用户名: 密码: 验证码:
作物多样性栽培对烟草连作障碍的生态调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是忌连作作物,其连作障碍问题制约了烟草生产的可持续发展,成为农业生产上亟待解决的重要问题。本研究从引起烟草连作障碍的起因入手,以化感自毒物质和根际微生物群落为主线,对烟草连作和化感自毒的生理生化反应、根际微生态特性、化感自毒效应的验证进行研究,进而探讨作物多样性栽培对烟草连作障碍的生态调控机制,以期全面揭示烟草连作障碍机理,为进一步研究烟草连作障碍的消减技术,尽快实现对烟草连作障碍的有效调控,提供理论依据和技术支撑。
     主要结果如下:
     1.采集烟区种植烤烟和白肋烟年限为3年和10年的植烟土及其邻近未种植烟草的对照土,进行盆栽试验,结果表明,连作导致烤烟和白肋烟出现烟株矮小,叶面积变小的抑制效应。进一步分析发现,连作使烟株内部保护酶超氧化物歧化酶(SOD)、过氧化物酶(POD)活性上升,但过氧化氢酶(CAT)活性下降,进而导致植株体内有害物质积累增加,丙二醛(MDA)含量上升,且随着种植年限的增加连作障碍现象越明显。可见连作导致烟草生长发育受阻,内部保护系统的功能受到一定的干扰,有害物质不断积累,连作障碍现象产生。
     2.对连作烤烟及白肋烟的土壤进行灭菌与无灭菌处理后再植烟,探讨自毒物质及微生物与烟草连作障碍的关系,结果表明,无论是白肋烟还是烤烟土壤灭菌处理后植烟,连作抑制效应在一定程度上降低,但仍存在显著的连作障碍。可见,灭菌处理后的连作土壤中仍存在影响烟草正常生长的因素,且随着连作年限的延长有富集效应。进一步分析发现,植烟土无论灭菌与否,随着连作年限增加根际土壤中细菌群落的多样性水平下降,且同一植烟年限灭菌与无灭菌的土壤细菌群落相似系数较高。可见,烟草连作土壤中的残留分泌物对土壤中细菌群落结构的演化具有一定的调节作用。
     与烟草连作障碍烟株生长相关微生物分析结果显示,灭菌土壤再植烟后土壤微生物朝着有害方向发展,即土壤营养物质循环相关微生物随着连作烟草土壤年限的增加不断下降,而病原菌的数量不断提升。无灭菌土壤内部微生物多样性功能分析结果亦然,但无灭菌土壤微生物在种类上明显比灭菌土壤丰富。可见,随着烟草连作年限的延长,病原菌在土壤生态系统中占据主导优势,大部分益生菌繁殖受抑制,土壤微生物群落的原始平衡被打乱,土壤环境朝着不断恶化的方向发展。
     3.盆栽烟草外源添加植烟土壤提取物质对烟草生长影响试验结果表明,植烟土壤提取物质处理使烟草生长表现出与连作障碍一致的障碍效应,且随添加浓度的增加,抑制率显著提高。具体表现为烟草株高变矮,叶面积变小,光合作用降低。进一步分析外源添加物质处理后烟草根际微生物群落功能多样性变化发现,土壤营养循环相关酶活性显著降低,且随着添加浓度升高,下降幅度越大。烟草根际土壤细菌群落T-RFLP分析结果显示,外源添加处理后根际土壤中细菌群落减少,多样性水平显著下降,这一变化规律与随着连作年限增加根际土壤中细菌群落的多样性水平变化规律一致。进一步研究发现,外源添加物质处理后烟草根际土壤中存在与连作障碍烟株生长相关的T-RFs片段有8个,与不同种植年限烟草根际土壤中与连作障碍烟株生长呈显著或极显著相关。可见,在外源添加物质的选择压力下,土壤微生物朝着连作的方向演化,这种演化程度与添加物质的浓度相关,从连作的角度分析,即与连作年限相关。可见,连作障碍产生过程中,烟草是源,自毒物质是基础,病原菌是果,烟草连作障碍是最终表现。
     4.采用引入茬口的烟田作物多样性栽培模式(烤烟—水稻→烤烟(KR-K),烤烟—玉米→烤烟(KC-K),白肋烟—水稻→烤烟(ER-K),白肋烟—水稻→烤烟(ER-K)),以头茬植烟为对照,进行大田池栽试验结果表明,烟草复种连作对烟草的株高、茎围、有效叶片数、叶面积、产量等农艺性状及光合作用指标均具有一定的障碍效应,而且烟草复种连作与头茬对照相比烟叶内部化学成分更趋于不协调。但烟草—水稻→烟草的种植模式比烟草—玉米→烟草模式更有利于减轻烟草连作障碍,年际间进行烟草品种类型更换也可在一定程度上缓解障碍效应。此外,结果表现,复种连作使植烟土壤根际细菌多样性水平降低,但年际间更换品种类型的种植模式(ER-K, EC-K)其香农-威纳指数下降比无品种类型更换的(KR-K, KC-K)少,引入水稻茬的种植模式(KR-K, ER-K)与对照土壤根际细菌群落结构的相似性较大。
     进一步分析与烟草连作障碍相关的微生物类群,结果表明,引入茬口的作物多样性栽培模式与头茬植烟土壤相比,土壤中与营养物质循环相关的微生物种类略有增加,但在数量上出现的下调,而病原菌数量及种类则有一定的上升趋势。与连作3年的烟草土壤相比,土壤微生物种群多样性明显增加,与土壤营养物质循环相关微生物在数量及种类上也增加。而且与引入水稻茬口相比,玉米茬口的土壤营养物质循环相关微生物数量及种类上略微下降,病原菌与益生菌的变化无明显的差异。
     年际间更换烟草品种类型的种植模式(白肋烟—水稻→烤烟或白肋烟—玉米→烤烟),与年际间无烟草品种类型更换的种植模式相比,烟草土壤中的微生物种群多样性明显提高,与土壤营养物质循环相关的微生物种类及数量均略有提升,相应的病原菌数量也有一定程度的下降趋势。与连作烟草3年的土壤相比,微生物种群多样性变化更加明显,土壤营养物质循环相关的微生物种类及数量均明显增加,病原菌数量则下降。但与头茬种烟相比,与土壤营养物质循环相关的微生物种类略有提升,但在数量上的出现下调现象,而病原菌数量及种类则有一定的上升趋势。同时与白肋烟—水稻→烤烟后的土壤相比,白肋烟—玉米→烤烟土壤营养物质循环相关微生物数量及种类上略微下降,病原菌数量较多,反之益生菌的数量较少。
     综上,烟草连作带来土壤中自毒物质的积累,这些物质对土壤生物,特别是病原生物的选择性促进以及由此导致的土壤微生态系统失衡,是烟草连作障碍产生的主要原因。通过作物多样性栽培等多维度措施,定向调控根际微生物的种群特征,恢复并重建健康的根际生态系统,将最终克服连作障碍的难题。
Tobacco is an intolerance continuous cropping crop. Continuous cropping obstacles restrict sustainable development of tobacco production, which is the most important issues in agricultural production that need to be soluted urgenty. In this study, the theme is on allelopathic autotoxicity and rhizosphere microbe flora, for this purpose, it starts with the cause of tobacco continuous cropping obstacles, and includes the following experiments:physiochemical response of tobacco continuous cropping and its allelopathic autotoxicity, micro-ecological character of the rhizosphere soil, verification of allelopathic autotoxicity effects. Furthermore, ecological mechanism of crop diversification on continuous tobacco cropping obstacles was explored. This study reveals fully the mechanism of tobacco continuous cropping obstacles and provides a theoretical basis and technical support for further studying to reduce obstacles as well as for achieving effective control of the obstacles as soon as possible.
