用户名: 密码: 验证码:
粒子群优化算法的改进及其在图像中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体智能优化算法的基本思想是模拟自然界的群体行为来构造随机优化算法。典型的群体智能优化算法有M. Dorigo提出的蚁群算法(Ant Colony Optimization, ACO)和J.Kennedy与R.Eberhart提出的粒子群算法(Particle Swarm Optimization, PSO)。近年来,群体智能优化算法在很多领域都得到了有效的研究和应用,已经成为人工智能以及经济、社会学、生物科学、计算机科学等交叉学科的研究热点。研究群体智能优化算法内在的原理,探索算法的改进措施,不仅可以改进群智能优化算法的优化性能,更为其应用于大规模的组合优化问题等提供了可能性。
     本文主要研究量子行为粒子群算法(Quantum-behaved Particle Swarm Optimization, QPSO),分析研究了算法的基本原理,针对该算法执行过程中可能出现的早熟问题,提出了几种算法的改进方法;与此同时,为了进一步提高算法的速度,对该算法的并行化进行了研究,以进一步提高算法的全局性和性能,在上述研究的基础上,对它在实际优化问题中的应用进行了研究。主要研究内容包括:
     (1)针对算法在解一些多峰函数或具有局部最优解的复杂优化问题时,因mbest参数而存在粒子快速收敛于局部最优解趋于同一化,导致算法在后期的收敛速度和搜索能力变差的缺点。提出了基于邻域模型的QPSO算法(Neighborhood Topology QPSO,NQPSO)。通过动态调整算法的邻域,使得算法保持多个吸引子来避免早熟,增强了个体的寻优能力。实验证明,该算法有效地提高了种群的多样性,其全局搜索能力和局部搜索能力均优于QPSO和SPSO算法,尤其体现在解决高维的优化问题。
     (2)针对算法可能的早熟问题,提出了它的一种改进算法。即在算法中引入Gauss扰动,通过施加于群体的平均最好位置上的扰动,使得粒子种群保持群体的活性与多样性,从而防止算法早熟的发生。对一些标准测试函数的仿真实验表明,改进算法的性能比一般QPSO算法有所提高。
     (3)提出了算法的另外两种改进,即具有多阶段的QPSO算法(A Multi-Phased QPSO,MQPSO)以及多样性维持的QPSO算法(Diversity-Maintained QPSO,DMQPSO)。前者引入了多个子群体和多个搜索阶段,使群体能保持持续的搜索能力;后者通过对群体多样性的控制,使之维持在一定的水平,同样能保持粒子群的持续运行能力。这两种方法是防止早熟收敛的有效方法并且可能在很多方面使得算法性能得到提高。
     (4)研究了算法的并行化处理方法,通过研究常用和较新出现的进化算法的并行化方法,利用岛屿模型将粒子群分割成若干子群体,每个子群体分别在不同的处理机上进行搜索,定期相互交换信息,从而维持整个群体的多样性,提高算法的性能。与此同时,利用群体智能算法内在的并行性,设计和构建了基于动态邻域拓扑结构的并行计算模型,分别采用MPI、OpenMP以及MPI+OpenMP混合编程实现了基于邻域模型的并行QPSO算法。实验显示基于邻域模型的并行QPSO算法在求解非线性优化问题上表现出良好的性能。
     (5)研究了算法在实际优化问题中的应用,包括图像对准、图像分割等,仿真实验显示,QPSO算法及其改进能有效的应用于图像处理等实际优化问题。
     文章首先介绍课题的研究背景、研究目标,以及常用进化算法。第二章介绍PSO算法的基本原理和实现方式,然后介绍基于Delta势阱的量子行为PSO算法,即QPSO算法的基本原理。第三章针对QPSO算法存在的问题,在算法中引入了动态可变的邻域拓扑模型和算子,提出了基于邻域模型的QPSO算法。第四章针对算法在运行过程中存在的多样性缺失问题,提出利用高斯扰动来改善算法运行过程中粒子的多样性,即带有高斯扰动的QPSO算法(GQPSO)。给出了GQPSO算法的基本原理和工作流程,然后给出了三种方法加入高斯扰动,最后利用标准测试函数对三种算法的性能进行了实验测试。第五章将算法进行阶段划分,通过不同阶段的参数设置,改善算法的性能,提出了多阶段QPSO算法,利用两种方法来改进QPSO算法的性能,一种是维持粒子群多样性的方法来提高QPSO算法的全局搜索能力,称之为DQPSO算法。另一种是具有多群体和多阶段的量子行为的QPSO算法(MQPSO)。第六章根据大规模复杂优化问题对算法速度和时间上的要求,研究算法的并行化方法,以提高算法的性能和速度。第七章详细描述了算法在实际优化问题中的应用,如约束函数优化、医学图像配准、图像分割等方面的具体应用。本章对QPSO算法、并行QPSO算法在图像处理领域的应用进行了初步的研究,首先分析医学图像配准问题,然后采用基于最大互信息的相似性度量和QPSO算法,对采用核磁共振成像MR图像和计算机断层扫描成像CT图像进行了图像配准实验,其次研究了QPSO算法及具有高斯扰动的QPSO算法(GQPSO)在图像聚类分割中的应用,提出了基于QPSO算法的聚类算法,并利用三种算法对9幅图像进行了聚类分割实验比较。第八章为总结和展望,总结本课题在研究改进算法中取得的成果,提出未来研究的方向。
Swarm intelligence algorithm is a kind of stochastic algorithm based on the behavior simulation of biology swarm, such as ants and birds. The ant colony optimization algorithm, ACO and particle swarm optimization algorithm, PSO provided by M. Dorigo and J. Kennedy respectively are the two examples of swarm intelligence algorithm. Recently, swarm intelligence algorithm research on various engineer optimization problem has got