用户名: 密码: 验证码:
基于Fabry-Perot可调谐光滤波器和掺铒光纤放大器的光纤传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用F-P可调谐光滤波器和掺铒光纤放大器构建光纤传感系统,并从理论、系统和实验三个方面对光纤传感技术进行深入研究。光纤传感系统具有开环和闭环两种结构,可分别实现应变、气体参量的准分布式、高灵敏度传感。
     理论分析了开环光纤传感系统中光栅光谱曲线和F-P可调谐光滤波器3-dB带宽之间的数学关系,从理论和实验两个方面研究了光滤波器的非线性特性并对其进行补偿;设计完成了系统的光学、机械、电路和数据处理部分,并对传感网络进行扩展;采用该系统进行应变传感实验,解调灵敏度优于3με,扫描频率达到6 0 Hz。
     分别采用速率方程和传输方程建立了基于闭环光纤传感系统的气体传感理论模型,分析了泵浦功率和系统损耗对气体传感灵敏度的影响;设计完成了系统的光学、机械和数据处理部分;采用波长扫描技术进行乙炔气体传感,灵敏度优于100 ppm,引入波长调制技术后乙炔气体传感的灵敏度提高至75 ppm,同时还可实现气体种类识别。
     工作中的主要创新点:
     1.基于多光束干涉理论建立了F-P可调谐光滤波器的系统模型,研究了光滤波器的非线性特性及其来源;提出了基于开环光纤传感系统的光滤波器非线性特性研究方法,利用波长-电压关系及其多项式拟合分析了光滤波器的非线性特性及波长随机误差;采用两种方法实现了光滤波器的非线性补偿。
     2.阐明了采用传输方程研究气体传感灵敏度的可行性;深入探讨了泵浦功率和系统损耗对气体传感灵敏度的影响,并从实验上进行验证;理论推导了光纤气体传感系统的检测极限。
     3.将波长扫描技术和波长调制技术引入光纤气体传感系统,提出了基于虚拟仪器技术的波长调制/二次谐波提取方案,极大的提高了气体传感灵敏度,同时实现了气体的种类识别。
- II - Optical fiber sensing system is developed in this dissertation, using Fabry-Perot (F-P) type tunable optical filter (TOF) and Erbium-doped fiber amplifier (EDFA). Further study has been done in theory, systems and experiments. The system has two configurations of open loop and closed loop, which can be used to realize strain and gas sensing respectively with quasi-distributed ability and high sensitivity.
     The relationship between the detected spectra of the gratings and the 3-dB bandwidth of the F-P type TOF in the open loop optical fiber sensing system is deduced mathematically. The nonlinearity of the F-P type TOF is investigated theoretically and experimentally, which can be compensated. The optics, mechanics, hardware and data processing of the system had been designed and realized. And the tolerance extension of the system had been also discussed. The system can be used to realize strain sensing with demodulation sensitivity less than 3μεand scan rate close to 6 0 Hz.
     Based on closed loop optical fiber sensing system, the gas sensing model is established using rate equations and transmission equations respectively. The influences of pump power and system loss on the gas sensing sensitivity are analyzed. The optics, mechanics and data processing of the system had been designed and realized. Using wavelength sweep technique, the system can be used to realize acetylene sensing with sensitivity less than 100 ppm. And the sensitivity can be enhanced to 75 ppm by use of wavelength modulation technique, with probability of gas recognition at the same time.
     Major innovations of this dissertation:
     1. The model of F-P type TOF is established based on multiple-beam interference. And the nonlinearity characteristic of F-P type TOF and its source are analyzed. The investigation of F-P type TOF nonlinearity using the open loop optical fiber sensing system is put forward. And the wavelength-voltage relationship and its polynomial fit are adopted to model the nonlinearity and analyze the random error of wavelength measurement. The nonlinearity of F-P type TOF can be compensated by use of two methods respectively.
     2. Transmission equations are used to model the gas sensing system and investigate the sensitivity. The influences of pump power and system loss on the gas sensing sensitivity are analyzed, which can be validated experimentally. And the detection limit of the gas sensing system is deduced theoretically.
     3. Wavelength sweep technique and wavelength modulation technique are introduced into the gas sensing system. The scheme of wavelength modulation/2nd harmonic components calculation based on virtual instrument technique is put forward. By using these techniques, the gas sensing sensitivity is improved remarkably, and the gas recognition can be also realized.