     The results were mainly summarized as below.
     1. Pot experiment was conducted to study effects of continuous cropping soil on the grow status and protective enzymes of tobacco crop plant in the soils mediated by replanted flue-cured tobacco and burley tobacco in cropping sequence for 0,3, and 10 years.Growth of flue-cured tobacco and burley tobacco was significantly inhibited under the condition of continuous cropping, such as shortened plant height and decreased leaf area. The defence response of tobacco was also triggered, indicating that the activities of superoxidate dismutase (SOD) and peroxidase (POD) in the leaves were enhanced, while reverse was true in the case of catalase (CAT), and the malondialdehyde (MDA) content in the leaves of tobacco was increased. The inhibitory effects of continuous cropping obstacles were enhanced as the continuous cropping years increased. This implied that the crop was subjected to stressful environment and changes in its resistant physiology under the continuous cropping treatment.
     2. To study relationship among autotoxicity, microorganism and continuous cropping obstacle of tobacco, the experiment that the tobacco was planted in the sterilized and non-sterilized soil under flue-cured and burley tobacco, was conducted. The results showed that the sterilized soil under continuous cropping tobacco appeared to reduce the inhibitory effect on the growth of tobacco compared with non-sterilized soil. After sterilization treatment, the detrimental biotic factors were eliminated to some extent, but the inhibitory effects on plant height and leaf area were still enhanced as the continuous cropping years increased. This implied that the detrimental factor on the crop still existed in the sterilized soil under continuous cropping treatment, which appeared to be enriched as the continuous cropping years. Further analysis showed that whether the soil was sterilized or not, the diversity level of bacterial community in the rhizospheric soil was decreased as the continuously cropping years increased, and the similarity indexes of bacterial community were higher in both non-sterilized soil and sterilized soil at the same period. The result suggested that the enrichment effect of secretion residual from the crop had epigamic stimulation to bacterial community with continuous cropping years increasing.
     The analysis of the microorganism related to continuous cropping obstacle of tobacco showed that the microorganism in the soil under the replanted tobacco after sterilized treatment shifted toward the harmful species, which could lead to decrease in the microorganism related to soil nutrition cycle, reverse was true in pathogens with continuous cropping years increasing. Though the same results happened in the non-sterilized treatment, the soil without sterilized treatment was more abundance in the species of microorganism. This implied that pathogens would become a dominant population in the soil ecological system, the propagation of most probiotics were inhibited, the original balance of soil microbial communities has been disrupted and the soil environment towards the direction of worsening as the prolonging of the continuous cropping years.