more and more good results. The swarm intelligence optimization algorithm has become a hotspot in artificial intelligence, economic, sociology, biological sciences, computer science research area, etc. The study on algorithm principle and algorithm improvement can improve not only the optimization performance but also the possibility of swarm intelligence algorithm when it is used in the large scale combinatorial optimization problems.
     This paper focuses on the quantum-behaved particle swarm optimization algorithm(QPSO). By analyzing the principle of the algorithm, it gives out some improved versions to avoid the premature convergence problem. Meanwhile, in order to speed up the algorithm running process, some parallel QPSO algorithms are studied in detail. Experiments on benchmark functions and image process problems show that the parallel algorithm shows better performance in many optimization problems. In this paper, the improvement and parallelization research of the algorithm includes:
     (1) When the algorithm is applied to solve multimodal problems and complicated optimization problems with local optimum, the mbest in the algorithm will cause particles convergence to the local optimum. It will lower the Algorithm's performance in convergence speed and search ability. To overcome this problem, an improved algorithm named neighborhood topology QPSO(NQPSO) is proposed. By adjusting the neighborhood of particles dynamically, the improved algorithm maintains several attractors to avoid the premature convergence and enhance the particles search ability. The experiment shows that the improved algorithm has better performance than QPSO and SPSO in collective diversity and search ability, especially in solving high-dimensional optimization problems.
     (2)In order to avoid the premature convergence in the algorithm, an improved version is proposed. By introducing the Gauss disturbance on the mbest in the algorithm, the collective's activity and diversity are maintained when algorithm is running. Experiments on benchmark functions show the improvement on the algorithm with Gauss disturbance.
     (3) Another improved algorithms are studied. They are multi-phased QPSO, named MQPSO and diversity-maintained QPSO algorithm, named DMQPSO. In the first algorithm, the collective is divided into several sub-groups, the search procedure is divided into different phase, thus make the particles maintain the search ability when algorithm is running. The second algorithm keeps the particle’s activity by controlling the collective's diversity to some degree. These two algorithms can avoid premature convergence and improve search performance effectively.