引文
[1]孙圣和,王廷云,徐影,光纤测量与传感技术,哈尔滨:哈尔滨工业大学出版社,2000. 97
    [2] K. O. Hill, Y. Fujii, D. C. Johnson, et al., Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication, Applied Physics Letters, 1978, 32(10): 647~649
    [3] B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al., Narrow-Band Bragg Reflection in Optical Fibers, Optics Letters, 1978, 3(2): 66~68
    [4] P. L. Fuhr, Measuring with Light, Part 4: Sensor and Communication Component Compatibilities, Sensors, 2000, 17(7): 68~72
    [5] D. J. Webb, Optical-Fiber Sensors: An Overview, MRS Bulletin, 2002, 27(5): 365~369
    [6] R. W. Bogue, Seminar Report: Sensor Innovation and Technology Transfer Event 2003, Sensor Review, 2004, 24(2): 129~136
    [7] C. K. Kirkendall, A. Dandridge, Overview of High Performance Fiber-Optics Sensing, Journal of Physics D: Applied Physics, 2004, 37(18): R197~R216
    [8]饶云江,王义平,朱涛,光纤光栅原理及应用,北京:科学出版社,2006
    [9]赵勇,光纤传感原理与应用技术,北京:清华大学出版社,2007
    [10]金国藩,李景镇,激光测量学,北京:科学出版社,1998
    [11]赵仲刚,杜柏林,逢永秀等,光纤通信与光纤传感,上海:上海科学技术文献出版社,1993. 382~383
    [12] J. Dakin, B. Culshaw, Optical Fiber Sensors: Applications, Analysis, and Future Trends, Massachusetts: Artech House, 1997. 437~449
    [13]李川,吴晟,邹金慧等,光纤传感器的复用与数据融合,信息技术,2003, 27(11):26~28
    [14]程宝平,卜庆华,我国传感器技术发展的现状、方向和应对措施,高科技与产业化,2008,23(2):98~101
    [15]余小奎,分布式光纤传感技术在桩基测试中的应用,电力勘测设计,2006,4(6):12~16
    [16]吴钰骅,沈林冲,金伟良,长距离光纤传感技术在地铁隧道检测中的应用,中国市政工程,2006,6(6):59~61
    [17]符伟杰,储华平,周柏兵,光纤传感器在大坝安全监测中的应用及前景,大坝与安全,2003,18(6):48~51
    [18]蒋洪涛,张岩,光纤传感器在桥梁健康监测中的应用,北方交通,2006,29(10):56~59
    [19]李士彬,朱慈勉,汤红卫等,光纤传感器在预应力混凝土结构中的应用,青岛理工大学学报,2006,27(2):44~47
    [20]黎学明,陈伟民,黄宗卿等,混凝土结构中钢筋腐蚀监测的光纤传感技术,压电与声光,1999,21(1):12~16
    [21]饶志强,黄祥,光纤传感器在岩土工程中的应用,岩土力学,2007,28(1): 209~212
    [22]唐晋生,黄雪梅,盛克敏等,激光光纤传感器在地震预报中的应用,激光杂志,2002,23(1):73~74
    [23]李仲奎,王爱民,三维地质力学模型实验中光纤传感器的应用研究,实验技术与管理,2006,23(12):57~60
    [24]吴永红,蔡海文,刘浩吾等,裂缝光纤传感的工程应用,光电子·激光,2007,18(12):1438~1441
    [25]张建华,高温稠油井温度压力光纤传感检测系统,测井技术,2006,30(3):243~245
    [26]李辉,郝建军,何秋生,光纤传感技术在矿井安全检测中的应用,煤矿安全,2006,37(4):37~40
    [27]李朝辉,戴景民,光纤传感技术在燃起流量计研制中的应用,计量技术,2006,50(4):13~14
    [28]张振奇,童茂松,曹庆芳等,光纤传感器及其在石油钻探中的应用,石油仪器,2007,21(4):1~6
    [29]刘敏敏,周峰,杜志顺,光纤传感器在石油测井中的应用,光学与光电技术,2008,6(3):18~21
    [30]杭利军,何存富,吴斌等,基于LabVIEW平台的锁相放大器在管道泄漏检测中的应用,北京工业大学学报,2008,34(3):241~244,264
    [31]司文荣,李军浩,袁鹏等,超声-光法在高压电器设备局部放电检测中的应用,高压电器,2008,44(1):59~62,72
    [32]孙凤池,黄亚楼,李荣俊等,调制-解调技术在光纤传感式电流测量中的营养,南开大学学报(自然科学版),2002,35(4):66~70
    [33]王国利,郝艳捧,李彦明,光纤技术在电力变压器绝缘监测中的应用,高压电气,2001,37(2):32~35
    [34]蔡桂荣,应用光纤传感器定位电缆故障的方法,电线电缆,2000,43(2):31~38
    [35]迟宝倩,朱海燕,光纤传感技术在检测大气污染中的应用,长春大学学报,2008,18(1):54~56
    [36]郑咏梅,殷景志,张铁强,光纤传感原理在浓度检测中的应用研究,试验技术与试验机,1997,37(1):43~44
    [37]付松年,苏立国,吴重庆等,相关光谱法在光纤气体传感中的应用,光谱学与光谱分析,2002,22(6):912~915
    [38]钟丽云,杨齐民,吕晓旭等,折射率调制型光纤传感器在溶液浓度测量中的应用,光子学报,1998,27(5):445~448
    [39]张志律,高应俊,干涉条纹技术法光纤液位传感器应用研究,传感技术学报,2008,21(5):781~784
    [40]冀邦杰,李碧丽,光纤传感器应用于水声的试验研究,舰船科学技术,2007,29(2):76~78
    [41]王海涛,罗秋风,周必方等,反射式光纤位移传感器在测量牙齿咀嚼过程中的应用,光学精密工程,2002,10(1):61~65
    [42]刘燕德,应义斌,光纤传感技术在水果内部品质检测中的应用研究,传感技术学报,2003,16(2):170~174
    [43]欧国荣,陈奇洲,光纤传感技术在水质分析中的应用,医疗卫生装备,1997,17(3):22~24
    [44]许顺美,蒋晓崎,光纤传感器在医学诊断领域中的应用,杭州师范学院学报(自然科学版),2005,27(3):232~233