     3. The experiment, which adding additional substances into the soil under tobacco planted in the pot, indicated that the same effect of continuous cropping obstacle, such as the dwarfing of tobacco, reducing in leaf area and lowering of photosynthesis, happened on the tobacco treated with the additional substances and the effect enhanced significantly as additional substances concentration increased. The analysis of the micro-system of tobacco rhizosphere suggested that enzyme activity in related with soil nutrition cycle decreased significantly as the additional substances increased. The T-RFLP analysis of the bacterial community of the rhizosphere soil showed that the bacterial community and the diversity decreased which were consistent with the continuous cropping of tobacco, at the same time, many T-RFs related with the continuous cropping obstacle were determined in soil and eight T-RFs were found in the soil of continuous cropping also. These results showed that the additional substances could make the microorganism in the soil under tobacco evolve toward orientation of microflora in the continuous cropping soil and its evolution speed was related to the concentration of additional substance or the cropping years correspondingly. According to the above, it can be concluted that the substances exudated from the tobacco result in changed microorganism in the soil, and this in turn leads to the continuous cropping obstacle.
     4. To study ecological mechanism of crop diversification on continuous tobacco cropping obstacle, some plant patterns of crop diversification cultivation such as (flue-cured tobacco-rice-flue-cured tobacco(KR-K), flue-cured tobacco-corn-flue-cured tobacco(KC-K), burley tobacco-rice-burley tobacco (ER-K), burley tobacco-corn-burley tobacco (EC-K) and CK(first crop control) were conducted. The result showed that replanted tobacco in sequential cropping leaded to continuous cropping obstacles, the concrete manifestation was poor agronomic traits including decreasing plant height, stem girth, effective leaflet, and leaf area, hindering photosynthesis, and reducing yields. Chemical component of flue-cured tobacco of replanted tobacco in sequential cropping became uncoordinated compared with first crop control. However tobacco-rice→tobacco show lower barriers than tobacco-corn→tobacco pattern. And changed species inter-annual would reduce obstacle effects partly. In addition, diversity of bacterial flora was decreased after replanting tobacco in sequential cropping, but the Shannon-Weiner index of bacterial flora in the rhizosphere soil of ER-K and EC-K which changed species inter-annual were decreased less than KR-K and KC-K. The similarity coefficient of microbial flora in rhizosphere soil of KR-K, ER-K taking rotation rice was increased with control.
     The further analysis of microbial groups related to continuous cropping obstacle of tobacco showed that, compared to the CK, the plant patterns of crop diversity cultivation could lead to slight increase in microbial species related to soil nutrient cycle but decrease in the number, while the number and species of pathogen appeared upward trend in some degree. And compared to the soil cropping tobacco sequence for 3 years, the crop diversity cultivation contributed to the significant increase in microbial diversity, and even the number and species of microorganism related to soil nutrient cycle. Compared to plant patterns of KR-K, ER-K, there is a slight decrease in the number and species of microorganism related to soil nutrient cycle under the patterns of KC-K, EK-K, while no significant difference could be found in pathogens and probiotics.
     Compared to the plant patterns which did not changed species inter-annual (KR-K and KC-K), the plant patterns which changed species inter-annual (ER-K or EC-K) would result in the significant enhancement of the diversity of microorganism community in the rhizosphere soil under tobacco, a slight rise in species and amount of some microorganism related to soil nutrition cycle and the decreasing of pathogens in some parts. There were same changes in diversity, species, amount and pathogens but more significant in comparison with continuous cropping of tobacco for 3 years. However, compared to CK, the microorganism related to soil nutrition cycle under the ER-K or EC-K patterns increased slightly in species but decreased in number, and there was a certain upward trend of pathogens in species and amount. At the same time, compared to patterns of ER-K, there was a slight decrease in species and number of the microorganism related to soil nutrition cycle under the EC-K, and greater number of pathogens but small number of probiotics on the contrary.
     In summary, continuous cropping of tobacco caused the accumulation of autotoxic substances in soil, and these substances could contribute to a selective promotion of soil microorganism, particularly to pathogens. This in turn led to destroyed microbe community balance, and deteriorated micro-ecological conditions in rhizosphere soil. Through the multi-dimensional measures such as crop diversification, it could regulate the population characteristics of rhizosphere microorganism directionally and recoery a normal rhizosphere ecosystems, will eventually overcome the problems of continuous cropping obstacle.
引文
[1]王学杰,王小东,昝京宜,等.烟草连作效应分析及对策初探[J].河北农业科学,2008,12(4):6-7,9.
    [2]赵凯,娄翼来,王玲莉,等.烤烟连作对烟叶产量和质量的影响[J].现代农业科技,2008(8):18-19.
    [3]晋艳,杨宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报,2004(17):267-272.