     (4) By studying the parallelization of the algorithm, a parallel algorithm with island modal is introduced in detail. In this algorithm, particle collective is divided into several sub-groups according to the computing nodes number in parallel system. Each sub-group of particles searches independently in different computing nodes. By exchanging search results between different sub-groups in period, the algorithm can keep the diversity of particle collective and improve the search performance. Meanwhile, a parallel computing modal based on dynamic neighborhood topology is proposed. A parallel version based on neighborhood modal is programmed by MPI, OpenMPI and MPI+OpenMP respectively. Experiments on benchmark functions show the good performance of this parallel algorithm.
     (5) The application of the algorithm in engineer optimization problems such as image registration and image segmentation is studied. Experiments also show the good performance of the algorithm.
     At the first section of this paper, we introduced the research background, research objects and some evolutionary algorithms in detail. In chapter 2, the principle of PSO and QPSO algorithm are described, and give out the realization method of these two algorithms. Chapter 3 focuses on the convergence speed and search ability. The principle of the algorithm based on neighborhood topology algorithm is studied and tested on benchmark functions. In chapter 4, the Gauss disturbance is used to improve it's diversity. In chapter 5, two improvements are applied to the algorithm, named a multi-phased QPSO and a diversity-maintained QPSO. The test results on benchmark function are given out in detail to show the performance improvement. In chapter 6, the parallelization of the algorithm is studied, including parallel computing model, parallel algorithm, etc. Chapter 7 describes the application of the algorithm and parallel version in digital image process. At the end of this paper, there are the conclusion of this paper and the future works.
引文
[1] Kennedy J, Eberhart, R.C. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995,1942-1948
    [2] Sun, J., Feng, B., Xu, W.-B.: Particle Swarm Optimization with Particles Having Quantum Behavior. Proc. 2004 Congress on Evolutionary Computation, Piscataway, NJ (2004) 325-331
    [3] Sun, J., Xu, W.-B., Feng, B.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. Proc. 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore (2004) 111-115
    [4] Sun, J., Xu, W.-B., Feng, B.: Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level. Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ (2005) 3049-3054
    [5] Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE Congress on Evolutionary Computation[C]. Piscataway, USA:IEEE Service Center, 1998, 69-73
    [6] F. Glover. Tabu Search– Part I. ORSA Journal on Computing, vol. 1, no. 3, pp. 190- 206, 1989
    [7] Eberhart R.C, Kennedy J. A New Optimizer Using Particle Swarm Theory. 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995, 39-43
    [8] Eberhart R.C, Simpson P.K, Dobbins R.W. Computational Intelligence PC Tools. Boston, MA: Academic Press Professional, 1996
    [9] Van den Bergh F. An Analysis of Particle Swarm Optimizers. South Africa: Departement of Computer Science, University of Pretoria, 2002
    [10] Van den Bergh F, Engelbrecht A.P. A New Locally Convergent Particle Swarm Optimiser. IEEE Conference on Systems, Man and Cybernetics, 2002,vol 3, 94-99
    [11] Back T, Fogel D.B, and Michalewicz T. Advanced Algorithms and Operators. volume 2 of Evolutionary Computation. Institute of Physics Publishing, Bristol and Philidelphia, 1999
    [12] Back T, Fogel D.B, and Michalewicz T. Basic Algorithms and Operators, volume 1 of Evolutionary Computation. Institute of Physics Publishing, Bristol and Philidelphia, 1999
