): 825-834.
    [129] Zeng. Z. G., Huang. D. S., Wang. Z. F. Pattern memory analysis based on stability theory of cellular neural networks [J]. Applied-mathematical modelling, 2008, 32(1): 112-121.
    [130] Hopfield. J. J. Neural networks and physical systems with emergent collective computational abilities [J]. Proc Natl AcadSci, 1982, 79(8): 2554- 2558.
    [131]谢宏,何怡刚,彭敏放,张波.离散Hopfield神经网络在混烧控制系统故障诊断中的应用[J].湖南大学学报, 2007, 34(3): 33-35.
    [132]张建辉.智能结构的研究现状及其前景展望[J].科学技术与工程, 2008, 8(21): 5886-5890.
    [133]杨兴,朱大奇,桑庆兵.专家系统研究现状与展望[J].计算机应用研究, 2007,24(5): 4-9.
    [134]陈德军,胡华成,周祖德.基于径向基函数的混合神经网络模型研究[J].武汉理工大学学报, 2007, 29(2): 122-126.
    [135] W.J Philips. W. J., Tosuner. C., Robertson. W. Speech recogniton technigues using RBF networks [C]. Proceeding of IEEE WESCANEX 95, Communications, Power, and Computing,1995,1: 185-190.
    [136]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社, 2005.
    [137]李志斌,于和国.修正的LMS方法[J].工科数学, 1996, 12(4):61-65.
    [138]阎平凡.人工神经网络与模拟进化计算(第二版) [M].北京:清华大学出版社, 2005
    [139]许杨文.基于RBF神经网络的水轮机故障诊断研究[J].光盘技术, 2009, 2: 28-29.
    [140]姜惠兰,孙雅明.异联想记忆Hopfield神经网络的模型、算法及性能[J].系统工程理论与实践, 2005, 5:101-107.
    [141] Chang. Jyh-Yeong., Cho. Chien-Wen. Second-order asymmetric BAM design with a maximal basin of attraction [J]. IEEE Transactions on System, Man, and Cybernetics-Part A: Systems and Humans, 2003, 33(4): 421-428.
    [142]吕佩珂.中国蔬菜病虫原色图谱/无公害新版[M].北京:学苑出版社, 2004.
    [143]王红卫,祁超,魏永长,李彬,朱松.基于数据的决策方法综述[J].自动化学报, 2009, 35(3): 820-833.
    [144]张彦斌,顾超,赵玉龙,蒋有才.基于数据融合技术的故障诊断特征向量的建立[J].微计算机信息, 2006, 22(7-1): 175-177.
    [145] Ke Zhang, Yi Chai, Simon X.Yang. Self-organizing feature map for cluster analysis in multi-disease diagnosis [J]. Expert system with applications. 2010, 37(9), 6359-6367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700