    [4]晋艳,杨宇虹,段玉琪,等.烤烟连作对烟叶产量和质量的影响研究初报[J].烟草科技,2002,174(1):41-45.
    [5]阮维斌,王敬国,张福锁,等.根际微生态系统理论在连作障碍中的应用[J].中国农业科技导报,1999,1(4):53-58.
    [6]Suranyi,D. History of replant disease and soil sickness in Hungary.Fourth international symposium on replant problems[J],1998,477:23-25.
    [7]高群,孟宪志,于洪飞.连作障碍原因分析及防治途径研究[J].山东科学,2006(3):60-63.
    [8]王金龙,徐冉,陈存来,等.大豆连作下土壤环境条件变化的概述[J].大豆科学,2000,19(4):367-371.
    [9]辛洪生,胡瑞轩,张风彬.黑龙江省大豆连作施肥技术[J].种子世界,2002(1):41-43.
    [10]孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27(5):617-621.
    [1ll徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003,32(3):19-24.
    [12]Dobermann A, Dawe D, Roetter R P, et al. Reversal of rice yield decline in a long-term continuous cropping experiment[J]. Journal of Agronomy (Soil fertility),2000,92:633-643.
    [13]高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应[J].应用生态学报,1998,9(5):549-554.
    [14]Chang X C, Juma N G. Impact of crop rotation on microbial biomass, faunal populations, and plant C and N in a Gray Luvisol (Typic Cryoboralf) [J]. Biology and Fertility of Soils,1996, 22(1):31-39.
    [15]翟明普,贾黎明.森林植物间的他感作用[J].北京林业大学学报,1993,15(3):138-147.
    [16]胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究[J].土壤通报,2006,37(1):126-129.
    [17]粱银丽,陈志杰,徐福利,等.黄土高原设施农业中的土壤连作障碍[J].水土保持学报,2004,18(4):134-136.
    [18]李好琢,霍建勇.蔬菜作物的连作障碍发生机理及生态育种[J].北方园艺,2005(3):10-11.
    [19]马汇泉,傅慧兰,战景仁,等.大豆连作的过氧化氢酶活性与根系分泌物[J].吉林农业科学,1997,4:34-36.
    [20]陈长宝,王艳艳,张连学,等.人参根际土壤中化感物质鉴定[J].特产研究,2006(2):12-14.
    [21]王玉萍,赵杨景,邵迪,等.西洋参根系分泌物的初步研究[J].中国中药杂志,2005,30(3):229-231.
    [22]张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.
    [23]官会林,陈昱君,刘士清,等.三七病株根际土壤微生物特征研究[J].农业与技术,2005,25(6):56-58,70.
    [24]郭兰萍,黄璐琦,吴志刚,等.苍术根际区土壤养分变化规律[J].中国中药杂志,2005,30(19):1504-1507.
    [25]刘红彦,王飞,王永平,等.地黄连作障碍因素及解除措施研究[J].华北农学报,2006,21(4):131-132.
    [26]喻敏,余均沃,曹培根,等.百合连作土壤养分及物理性状分析[J].土壤通报,2004,35(3):377-379.
    [27]王金龙,徐冉,王彩洁,等.大豆连作条件下土壤环境的变化及其危害[J].山东农业科学,2005(2):54-57.
    [28]于广武,许艳丽,刘晓冰,等.大豆连作障碍机制研究初报[J].大豆科学,1993,12(3):237-243.
    [29]Freddy Aleman. Common bean response to tillage intensity and weed control strategies[J]. Cropping system.2001,93:556-563.
    [30]Hubetr D M,Schneider R W. Suppressive soiles and plant disease[M], American Phytopathological Soicety, St Paul,MN, R. W. Schneider.1982:1-7.
    [31]Meyer J R,Shew H D. Soil suppressive to black root rot of burley tobacco, caused by thielaviopsis basicola[J]. Phytopathology.1991,81:946-954.
    [32]Yu J Q,Yoshihism M.Extraction and identification of phytotoxic substances accumulated in nutrient solution for hydroponic culture of tomato[J]. Soil Science and Plant Nutrition.1993, 39(4):691-700.
    [33]Yu J Q, Matsui Y P. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.)[J]. J.Chem.Ecol.1994,20(1):21-31.
    [34]Blum U, Shafer SR, Lehmen ME. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils:Concepts vs. an experimental model[J]. Critical Reviews in Plant Sciences.1999,15(5):673-693.
    [35]Yu JQ, Mstsui Y. Effect of root exudates of cucumber(Cucumis sativus)and allelochemicals on ion uptake by cucumber seedlings[J]. Journal of Chemical Ecology.1997,23(3):817-827.
    [36]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007,40(10):2274-2280.
    [37]张福锁,申建波,冯固,等.根际生态学—过程与调控[M].北京:中国农业大学出版社,2009:114-122.
    [38]林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报,2007,15(4):1-8.
    [39]喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179.
    [40]Yu J Q, Shou S Y, Qian Y R, et al. Autotoxic potential of cucurbit crops[J]. Plant and Soil, 2000,223:147-151.