    [13] Holland J H. Adaptation in Natural and Artificial Systems: An Introductory analysis with Applications to Biology, Control and Artificial Intelligence. Ann Arbor: University of Michigan, 1975
    [14] Rechenberg I. Cybernetic Solution Path of an Experimental Problem. Library Translation No 1122, Royal Aircraft Establishment, Farnborough, UK, 1965
    [15] Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973
    [16] Back T, Schwefel H.P. Evolution Strategies I: Variants and Their Computational Implementation. In: Winter G. Genetic Algorithms in Engineering and Computer ScienceWiley, 1995
    [17] Schwefel H.P, Back T. Evolution Strategies II: Theoretical Aspects. In: Winter G. Genetic Algorithms in Engineering and Computer Science Wiley, 1995
    [18] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. 2nd ed., Springer-Verlag, 1994
    [19] Angeline P J. Evolutionary Aglroithms and Emergent Intelligence. Doctoral Dissertation, The Ohio State University, 1993
    [20] Muhlenbein H. Evolutionary Algorithms: Theory and Applications. GMD Schloss Birlinhoven, 1995
    [21] Koza J R. Genetic Programming. MIT Press, 1991
    [22] Colorni A, Dorigo M., Maniezzo V. Distributed Optimization by Ant Colonies. First European Conference on Artificial Life, Paris, France, Varela F, Bourgine P.(Eds), Elsevier Publishing,1991,134-142
    [23] Colorni A, Dorigo M., Maniezzo V. An Investigation of Some Properties of an Ant Algorithm. Parallel Problem Solving from Nature Conference (PPSN), Brussels, Belgium, 1992,509-520
    [24] Dorigo M., Maniezzo V, Colorni A. Ant System: Optimizaiton by a Colony of Cooperating Agents. IEEE Transaction on System, Man and Cybernetics-part B, 1996, 26(1): 1-26
    [25] Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm[A]. Proceedings of the world Multi-conference on Systemics, Cybernetics and Informatics[C]. Piscataway, NJ, IEEE Service Center, 1997
    [26] Shi Yu-hui, Eberhart R C. Empirical study of particle swarm op-timization[C]. Proc Congress on Evolutionary Computation,1999
    [27] Eberhart R.C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resource. IEEE Conference on Evolutionary Computation. Seoul, 2001,81-86
    [28] P.J.Angeline. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. 7th Annual Conference Evolutionary Programming, New York, Springer-Verlag, 1998, 601-610
    [29] Angeline P. Using Selection to Improve Particle Swarm Optimization. Congress on Evolutionary Computation, Anchorage, AK, USA, 1998, 84-89
    [30] Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001
    [31] Suganthan P N. Particle Swarm Optimization with Neighbourhood Operator. Congress on Evolutionary Computation, Piscataway, NJ, 1999,1958-1962
    [32] Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. Congress on Evolutionary Computation, Washington DC, USA, 1999, 1931-1938
    [33] Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001
    [34] Krohling R A; Gaussian swarm:a novel Particle Swarm Optimiza-tion algorithm[C [M];Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems; 1-3 December 2004
    [35] van den Bergh, Frans. "An analysis of particle swarm optimizers." PhD's Dissertation Department of Computer Science, University of Pretoria, South Africa, 2002
    [36] Dorigo M (1992) Optimization, learning, and natural algorithms. PhD Thesis, Dip Electronica e Informazione, Politeccnico di Milano, Italy
    [37] Dorigo M, Gambardella LM (1997) Ant colony system: a cooperating learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):1–24
    [38] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics– PartB, 26(1):29–41, 1996
    [39] Belew R. K. Evolving networks:using the genetic algorithms with connectionist learning. Artificial Life.1992
    [40] R. Palaniappan,P. Raveendran, and S. Omatu. Vep Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics, IEEE Trans. Neural Networks, 2002. Vol.13, No.2, pp.486-491