    [45]何俊,张杰,荧光光纤传感器在医药学中的应用研究,华西药学杂志,2000,15(6):448~451
    [46]任德均,赵平昌,王庸贵,光纤传感器在水印检测中的应用,计算机测量与控制,2002,10(2):139~140
    [47]张睿妍,韩玉杰,光纤传感颜色识别系统在小木制品检测中的应用,林业机械与木工设备,2008,36(6):48~49
    [48]姚若亚,崔翔,李长胜等,电光调制器在光波偏振态检测中的应用,传感技术学报,1997,10(2):43~46
    [49]韩悦文,陈海燕,黄春雄,光电技术在湿度传感器中的应用,光电技术应用,2008,23(3):33~36,61
    [50]张君,韩晓明,赵念念,光纤传感器在条码型水准尺精密检测中的应用,仪表技术与传感器,2001,38(5):22~23,28
    [51]戚永军,迟泽英,光纤在激光动态定距测量中的应用,南京理工大学学报,2000,24(6):553~556
    [52]薛志英,周晓军,刘永智,遗传算法在光纤弱磁检测中的应用,半导体光电,2001,22(4):256~258
    [53]李川,张以谟,赵永贵等,光纤光栅:原理、技术与传感应用,北京:科学出版社,2005. 212~213
    [54]殷纯永,裘惠孚,现代干涉测量技术,天津:天津大学出版社,1999
    [55]陈才和,光纤通信,北京:电子工业出版社,2004. 282~288
    [56] E. A. Swanson, S. R. Chinn, C. W. Hodgson, et al., Spectrally shaped rare-earth-doped fiber ASE sources for use in optical coherence tomography, CLEO'96, 1996. 211
    [57] S. A. Vasiliev, Photoinduced Fiber Gratings, Proceedings of SPIE, 2001, 4357: 1~12
    [58] J. Canning, Grating Confinement in a Photonic Crystal Fiber, Optics Communications, 2001, 176(1): 121~124
    [59] V. Bhatia, Properties and Applications of Fiber Gratings, Proceedings of SPIE, 2001, 4417: 154~160
    [60] G. Meltz, W. W. Morey, W. H. Glenn, Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method, Optics Letters, 1989, 14(15): 823~825
    [61] K. O. Hill, G. Meltz, Fiber Bragg Grating Technology Fundamentals and Overview, Journal of Lightwave Technology, 1997, 15(8): 1263~1276
    [62] C. R. Giles, Lightwave Application of Fiber Bragg Gratings, Journal of Lightwave Technology, 1997, 15(8): 1391~1404
    [63] A. D. Kersey, M. A. Davis, H. J. Patrick, et al., Fiber Grating Sensors, Journal of Lightwave Technology, 1997, 15(8): 1442~1463
    [64] K. T. V. Grattan, T. Sun, Fiber Optic Sensor Technology: An Overview, Sensors and Actuators, A Physical, 2000, 82(1): 40~61
    [65] B. Culshaw, Optical Fiber Sensor Technologies: Opportunities and Perhaps Pitfalls, Journal of Lightwave Technology, 2004, 22(1): 39~50
    [66] D. K. W. Lam, B. K. Garside, Characterization of Single-Mode Optical Fiber Filter, Applied Optics, 1981, 20(3): 440~445
    [67] A. Othonos, X. Lee, Novel and Improve Method of Writing Fiber Gratings with Phase-Masks, IEEE Photonics Technology Letters, 1995, 7(10):1183~1185
    [68] F. Ouellette, Dispersion Cancellation Using Linearly Chirped Bragg Grating Filters in Optical Waveguides, Optics Letters, 1987, 12(10): 847~849
    [69] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al., Long-Period Fiber Grating as Band-Rejection Filters, Journal of Lightwave Technology, 1996, 14(1): 58~65
    [70] A. D. Kersey, T. A. Berkoff, W. W. Morey, High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection, Electronics Letters, 1992, 28(3): 236~238
    [71] A. D. Kersey, A. B. L. Ribeiro, W. W. Morey, Fiber Optic Bragg Grating Strain Sensor with Drift-Compensated High Resolution Interferometric Wavelength Shift Detection, Optics Letters, 1993, 18(1): 72~74
    [72] R. S. Weis, A. D. Kersey, T. A. Berkoff, A four-element fiber grating sensor array with phase-sensitive detection, IEEE Photonics Technology Letters, 1994, 6(12): 1469~1472