    [41]傅慧兰,战景仁,孟民,等.大豆连作的过氧化氢酶活性与根系分泌物[J].吉林农业科学,1997,(4):34-36.
    [42]韩丽梅,阎飞,王树起,等.重迎茬大豆根际土壤有机化合物的初步鉴定及对大豆萌发的化感作用[J].应用生态学报,2000,11(4):582-586.
    [43]韩丽梅,王树起,肖丽华.重迎茬大豆根区土壤有机化合物的GC/MS分析[J].吉林农业科学,2005,30(4):6-8.
    [44]郝群辉,刘红彦,王飞,等.怀地黄根际土壤水提物的GC/MS分析[J].河南农业科学,2007(2):78-80.
    [45]吴凤芝,赵凤艳.根系分泌物与连作障碍[J].东北农业大学学报,2003,34(1)114-118.
    [46]蒋德新,许东城,田国华,等.连作菜地土壤改良的方法[J].上海蔬菜,1997(2):39.
    [47]刘润进,裘维蕃.内生菌根菌(VAM)诱导植物抗病性研究的新进展[J].植物病理学报,1994,24(1):1-3.
    [48]艾希珍,于贤昌,王绍辉,等.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化(简报)[J].植物生理学通讯,1999,35(1):26-28.
    [49]刘桂芹,邓国生.嫁接技术在防止黄瓜枯萎病上的应用[J].中国蔬菜,1993(2):32-33.
    [50]刘鸣稻,徐瑞富,武庆顺,等.黄瓜嫁接防治根结线虫病[J].中国蔬菜,1998(5):36.
    [51]季尚宁,肖玉珍,田慧梅,等.土壤灭菌对连作大豆生长发育的影响[J].东北农业大学学报,1996,27(4):326-329.
    [52]吴凤芝,王伟,栾非时.土壤灭菌对大棚连作黄瓜生长发育的影响[J].北方园艺,1999(5):300-302.
    [53]魏秀翠,杨金明,廖开志,等.连作障碍发生原因及综合防治措施[J].上海蔬菜,2009(2):61-62.
    [54]张树生,杨兴明,茆泽圣,等.连作土灭菌对黄瓜生长和土壤微生物区系的影响[J].生态学报,2007,27(5):1810-1817.
    [55]夏春霞,钱忠贵.设施蔬菜连作障碍产生原因及防止措施[J].吉林蔬菜,2006,(1):28-29.
    [56]郭俊成,苏勇,刘强,等.烟草叶蛋白利用价值研究进展[J].中国烟草科学,2006,(1):8-10.
    [57]左娅.2009年我国烟草业实现税利超5000亿[N].人民日报,2010-01-15.
    [58]云南省烟草科学研究所.烟草微生物学[M].科学出版社,2008.
    [59]朱树良,夏春雷,王朝佐,等.优化耕作制度促进云南主产区烟叶生产可持续发展[J].中国烟草科学,2005(3):5-8.
    [60]王连君,谷思玉.烤烟连作对土壤养分的影响[J].烟草科技,2004,206(9):40-42.
    [61]何琳,娄翼来,王玲莉,等.烤烟连作对土壤养分状况的影响[J].现代农业科技,2008(8):115-116.
    [62]刘方,卜通达,何腾兵.连作烤烟土壤养分变化分析[J].贵州农学院学报,1997,16(2):1-41.
    [63]刘方,何腾兵,刘元生,等.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技,2002(6):30-331.
    [64]方树民,顾钢,纪成灿,等.烟草青枯菌致病型及分布的研究[J].中国烟草学报,2002(3):41-44.
    [65]耿坤,罗文富,杨艳丽.烟草黑胫病菌的田间群体分布规律[J].云南农业大学学报, 2002(4):86-89.
    [66]李天福,王彪,王树会.云南烤烟轮作的现状分析与保障措施[J].中国烟草科学,2006(2):51-54.
    [67]朱斌,王军,乔永信.陕南烟草根结线虫病发病规律研究初报[J].陕西农业科学,2005(1):6-8,40.
    [68]刘国顺.烟草栽培学[M].北京:中国农业出版社,2003.
    [69]肖枢,龙荣,王锡云,等.瑞丽地区烟草寄生性线虫与栽培关系研究[J].植物检疫,1997,11(1):8-10.
    [70]李天金.烤烟主要灾害性病害及其防治措施[J].植保技术与推广,2000,20(2):222-231
    [71]罗文富.土壤抑制烟草黑胫病菌的机制[J].云南农业大学学报,1997,12(3):214-218.
    [72]关国经,张长华,冯光群,等.发病史、品种和轮作组合预防烤烟青枯病试验[J].贵州农业科学,2006,34(B07):419-421.
    [73]祝明亮,李天飞,夏振远,等.云南省烟草根结线虫发病土壤生态因子分析[J].中国烟草学报,2003,9(4):30-34.
    [74]刘华山,张玉丰,韩锦峰,等.烟草花叶病防治研究进展[J].安徽农业科学,2005,33(8):1482-1483.