    [41] E. Ozcan and C. Mohan. Particle Swarm Optimization: Surfing the Waves, Proc. Of 1999 Congress on Evolutionary Computation. 1999 pp.1939-1943
    [42] M. Clerc and J. Kennedy. The Particle Swarm: Explosion, Stability and Convergence in a Multi-Dimensional Complex Space, IEEE Transaction on Evolutionary Computation, 2002,6,pp.58-73
    [43] K.E. Parsopoulos and M.N. Vrahatis, Particle Swarm Optimization Method in Multiobjective Problems. Proc. Of ACM Symposium on Applied Computing(SAC 2002).2002,pp.603-607
    [44] Y. Jin, M. Olhofer, Sendhoff B. Dynamic weighted Aggregation for Evolutionary Multi-Objective Optimization: Why Does It Work and How? In:Proceedings GECCO2001 Conference 2001
    [45]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社, 2001
    [46] D. E. Goldberg. Genetic algorithms in search,optimization,and machine learning. Addison-Wesley, Reading,MA,1989
    [47] S. Kirkpattrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220(4598):671-680, May 1983
    [48] R.H.J.M.Otten and L.P.P.P van Ginneken. The Annealing Algorithm. Kluwer Academic, 1989
    [49] Kennedy J, Eberhart, R.C. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995,1942-1948
    [50] Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm[A]. Proceedings of the world Multi-conference on Systemics, Cybernetics and Informatics[C]. Piscataway, NJ, IEEE Service Center, 1997
    [51] Bergh F v d. An Analysis of Particle Swarm Optimizers [D]: University of Pretoria, Nov 2001
    [52] Shi Yu-hui, Eberhart R C. Empirical study of particle swarm op-timization[C]. Proc Congress on Evolutionary Computation,1999
    [53] Eberhart R.C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resource. IEEE Conference on Evolutionary Computation. Seoul, 2001,81-86
    [54] P.J.Angeline. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. 7th Annual Conference Evolutionary Programming, New York, Springer-Verlag, 1998, 601-610
    [55] Angeline P. Using Selection to Improve Particle Swarm Optimization. Congress on Evolutionary Computation, Anchorage, AK, USA, 1998, 84-89
    [56] Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001
    [57] Suganthan P N. Particle Swarm Optimization with Neighbourhood Operator. Congress on Evolutionary Computation, Piscataway, NJ, 1999,1958-1962
    [58] Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. Congress on Evolutionary Computation, Washington DC, USA, 1999, 1931-1938
    [59] Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001
    [60] Krohling R A; Gaussian swarm:a novel Particle Swarm Optimiza-tion algorithm[C [M];Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems; 1-3 December 2004
    [61] van den Bergh, Frans. "An analysis of particle swarm optimizers." PhD's Dissertation Department of Computer Science, University of Pretoria, South Africa, 2002
    [62] Shi Y, Eberhart R.C. A Modified Particle Swarm Optimizer. IEEE International Conference on Evolutionary Computation (CEC 98), Piscataway, NJ, 1998, 69-73
    [63] Shi Y, Eberhart R.C. Empirical Study of Particle Swarm Optimization. World Multiconference on Systems, Cybernetics and Informatics, Orlando, FL, 2000, 1945-1950
    [64] Shi Y., Eberhart R.C. Parameter Selection in Particle Swarm Optimization. 7th Annual Conference on Evolutionary Programming, Washington DC, 1998,591-600
    [65] Clerc M, Kennedy J. The Particle Swarm:Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transaction on Evolutionary Computation, 6(1): 58-73,2002
    [66] Eberhart R.C, Shi Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, 2000, 84-88
    [67] Van den Bergh F, Engelbrecht A.P. A New Locally Convergent Particle Swarm Optimiser. IEEE Conference on Systems, Man and Cybernetics, 2002,vol 3, 94-99