    [73] K. P. Koo, A. D. Kersey, Fibre Laser Sensor with Ultrahigh Strain Resolution Using Interofermetric Interrogation, Electronics Letters, 1995, 31(14): 1180~1182
    [74] S. M. Melle, K. X. Liu, R. M. Measures, A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors, IEEE Photonics Technology Letters, 1992, 4(5): 516~518
    [75] M. A. Davis, A. D. Kersey, All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler, Electronics Letters, 1994, 30(1): 75~77
    [76] A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, et al., All-fibre interrogation technique for fiber Bragg sensors using a biconical fibre filter, Electronics Letters, 1996, 32(4): 382~383
    [77] A. D. Kersey, T. A. Berkoff, W. W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter, Optics Letters, 1993, 18(6): 1370~1372
    [78] P. K. C. Chan, W. Jin, J. M. Gong, et al., Multiplexing of fiber Bragg grating sensors using a FMCW technique, IEEE Photonics Technology Letters, 1999, 11(11): 1470~1472
    [79] P. K. C. Chan, W. Jin, M. S. Demokan, FMCW multiplexing of fiber Bragggrating sensors, IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 756~763
    [80] M. G. Xu, H. Geiger, J. L. Archambault, et al., Novel interrogating system for fibre Bragg grating sensors using an acousto-optic tunable filter, Electronics Letters, 1993, 29(17): 1510~1511
    [81] M. Volanthen, H. Geiger, M. G. Xu, et al., Simultaneous Monitoring of Multiple Fiber Gratings with a Single Acousto-Optic Tunable Filter, Electronics Letters, 1996, 32(13): 1228~1229
    [82] G. A. Ball, W. W. Morey, P. K. Cheo, Laser Source/Analyzer for Bragg Grating Sensor Array Interrogation, IEEE Journal of Lightwave Technology, 1994, 12(4): 700~703
    [83] M. L. Dennis, M. A. Putnam, J. U. Kang, et al., Grating Sensor Array Demodulation by Use of a Passively Mode-Locked Fiber Laser, Optics Letters, 1997, 22(17): 1362~1364
    [84] S. H. Yun, D. J. Richardson, B. Y. Kim, Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser, Optics Letters, 1998, 23(11): 843~845
    [85] Y. Takushima, F. Futami, K. Kikuchi, Generation of Over 140 nm Wide Super-Continuum from a Normal Dispersion Fiber by Using a Mode-Locked Semiconductor Laser Source, IEEE Photonics Technology Letters, 1998, 10(11): 1560~1562
    [86] M. A. Davis, A. D. Kersey, Application of a Fiber Fourier Transform Spectrometer to the Detection of Wavelength-Encoded Signals from Bragg Grating Sensors, IEEE Journal of Lightwave Technology, 1995, 13(7): 1289~1295
    [87] D. A. Flavin, R. McBride, J. D. C. Jones, Short Optical Path Scan Interferometric Interrogation of a Fibre Bragg Grating Embedded in a Composite, Electronics Letters, 1997, 33(4): 319~321
    [88] Y. Hu, S. Chen, L. Zhang, et al., Multiplexing Bragg gratings using combined wavelength and spatial division techniques with digital resolution enhancement, Electronics Letters, 1997, 33(23): 1973~1975
    [89]刘云涛,李丁山,曹家年,一种时分复用光纤传感器阵列信号处理方案的设计与实现,应用科技,2001,28(6):12~14
    [90] D. A. Jackson, A. B. L. Ribeiro, L. Reekie, et al., Simple multiplexing schemefor a fibre-optic grating sensor network, Optics Letters, 1993, 18(14): 1192~1194