    [75]林祥永,陈飞雄,王金文,等.烟草花叶病的发生规律与防治策略[J].安徽农业科学,2003,31(3):4871.
    [76]中国农科院烟草研究所.近年烟草病虫害发生趋势及今后防治建议[C].全国特色优质烟叶开发工作座谈会交流材料,2008.
    [77]陈卫华.烟草连作病害多[J].农家参谋,2002(3):91.
    [78]张长华,舒小林,冯光群,等.不同发病史的烟地烤烟品种抗青枯病试验[J].贵州农业科学,2000,28(增刊):60-61.
    [79]殷全玉,王岩,赵铭钦,等.我国植烟土壤微生物研究进展[J].中国烟草科学,2009,30(1):73-77.
    [80]姜超荚,潘文杰.作物连作的土壤障碍因子综述[J]..中国农村小康科技,2007(3):280-281.
    [81]丁海兵,郭亚利,黄建国,等.连作烤烟不同粒级土壤酶活性研究[J].耕作与栽培,2005(5):13-15.
    [82]中国烟叶公司.2004年中国烟叶可持续发展调研报告[EB/OL]. http://www.tobaccochina.com/tobaccoleaf/roundup/update/20069/200697145840_226964.shtml
    [83]国家烟草专卖局.中国卷烟科技发展纲要.国烟科[2003]630号文件[Z].2003.
    [84]国家烟草专卖局.2006年度国家烟草专卖局科学研究与技术开发项目计划表[EB/OL]. http://www. chinalawedu. com/upload/news/2006/6/9
    [85]国家烟草专卖局.烟草行业中长期科技发展规划纲要(2006-2020年)[Z].2006.
    [86]国家烟草专卖局.2007烟草行业创新年专题九大专项三:无公害烟叶工程[EB/OL]. http: //www. echinatobacco. com/101542/101576/101782/101855/101861/9405. html.
    [87]Rice E L. Allelopathic growth stimulation.Putnam A R,Tang C S.The Science of Allelopathy [M]. New York:JohnWileye Sons.1986.23.
    [88]余叔文.植物生理与分子生物学(第二版)[M].北京:科学出版社,1992,699-720.
    [89]贺锋,陈辉蓉,吴振斌.植物间的相生相克效应[J].植物学通报,1999,16(1):19-27.
    [90]吕卫光,张春兰.化感物质抑制连作黄瓜生长的作用机理[J].中国农业科学,2002,35(1):105-109.
    [91]李明,马永清,税军峰.南瓜组培根根系分泌物的化感效应研究[J].应用生态学报,2005(4):744-749.
    [92]杨广超,吕卫光,朱静,等.西瓜根、茎、叶水浸提液对西瓜种子萌发及幼苗中酶活性的影响[J].西北农业学报,2005,14(1):46-51.
    [93]耿广东,程智慧,张素勤.不同浓度的辣椒化感物质对莴苣化感效应研究[J].华北农学报,2008,23(2):30-33.
    [94]战秀梅,韩晓日,杨劲峰,等.大豆连作及其根茬腐解物对大豆分泌物中酚酸类物质的影响[J].土壤通报,2004,35(5):631-635.
    [95]韩丽梅,沈其荣,鞠会艳,等.大豆地上部水浸液的化感作用及化感物质的鉴定[J].生态学报,2002,22(9):1425-1432.
    [96]张重义,林文雄.药用植物的化感自毒作用与连作障碍[J].中国生态农业学报,2009,17(1):189-196.
    [97]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报,2006(2):223-230.
    [98]郭兰萍,黄璐琦,蒋有绪,等.不同化学型苍术根茎及根际土提取物生物活性及化感物质的比较[J].中国药学杂志,2006(10):734-737.
    [99]刘秀芬.根际他感化学物质的分离鉴定与生物活性的研究[J].生态学报, 1996,16(1):1-10.
    [100]刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品,2007,9(03A):649-651.
    [101]刘金波,许艳丽.我国连作大豆土壤微生物研究现状[J].中国油料作物学报,2008,30(1):132-136.
    [102]乔卿梅,程茂高,王新民.根际微生物在克服药用植物连作障碍中的潜力[J].土壤通报,2009,40(4):957-961.
    [103]Philippe Hinsinger, Claude Plassard, Benoit Jaillard. Rhizosphere:A new frontier for soil biogeochemistry[J]. Journal of Geochemical Exploration,2006,88:210-213.
    [104]Brajesh K. Singh, Peter Millard, Andrew S. Whiteley, et al. Unravelling rhizosphere-microbial interactions:opportunities and limitations[J]. TRENDS in Microbiology,2004,12(8): 386-393.
    [105]Stephen T. Chisholm, Gitta Coaker, Brad Day, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell,2006,124:803-814.
    [106]Margaret Mccully. Rhizosphere allelopathy [J]. Allelopathy Journal,2007,19(1):75-84.
    [107]Garbeva P, VanVeen J A, Van ElsasJ D. Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review. Phytopathol,2004,42:243-270.
    [108]张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006,17(6):1129-1132.