    [68] Sun, J., Feng, B., Xu, W.-B.: Particle Swarm Optimization with Particles Having Quantum Behavior. Proc. 2004 Congress on Evolutionary Computation, Piscataway, NJ (2004) 325-331
    [69] Sun, J., Xu, W.-B., Feng, B.: A Global Search Strategy of Quantum-behaved ParticleSwarm Optimization. Proc. 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore (2004) 111-115
    [70] Sun, J., Xu, W.-B., Feng, B.: Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level. Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ (2005) 3049-3054
    [71] Angeline P J. Using selection to improve particle swarm optimization[C]. The 1998 IEEE International Conference on Evolutionary Computation, 1998: 84-89
    [72] Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and performance Differences[J]. Evolutionary Programming VII, Lecture Notes in Computer Science. 1998, 1447: 601-610
    [73] Lovbjerg M, Rasussen T K, Krink T. Hybrid Particle Swarm Optimiser with Breeding and Subpopulations[C]. Proceedings of the third Genetic and Evolutionary Computation Conferences, San Francisco, 2001: 469-476
    [74] Corne D, Dorigo M, Glover F. New Ideas in Optimization[M]: McGraw Hill, 1999
    [75] Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resource[C]. IEEE Conference on Evolutionary Computation, Seoul, 2001: 81-86
    [76] Schutte J F, Groenwold A A. Sizing Design of Truss Structures Using Particle Swarm[J]. Structural and Multidisciplinary Optimization. 2003, 25(4): 261-269
    [77]王凌.智能优化算法及其应用[M].北京:清华大学出版社,施普林格出版社, 2001
    [78] Suganthan P N. Particle Swarm Optimization with Neighbourhood Operator. Congress on Evolutionary Computation, Piscataway, NJ, 1999,1958-1962
    [79] J. Sun et al.Parameter Selection of Quantum-behaved Particle Swarm Optimization[C]. Springer-Verlag Berlin Herdelberg 2005,pp:543-552
    [80] Ursem R K. Diversity-Guided Evolutionary Algorithms[C]. Proceedings of Parallel Problem Solving from Nature VII (PPSN-2002): Springer Verlag, 2002: 462-471
    [81] Tsutsui S, Fujimoto Y, Ghosh A. Forking Genetic Algorithms: GAs with Search Space Division Schemes[J]. Evolutionary Computation. 1997, 5: 61-80
    [82] Shimodaira H. A Diversity Control Oriented Genetic Algorithm (DCGA): Development and Experimental Results[C]. Proceedings of the Genetic and Evolutionary Computation Conference, 1999, 1: 603-611
    [83] Oppacher F, Wineberg M. The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment[C]. Proceedings of the Genetic and Evolutionary Computation Conference, 1999, 1: 504-510
    [84] Ursem R K. Diversity-Guided Evolutionary Algorithms[C]. Proceedings of Parallel Problem Solving from Nature VII (PPSN-2002): Springer Verlag, 2002: 462-471
    [85] Riget J, Vesterstroem J. A diversity-guided particle swarm optimizer - the ARPSO[R]: Department of Computer Science, University of Aarhus, 2002
    [86] Z. Skolicki and K. D. Jong. Improving evolutionary algorithms with multi-representation island models. In Parallel Problem Solving from Nature– PPSN VIII 8th International Conference. Springer-Verlag, 2004.
    [87] D. Whitley, S. Rana, and R. B. Heckendorn. Island model genetic algorithms and linearly separable problems. In Selected Papers from AISB Workshop on EvolutionaryComputing,volume 1305 of Lecture Notes In Computer Science, pages 109–125. Springer-Verlag, 1997.
    [88] E. Cant′u-Paz. Migration policies, selection pressure, and parallel evolutionary algorithms. Journal of Heuristics,7(4):311-334, 2001.
    [89] Gu J, Purdom PW, Franco J, Wah BW. Algorithms for satisfiability (SAT) problem: A survey. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, 1997,35:19~151.
    [90]陈国良,安虹,陈崚等.并行算法实践[M].北京:高等教育出版社, 2004年1月.
    [91]孙世新,卢光辉,张艳等.并行算法及其应用[M].北京:机械工业出版社,2005年1月.
    [92] Zbigniew Skolicki,Kenneth De Jong. The Influence of Migration Sizes and Intervals on Island Models. Proceedings of the Genetic and Evolutionary Computation Conference 2005,pages 1295-1302,June,2005.