    [91] Y. J. Rao, D. J. Webb, D. A. Jackson, et al., A novel high-resolution, wavelength- division-multiplexed in-fibre Bragg grating sensor system, Electronics Letters, 1996, 32(10): 924~926
    [92] M. A. Davis, A. D. Kersey, Matched-Filter Interrogation Technique for Fiber Bragg Grating Arrays, Electronics Letters, 1995, 31(9): 822~825
    [93] K. Kalli, G. P. Brady, D. J. Webb, et al., Wavelength Division and Spatial Multiplexing Using Tandem Interferometers for Bragg Grating Sensor Networks, Optics Letters, 1995, 20(24): 2544~2546
    [94] T. A. Berkoff, A. D. Kersey, Fiber Bragg Grating Array Sensor System Using a Bandpass Wavelength Division Multiplexer and Interferometric Detection, IEEE Photonics Technology Letters, 1996, 8(11): 1522~1524
    [95] Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, et al., Combined Spatial- and Time-Division-Multiplexing Scheme for Fibre Grating Sensors with Drift Compensated Phase-sensitive Detection, Optics Letters, 1995, 20(20): 2149~2151
    [96] Y. J. Rao, Simultaneous Spatial, Time and Wavelength Division Multiplexed In-fibre Grating Sensor Network, Optics Communications, 1996, 125(1): 53~58
    [97]陈伟民,江毅,黄尚廉,光纤布喇格光栅应变传感技术,光通信技术,1995,19(3):249~253
    [98]张颖,刘云启,刘志国等,波长扫描极值解调法实现光纤光栅应变和温度传感的测量,光子学报,1999,28(11):979~982
    [99]方福波,刘有源,陈定方,单片机在光纤Bragg光栅传感系统中的应用,武汉理工大学学报(交通科学与工程版),2002,26(2):264~266
    [100]朱小平,吴晓冬,陈军,基于DWDM和LabView的新型光纤光栅传感技术,光学仪器,2004,26(5):21~25
    [101]李志全,黄丽娟,吴飞,基于副载波调频技术的光纤光栅传感网络查询,光学技术,2004,30(2):223~224
    [102]梁明,钱景仁,孙箭,一种新的光纤布拉格光栅波长移位检测技术,中国激光,2004,31(7):865~869
    [103]熊燕玲,赵洪,余有龙等,光纤光栅传感系统无源时域解调技术,光电子·激光,2004,15(7):799~801
    [104]李营,张书练,基于可调谐F-P滤波器的光纤光栅解调系统,激光技术,2005,29(3):237~240
    [105]张治国,张民,叶培大,基于环型腔掺Er光纤激光器的FBG传感系统,光电子·激光,2006,17(5):509~512
    [106]郑家移,倪江生,基于FFP可调滤波器的FBG解调系统设计,传感技术学报,2006,19(1):261~263
    [107]殷金坚,刘光达,声光滤波原理在光纤光栅中的应用,电光与控制,2006,13(4):19~23
    [108]刘汉平,王健刚,杨田林等,可分离温度影响的FBG应变测量方法,应用光学,2006,27(3):235~238
    [109]闫利琴,陈希明,吴小国等,基于边缘滤波的温度传感实验研究,天津理工大学学报,2007,23(5):69~71
    [110]李建中,饶云江,冉曾令,基于可调环形光纤激光器的动态应变传感系统,光电子·激光,2008,19(2):146~148
    [111] C. Huang, W. C. Jing, K. Liu, et al., Demodulation of Fiber Bragg Grating Sensor Using Cross-Correlation Algorithm, IEEE Photonics Technology Letters, 2007, 19(9): 707~709
    [112]董海,井文才,刘琨等,一种光纤Bragg光栅波长移位量的计算方法,光电子·激光,2007,18(2):144~146
    [113]井文才,王光辉,刘琨等,功率加权法用于光纤Bragg光栅特征波长检测,光电子·激光,2007,18(9):1022~1025
    [114]王玉田,郑龙江,侯培国等,光电子学与光纤传感器技术,北京:国防工业出版社,2003. 217~218
    [115]高俊杰,余萍,刘志江,仪器分析,北京:国防工业出版社,2005. 1~3
    [116]张晓丽,江崇球,吴波,仪器分析实验,北京:化学工业出版社,2006. 1~4
    [117] E. Stark, K. Luchter, M. Margoshes, Near-Infrared Analysis (NIRA): A Technology for Quantitative and Qualitative Analysis, Applied Spectroscopy Reviews, 1986, 22(4): 335~399
    [118]刘燕德,无损智能检测技术及应用,武汉:华中科技大学出版社,2007. 78~82
    [119] W. U. John, Long Optical Path of Large Aperture, Journal of the Optical Society of America A, 1942, 32: 285~288
    [120]李长治,红外付里叶变换光谱及其在分析化学上的应用,分析化学,1981,9(1):112~117
    [121] L. H. Philip, S. L. Allen, W. G. Bruce, Detection of Atmospheric Pollutants at Parts-per-Billion Levels by Infrared Spectroscopy, Applied Spectroscopy, 1973, 27(3): 188~198