    [109]陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报.2007,18(12):2755-2759.
    [110]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.
    [111]李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响[J].生态学报,2006,26(4):1144-1150.
    [112]马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2004,15(6):1005-1008.
    [113]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,1(4):21-27.
    [114]罗明,陈新红,李兢,等.种保素对几种根际微生物效应的影响[J].生态学杂志,2000,19 (3):69-72.
    [115]陈华癸.微生物学[M].北京:农业出版社,1988:130-132.
    [116]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    [117]Yu J Q. Allelopathic suppression of psedomonas solanacearum infection of tomato in a tomato-chinese chive intercropping system[J]. Journal of Chemical Ecology,1999,25(11): 2409-2417.
    [118]Saeki Y, Yamakawa T, IkedaM, et al. Effects of root exudate of Rj2Rj3-and Rj4-genotype soybean on growth and chemotaxi of B radyrhizobium japonicum[J]. Soil Science and Plant Nutrition,1996,42:413-417.
    [119]Hoagland R E, Zablotowicz R M, Oleszek W A. Effectsof alfalfa saponins on In Vitro physiological activity of soil and rhizospherebacteria[J]. Journal of Crop Production,2001,4: 349-361.
    [120]袁光林,马瑞霞,刘秀芬,等.化感物质对土壤脲酶活性的影响[J].环境科学,1998,19(2):55-57.
    [121]孟立君,吴凤芝.土壤酶研究进展[J].东北农业大学,2004,35(5):622-626.
    [122]Rupam Kapoor. Root exudation and its implication on rhizosphere mycoflora[J]. Advances in microbial biotechnology,1999,351-362.
    [123]Melissa J, Fransa D, Jamesm L. The effect of root exudates on rhizosphere microbial populations. The Rhizosphere:biochemistry and organic substances at the soil-plant interface Book in soils,plants, and the environment [M].2000,95-140.
    [124]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际土壤营养关系评述[J].土壤与环境,2000,9(1):64-67.
    [125]张淑香,高子勤.连作障碍与根际微生态研究.Ⅱ.根系分泌物与酚酸物质[J].应用生态学报,2000,11(1):152-56.
    [126]王树起,韩晓增,乔云发.根系分泌物的化感作用及其对土壤微生物的影响[J].土壤通报,2007,38(6):1219-1225.
    [127]许艳丽.重迎茬大豆土壤微生物生态分布特征研究[A].许艳丽,韩晓增.大豆重迎茬研究[C].哈尔滨:哈尔滨工程大学出版社,1995.
    [128]汪立刚,沈阿林,孙克刚,等.大豆连作障碍及调控技术研究进展[J].土壤肥料, 2001(5):3-7.
    [129]王光华,于广武,许艳丽.大豆根残体对大豆生长的影响[A].许艳丽,韩晓增.大豆重迎茬研究[C].哈尔滨:哈尔滨工程大学出版社,1995.
    [130]鞠会艳,韩丽梅,王树起,等.连作大豆根分泌物对根腐病病原菌的化感作用[J].应用生态学报,2002,13(6):723-727.
    [131]潘凯,姚友.不同黄瓜品种根系分泌物对根际土壤微生物及土壤养分的影响[J].北方园艺,2008(8):18-20.
    [132]Elroy A C. The Rhizosphere[M]. Berfin:Spring-Verlag,1986.
    [133]Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural roducts[J]. ChenBiol,1998,5(10):245-249.
    [134]沈菊培,张丽梅,郑袁明,等.土壤宏基因组学技术及其应用[J].应用生态学报,2007,18(1):212-218.
    [135]贺纪正,张丽梅,沈菊培,等.宏基因组学(Metagenomics)的研究现状和发展趋势[J].环境科学学报,2008,28(2):209-218.
    [136]Ammm R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbiol cells without cultivation[J]. Microbiol Rev,1995,59:143-169.
    [137]Horton T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology:Peeking into the black-box[J]. Molecular Ecology,2001,10:1855-1871.
    [138]Ogram A. Discussion soil molecular microbial ecology at age 20:Methodological challenges for the future[J]. Soil Biology & Bioehemistry,2000,32:1499-1504.
    [139]Van W F, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis [J]. FEMS Microbial Rev,1997,21:213-229.
    [140]Zheng D, Alm E W, Stahl D A, et al. Characterization of universal small subunit rRNA hybridization probes for quantitative molecular microbial ecology studies [J]. Appl Environ Microbiol,1996,62:4504-4513.
    [141]Hilla G T, Mitkowskia N A, Aldrich W L, et al. Methods for assessing the composition and diversity of soil microbial communities [J]. Applied Soil Ecol,2000,15:25-36.
    [142]Moran M A, Torsvik V L, Torsvik T, et al. Direct extraction and purification of rRNA for ecological studies[J]. Appl Environ Microbiol,1993,59:915-918.
    [143]LiuW T, Marsh TL, ChengH, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphismsof genes encoding16S rRNA[J]. Applied and EnvironmentalMicrobiology,1997,63:4516-4522.