    [93] F.Kruger, M.Middendorf, D.Merkle: Studies on a Parallel Ant System for the BSP Model; Unpub. Manuscript,1998
    [94]蒋峥,刘斌.自适应主从式并行遗传算法在区间非线性规划问题求解中的应用[J].信息与控制,(35)3:37-40
    [95] J.F.Schutte, J.A.Reinbolt, B.J.Fregly, R.T.Haftka,A.D.George Parallel Global Optimization with the Particle Swarm Algorithm
    [96] Hollstien R B. Artificial Genetic Adaptation in Computer Control Systems. Doctoral Dissertation. University of Michigan, 1971
    [97] De Jong. An analysis of the Behavior of a Class of Genetic Adaptive Systems. Doctoral Dissertation. University of Michigan, 1975
    [98] Z.Michalewicz, M Schoenauer. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996,4(1):1-37
    [99] Ray T, Kang T, Chye SK. An Evolutionary Algorithm for Constrained Optimization. Genetic and Evolutionary Computation Conference, Morgan Kaufmann,2000,771-777
    [100] Parsopoulos,K.E, Vrahatis,M.N. Particle Swarm Optimization Method for Constrained Optimization Problems. Proceedings of the Euro-International Symposium on Computational Intelligence, 2002
    [101] Maintz J B A, Viergever M A. A survey of medical image registration[J]. Medical Image Analysis,1998,2(1):1-36
    [102] Jenkinson M, Smith S. A global optimization method for robust assined registration of brain images[J]. Medical Image analysis,2001,5(2):143-156
    [103] Brown L G. A survey of image registration techniques[J]. Computing Surveys,1992,24(4):325-376
    [104]Mofrtdiyxki J. Numerical Methods for Image Registration[M]. New York: Oxford University Press,2004
    [105] Sun J, Xu W B, Liu J. Training RBF neural network via quantum-behaved particle swarm optimization[C]. Proc of ICONIP(2),2006:1156-1163
    [106] Plluimj P W, Maintz J B A, Viergever M A. Mutual-information-based registration of medical images: A Survey[J]. IEEE Trabs on Medical Imaging,2003:986-1004
    [107] Vitorino Ramos, Fernando Muge. Image Colour Segmentation by Genetic Algorithms[C]. RecPad2000– 11th Portuguese Conference on Pattern Recognition, in Aurelio C.Campilho and A.M.Mendonca(Eds.),ISBN 972-96883-2-5, pp. 125-129, Porto, Portugal, May 11-12, 2000
    [108]郭国栋,马颂德.彩色图象分割[J].中国图象图形学报,1998,3(11):918-921
    [109] Ohlander R,Price K,Reddy D R. Picture segmentation using a recursive region splitting method [J].CGIP,1978,8(3):313-333
    [110] Tremeau A,Borel N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition,1997,30(7):1191-1203
    [111] Pal N R,Pal S K. A review on image segmentation techniques[J]. Pattern Recognition, 1993,26:1277-1294
    [112] Adams R, Bischof L. Seeded region growing[C].IEEE-PAMI, 1994, 16(6):641-646
    [113] Kass M,Witkin A,Terzopoulos D. Snakes:active contour models[J]. Int.J.Computer Vision,1987,321-331
    [114]刘少创,林宗坚.彩色航空影象分割的OCTOPUS方法[J].中国图象图形学报,1997,2(11):790-794
    [115] G. Sherlock. Analysis of large-scale gene expression data . Current Opinion in Immunology, vol.12, pp201-205, 2000
    [116] J.Quackenbush. Computational analysis of microarray data. Nat.Rev.Genetics, vol.2, pp418-427, 2001
    [117] M.B.Eisen, P.T.Spellman, P.O.Brown D.Botstein. Cluster analysis and display of genome-wide expression patterns. Proc.Nat.Acad.Sci.USA, vol.95, 1998, pp14863-14868
    [118] T Kohonen. Self-Organizing Maps. Springer Series in Information Sciences, Vol 30, Springer-Verlag, 1995
    [119] Thomas Werner . Target gene identification from expression array data by promoter analysis . Biomolecular Engineering, vol.17, pp87-94, 2001