    [122]陆婉珍,袁洪福,徐广通等,现代近红外光谱分析技术,北京:中国石化出版社,2000. 50~52
    [123] C. Oppenheimer, Remote measurement of volcanic gases by Fourier Transform Infrared Spectroscopy, Applied Physics B, 1998, 67(4): 505~515
    [124] H. Inaba, T. Kobayasi, M. Hirama, et al, Optical-fiber network system for air-pollution monitoring over a wide area by optical absorption method, Electronics Letters, 1979, 15(23): 749~751
    [125] K. Chan, H. Ito, H. Inaba, Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link, Applied Optics, 1984, 23(19): 3415~3420
    [126] K. Uehara, H. Tai, Remote detection of methane using a diode laser, Applied Optics, 1992, 31(6): 809~814
    [127]王玉田,刘瑾,张景超等,基于谐波检测技术的光纤甲烷气体传感器的研究,测控技术,2003,22(11):19~21,27
    [128]王书涛,刘瑾,车仁生等,一种基于谐波检测技术的光纤甲烷气体传感器,应用光学,2004,25(2):44~47
    [129]陈东,刘文清,阚瑞峰等,基于可调谐半导体激光器吸收光谱的瓦斯检测方法研究,光学技术,2006,32(4):598~600,603
    [130] W. Jin, G. Stewart, B. Culshaw, Absorption measurement of methane gas with a broadband light source and interferometric signal processing, Optics Letters, 1993, 18(16): 1364~1366
    [131]刘瑾,杨海马,王玉田,新型光纤乙炔气体传感器的研究,传感技术学报,2006,19(3):614~616
    [132] P. B. David, S. Z. Daniel, P. D. Arthur, High-Resolution Spectroscopy Using an Acousto-Optic Tunable Filter and a Fiber-Optic Fabry-Perot Interferometer, Applied Spectroscopy, 1996, 50(4): 498~503
    [133] O. K. Anthony, A. G. D. David, Cavity ring-down optical spectrometer for absorption measurement using pulsed laser sources, Review of Scientific Instruments, 1988, 59(12): 2544~2551
    [134] R. Bohm, A. Stephani, V. M. Baev, et al., Intracavity absorption spectroscopy with a Nd3+-doped fiber laser, Optics Letters, 1993, 18(22): 1955~1957
    [135] A. Kachanov, A. Charvat, F. Stoechel, Intracavity laser spectroscopy with vibronicsolid-state lasers. I. Spectrotemporal transient behavior of a Ti:sapphire laser, Journal of the Optical Society of America B, 1994, 11(12): 2412~2421
    [136] R. Engeln, G. V. Helden, G. Berden, et al., Phase shift cavity ring down absorption spectroscopy, Chemical Physics Letters, 1996, 262(1-2): 105~109
    [137] G. Stewart, K. Atherton, H. B. Yu, et al., An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurement, Measurement Science and Technology, 2001, 12(7): 843~849
    [138] N. C. Peterson, M. J. Kurylo, W. Braun, et al., Enhancement of Absorption Spectra by Dye-Laser Quenching, Journal of the Optical Society of America, 1971, 61(6): 746~750
    [139] V. M. Baev, T. Latz, P. E. Toschek, Laser intracavity absorption spectroscopy, Applied Physics B, 1999, 69(3): 171~202
    [140]靳伟,阮双宸,光纤传感技术新进展,北京:科学出版社,2005. 117~124
    [141] Y. Zhang, M. Zhang, W. Jin, Multi-point, fiber-optic gas detection with intra-cavity spectroscopy, Optics Communications, 2003, 220(4-6): 361~364
    [142] Y. Zhang, M. Zhang, W. Jin, Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor, Sensors and Actuators A, 2003, 104(2): 183~187
    [143] Y. Zhang, M. Zhang, W. Jin, et al., Investigation of erbium-doped fibre laser intra-cavity absorption sensor for gas detection, Optics Communications, 2004, 234(1-6): 435~441