    [144]Kornelia S, Miruna 0 S, AnnettM, et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprintsof PCR amplified 16S rRNA gene fragments:Do the different methods provide similar results[J]. Journal of Microbiological Methods,2007,69:470-479.
    [145]任南琪,赵阳国,高崇洋.TRFLP在微生物群落结构与动态分析中的应用[J].哈尔滨工业大学学报,2007,39(4):552-556.
    [146]王洪媛,江晓路,管华诗,等.微生物生态学一种新研究方法-T-RFLP技术[J].微生物学报,2004,31(6):90-94.
    [147]Tiedje J M, Asuming B S, Nttsslein K, et al. Opening the black box of soil microbial diversity[J]. Applied Soil Ecology,1999,13(1):109-1122.
    [148]Maidak B L, Cole J R, Lilburn T G. The RDP(Ribosomal Database Project)continues[J]. Nucleic Acids Res,2000,28:173-174.
    [149]郝纯,刘庆华,杨俊仕,等.宏蛋白质组学—探索环境微生态系统的功能[J].应用与环境生物学报,2008,14(2):270-275.
    [150]Zivy M D, Vienne D. Proteomics:a link between genomics, genetics and physiology [J]. Plant Mol.Biol,2000,44:575-580.
    [151]Nannipieri P. Soil proteomics [J]. Geophysical Research,2005(7):545-546.
    [152]Ogunseitan, O A. Soil proteomics:extraction and analysis of proteins from soil[J]. Soil Biology,2006(8):95-115.
    [153]侯永侠,周宝利,吴晓玲,等.土壤灭菌对辣椒抗连作障碍效果[J].生态学杂志,2006,25(3):340-342.
    [154]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [155]南京农业大学.土壤农化分析(第二版)[M].北京;农业出版社,1991.
    [156]朱广廉,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990.
    [157]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [158]郝再彬,苍晶,徐仲.植物生理学实验[M].哈尔滨.:哈尔滨工业大学出版社,2004.
    [159]孟立君,吴凤芝.土壤酶研究进展[J].东北农业大学学报,2004,35(5):622-626.
    [160]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报:自然科学版,2005,33(6):87-92.
    [161]曹彗,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [162]朱宏建,易图永,周鑫钰.土壤放线菌生防活性物质的研究进展[J].作物研究,2007(2):149-151.
    [163]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境2003,12(1):102-105.
    [164]张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006,17(6):1129-1132.
    [165]Fujii Y, Akihiro F, Syuntaro H. Rhizosphere soil method:a new bioassay to evaluate allelopathy in the field[C]. Proceedings and selected papers of the fourth world congress on allelopathy.2004:490-492.
    [166]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [167]Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition [J]. Applied and Environmental Microbiology,1996,62(2):316-322.
    [168]姚斌,钱晓刚,于成志,等.土壤微生物多样性的表征方法[J].贵州农业科学,2005,33(3):91-92.
    [169]Horswell J, Cordiner S J, Maas E W, et al. Forensic comparison of soils by bacterial community DNA profiling[J]. J Forensic Science,2002,47(2):350-353.
    [170]葛芸英,陈松,孙辉,等.土壤细菌群体多样性的T-RFLP分析应用探讨[J].中国法医学杂志,2008,23(2):104-106.
    [171]Dickie, Bing Xu, Roger T. Koide. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis[J]. New Phytologist,2002,156:527-535.
    [172]乜兰春,冯振中,周镇.苯甲酸和对羟基苯甲酸对西瓜种子发芽及幼苗生长的影响[J].中国农学通报,2007,23(1):237-239.
    [173]吴凤芝,黄彩红,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学,2002,35(7):821-825.
    [174]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [175]中华人民共和国烟草行业标准烟草农艺性状调查方法[EB/OL]. http://www.hctobacco.com/UploadFiles/200610109296121.doc
    [176]王彦亭,谢剑平,李志宏.中国烟草种植区划[M].北京:科学出版社,2010.
    [177]中国农业科学院烟草研究所.中国烟草栽培学[M].上海:上海科学技术出版社,2005,252-255.
    [178]唐莉娜,陈顺辉.不同种类有机肥与化肥配施对烤烟生长和品质的影响[J].中国农学通报,2008,24(11):258-262.
    [179]尹春芹,元野,王宏燕,等.不同轮作方式与施肥处理对东北烤烟化学成分和经济性状的影响[J].河南农业科学,2009(10):66-70.
    [180]中国农科院烟草研究所.近年烟草病虫害发生趋势及今后防治建议[C].全国特色优质烟叶开发工作座谈会交流材料,2008.
    [181]Brophyl S, Mundtc C. Influence ofplant spatialpatternson disease dynamics, plant competition and grain yield in genetically diverse wheat populations[J]. Agriculture,Ecosystems & Environment,1991(1):1-12.
    [182]Stephen T. Chisholm, Gitta Coaker, Brad Day, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell,2006,124:803-814.
    [183]Ogunseitan,0 A. Soil proteomics:extraction and analysis of proteins from soil[J]. Soil Biology,2006(8):95-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700