    [120] Javier Herrero, Alfonso Valencia, Joaquin Dopazo. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinfomatics,vol.17 no.2, pp126-136, 2001
    [121] C.Fraley, E.Raftery. MCLUST: Software for model-based cluster analysis. J.Classification, vol.16, pp297-306, 1999
    [122] D.Ghosh, A.M.Chinnaiyan. Mixture modeling of gene expression data from microarray experiments. Bioinformatics, vol.18, pp275-286, 2002
    [123] K.Y.Yeung, C.Fraley, A.Murua. Model-based clustering and data transformations for gene expression data. Bioinformatics, vol.17, pp977-987, 2001
    [124] L.J.Heyer, S.Kruglyak, S.Yooseph. Exploring expression data: Identification and analysis of coexpress genes. Genome Res., vol.9, pp.1106-1115, 1999
    [125] F.De Smet, J.Mathys, K.Marchal. Adaptive quality-based clustering of gene expression profiles. Bioinformatis, vol.18, no.5, pp.735-746, 2002
    [126] Kuo-Lung Wu, Miin-Shen Yang. Alternative c-means clustering algorithms[C].Pattern Recognition,35(2002),2267-2278
    [127] Yang Yong, Zheng Chong-xun, Lin Pan,et al. A new algorithm for image segmentation based on modified fuzzy c-means clustering[J]. Journal of Optoelectronics.Laser(光电子.激光),2005,16(9):1119-1123
    [128] Collignon A, Maes F, Delaere D, et al. Automated multi-modality image registration based on information theory. In: Proceedings of Information Processing in Medical Imaging. Dordrecht, USA: Kluwer Academic Publishers, 1995. 263-274
    [129] Bradley P S, Fayyad U M. Refining Initial Points for K-Means Clustering. Advances in Knowledge Discovery and Data Mining.MIT Press, 1996
    [130] Joaquin D, Edward Z, Ilaria D, et al. Methods and approaches in the analysis of gene expression data. Journal of Immunological Methods, 2001,250:93-112
    [131] Wells W M,Viola P, Atsumi H, et al. Multi-modal volume registration by maximization of mutual information[J]. Medical Image Analysis,1996,1(1):35-51
    [132] Maes F, Collignon A, Vandermeulen D,et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transaction on Medical Imaging,1997,16(2):187-198
    [133] F. Glover. Tabu Search– Part II. ORSA Journal on Computing, vol. 2, no. 1, pp. 4-32, 1990
    [134] P. Pardalos, A. Migdalas and R. Burkard.Combinatorial and Global Optimization. World Scientific Publishing Company, 2002
    [135] Y. Shi and R. Eberhart. Parameter Selection in Particle Swarm Optimization. Evolutionary Programming VII: Proceedings of EP 98, pp. 591-600, 1998
    [136] R. Mendes, J. Kennedy, and J. Neves. Watch the neighbour or how the swarm can learn from its environment. In Proceedings of IEEE Swarm intelligenceSymposium (SIS 2003). 2003. Indianapolis, Indiana USA
    [137] J. Kennedy. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance. In Proceedings of IEEE Congress on Evolutionary Computation(CEC 1999). 1999. Piscataway, NJ
    [138] E. Forgy. Cluster Analysus of Multivariate Data: Efficiency versus Interpretability of Classification. Biometrics, vol.21,pp:768-769,1965
    [139] G. Hamerly and C. Elkan. Alternatives to the K-means Algorithm that Find Better Clusterings. In Proceedings of the ACM Conference on Information and Knowledge Management(CIKM-2002),pp.600-607,2002
    [140]章毓晋.图像处理和分析[M].北京:清华大学出版社, 1999年3月.
    [141] R.Vitorino and M. Fernando. Image Colour Segmentation by Genetic Algorithms. RecPad′2000 - 11th Portuguese Conference on Pattern Recognition, in Aurélio C. Campilho and A.M. Mendon?a (Eds.), pp. 125-129, Porto, Portugal, May 11-12, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700