    [144] M. Zhang, D. N. Wang, W. Jin, et al., Wavelength Modulation Technique for Intra-cavity Absorption Gas Sensor, IEEE Transactions on Instrumentation and Measurement, 2004, 53(1): 136~139
    [145] Y. R. Han, W. K. Lee, S. M. Han, et al., Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy, Optics Communications, 2007, 275(2): 379~384
    [146]刘国锋,陈明,用声表面波延迟线实现化学气体浓度的检测,测控技术,1994,13(6):19~21,39
    [147]孙悦,陈先猛,周雪芬等,用光纤传感器对冷凝制备高纯CO2液体样品实时监测,低温物理学报,1995,17(4):318~323
    [148]董峰,王玉江,吕翔宇等,控制电位电解法NO气体传感器,云南大学学报(自然科学版),1997,19(1):10~13
    [149]周仲柏,柳文军,冯良东,调制电势脉冲O2/CO2双组份电化学气体传感器研究,传感技术学报,1999,12(3):159~163
    [150]吴正元,陈涛,丘思畴等,WO3基H2S气体传感器的研究,华中理工大学学报,1999,27(1):41~43
    [151]周斌,刘文清,差分吸收光谱法测量大气污染的浓度反演方法研究,物理学报,2001,50(9):1818~1823
    [152]王玉田,郭增军,差分吸收式光纤甲烷气体传感器的研究,光电子·激光,2001,12(7):675~678
    [153]喻洪波,廖延彪,靳伟等,光纤化的气体传感技术,激光与红外,2002,32(3):193~196
    [154]周嘉,黎坡,黄宜平等,压电谐振式微悬臂气体传感器,压电与声光,2003,25(5):358~362
    [155]章江英,谢建平,明海等,用光学差分吸收光谱监测大气中污染气体浓度,物理实验,2004,24(8):8~11
    [156]王书涛,车仁生,王玉田等,基于声光光谱法的光纤气体传感器研究,中国激光,2004,31(8):979~982
    [157]尹世荣,王蔚然,多尺度卡尔曼滤波探测气体浓度,激光与红外,2005,35(9):679~681
    [158]董磊,马维光,尹王保等,基于1. 6μm甲烷气体吸收线的半导体激光器频率稳定性分析,光子学报,2005,34(4):489~492
    [159]姜德生,冉昌艳,柏俊杰等,光谱吸收型光纤气体传感器解调系统的研究,光通信技术,2005,29(9):56~57
    [160]林继鹏,刘君华,基于吸收峰混叠的红外混合气体分析方法的研究,光子学报,2006,35(3):408~412
    [161]王飞,黄群星,李宁等,利用可调谐半导体激光光谱技术对含尘气体中NH3的测量,物理学报,2007,56(7):3867~3872
    [162]邵理堂,汤光华,许传龙等,差分吸收光谱法(DOAS)测量污染气体浓度的实验研究,锅炉技术,2008,39(2):13~17
    [163]崔厚欣,齐汝宾,张文军等,差分吸收光谱法大气环境质量在线连续监测系统的设计,分析仪器,2008,39(1):7~11
    [164] Y. L. Lo, J. F. Huang, P. G. Sung, et al., Intensity variation efferts in fibre Bragg grating sensors scanned by a tunable filter, Measurement Science and Technology, 2000, 11(10): 1456~1462
    [165] K. Liu, W. C. Jing, T. G. Liu, et al., The influence of Fabry-Perot tunable filteron dynamic strain sensing system, Proceedings of SPIE, 2007, 6830: 68301K
    [166] K. O. Hill, B. Malo, F. Bilodeau, et al., Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Thorough a Phase Mask, Applied Physics Letters, 1993, 62(10): 1035~1037
    [167]李东升,李宏男,埋入式封装的光纤光栅传感器应变传递分析,力学学报,2005,37(4):435~441
    [168]王黎蒙,光纤光栅传感应用中波长位移量检测的DWDM方法,光通信技术,2002,26(2):38~41
    [169]杨光松,刘继荣,多功能太阳能供电设备的设计与实现,电子科技,2008,21(3):21~25
    [170]张祝林,杨振坤,伍辉华等,双光纤布拉格光栅温度和应变传感研究,西安交通大学学报,2004,38(6):607~610
    [171]李智忠,孙崇峰,杨华勇等,FBG中心波长的可调谐光源法检测中光强起伏研究,光电子·激光,2005,16(4):413~417
    [172]王新和,程世洲,曲线拟合的最小二乘法,新疆职业大学学报,2004,24(2):84~86
    [173]刘琨,井文才,刘铁根等,一种动态光纤传感系统的容限扩展,光电子·激光,2008,19(6):731~734
    [174]柳葆,井文才,张以谟等,用MEMS光开关实现高性能光互连网络,光电子·激光,2003,14(6):606~610
    [175] N. Armand, R. Rajiv, MEMS Technology for Optical Networking Applications, IEEE Communications Magazine, 2001, 39(1): 62~69
    [176] M. Born, E. Wolf, Principles of Optics 7th edition, Cambridge: University Press of Cambridge, 1999
    [177] K. Liu, W.C. Jing, G.D. Peng, et al., Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system, Optics Communications, 2008, 281(12): 3286~3290
    [178] Y. N. Ning, A. Meldrum, W. J. Shi, et al., Bragg grating sensing instrument using a tunable Fabry-Perot filter to detect wavelength variations, Measurement Science and Technology, 1998, 9(4): 599~606
    [179]刘琨,井文才,刘铁根等,F-P可调谐光滤波器的非线性校正在动态应变传感中的应用,传感技术学报,2008,21(7):1264~1268
    [180] K. LIU, W. C. JING, T. G. LIU, et al., Design and nonlinearity compensation of Fabry-Perot type tunable optical filters for dynamic strain sensing systems,Optoelectronics Letters, 2008, 4(4): 248~252
    [181] H. Jung, J. Y. Shim, D. Gweon, New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep, Review of Science Instruments, 2000, 71(9): 3436~3440
    [182]郭玉彬,霍佳雨,光纤激光器及其应用,北京:科学出版社,2008
    [183] E. Snitzer, Optical master action of Nd3+ in a barium crown glass, Physics Review Letter, 1961, 7(12): 441~449
    [184] A. Gusarov, F. Liegeois, Experimental study of a tunable fiber ring laser stability, Optics Communications, 2004, 234: 391~397
    [185] C. R. Giles, E. Desurvire, Modeling Erbium-Doped Fiber Amplifiers, Journal of Lightwave Technology, 1991, 9(2): 271~283
    [186] T. C. Yew, J. C. Gregory, A. M. Robert, Optimization of Wavelength Tuning of Erbium-Doped Fiber Ring Lasers, Journal of Lightwave Technology, 1996, 14(7): 1730~1739
    [187] B. Antoine, K. Miroslav, R. Christophe, et al., A Broadly Tunable Erbium-Doped Fiber Ring Laser: Experimentation and Modeling, IEEE Journal on Selected Topic in Quantum Electronics, 2001, 7(1): 22~29
    [188] X. Y. Dong, P. Shum, N. Q. Ngo, et al., Output Power Characteristics of Tunable Erbium-Doped Fiber Ring Lasers, Journal of Lightwave Technology, 2005, 23(3): 1334~1341
    [189]董新永,赵春柳,关柏欧等,可调谐光纤环形腔激光器输出特性的理论与实验研究,物理学报,2002,51(12):2750~2755
    [190] V. Weldon, H2S and CO2 gas sensing using a 1.57 DFB laser diode, Proceeding 2nd European Conference on Optical Chemical Sensors and Biosensors, 1994, 26: 19~21
    [191] H. Tai, Long distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fiber, IEEE Photonics Technology Letters, 1992, 4(7): 804~807
    [192]王素芹,阮玉,殷东量等,C-lens准直器回波损耗的理论计算与分析,光电子技术与信息,2003,16(1):24~28
    [193] W. C. Jing, D. G. Jia, F. Tang, et al., Design and implementation of a broadband optical rotary joint using C-lenses, Optics Express, 2004, 12(17): 4088~4093
    [194] HITRAN molecular spectroscopic database
    [195]张应华,刘先省,王娟,基于变异系数的多传感器数据判别方法,河南大学学报(自然科学版),2007,37(2):187~190
    [196] K. Liu, W. C. Jing, G. D. Peng, et al., Wavelength Sweep of Intracavity Fiber Laser for Low Concentration Gas Detection, IEEE Photonics Technology Letters, 2008, 20(18): 1515~1517
    [197] K. Liu, W. C. Jing, G. D. Peng, et al., Intra-Cavity Absorption Sensors For Gas Detection Using Wavelength Sweep Technique, APOS, 2008
    [198] R. Arndt, Analytical line shapes for Lorenzian signals broadened by modulation, Journal of Applied Physics, 1965, 36(8): 2522~2524
    [199] J. Reid, D. Labrie, Second harmonic detection with tunable diode lasers-comparison of experiment and theory, Applied Physics B, 1981, 26(3): 203~210
    [200]涂兴华,基于TDLAS技术对机动车尾气CO和CO2遥测研究:[博士学位论文],安徽:中国科学院安徽光学精密机械研究所,2005
    [201]绍杰,高灵敏度波长调制光谱技术在CO2、CH4分子光谱测量中的研究:[博士学位论文],合肥:中国科学院合肥物质科学研究院,2005
    [202] K. Liu, W. C. Jing, G. D. Peng, et al., Intra-Cavity Absorption Gas Sensors Using Wavelength Modulation And Wavelength Sweep, APOS, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700