用户名: 密码: 验证码:
近红外光谱信息提取及其在木材材性分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济、社会的快速发展,对木材的需求量日益增加。为了缓解木材供需矛盾紧张的状况,必须加快林木的定向培育、实现木材的高效利用。因此,寻求快速、准确的木材性质检测方法,对于提高我国林木培育质量、木材的遗传改良以及木材的高效利用具有重要意义。
     近红外光谱分析技术是一种新型的分析技术,能够快速、准确地对固体、液体、粉末状等有机物样品的物理、力学和化学性质等进行无损检测。它综合运用了现代光谱信息技术、计算机信息处理技术以及化学计量学数据分析和多元校正技术最新研究成果,并使之融为一体,以其独有的特点在众多领域得到了广泛应用。近红外光谱信息的特征提取及预测模型的建立是近红外光谱分析的关键技术,如何从复杂、重叠、变动的光谱中提取有效光谱信息是影响近红外光谱技术发展的重要问题。
     论文在综合分析了近红外光谱信息产生机理的基础上,对木材近红外光谱的信息特征提取及其定量表示进行了研究。以我国人工林杉木和桉树近红外光谱为信息源,对近红外光谱信息的特征提取进行了定量分析,利用偏最小二乘法建立了杉木密度和桉树木质素含量预测模型,对比分析了不同光谱信息提取方法对所建模型的影响。
     论文主要研究内容包括:
     (1)以光谱二阶导数数据平方和与均方根误差为标准,比较分析了光谱数据平均平滑法和卷积平滑法在不同窗口下提取光谱信息的效果。平均平滑法当窗口宽度为15、17和19时,提取及保留光谱有效信息效果最好;卷积平滑法当窗口的最佳宽度为13、15和17时,提取及保留光谱有效信息效果最好。光谱数据平均平滑法和卷积平滑法可以去除光谱测量噪声,优化光谱信息。
     (2)提出了基于移动窗口方差法的木材近红外光谱信息处理方法。该方法采用局部波段上光谱数据的方差来衡量数据的起伏,以识别光谱信息起伏较大的波段,然后对这些波段进行去噪处理。以光谱数据平方和与均方根误差为标准,研究了选取多种窗口、多种阈值条件下该方法对光谱信息的处理效果。结果显示,当窗口大小取4-8、窗口方差取0.87-0.9或0.94-0.95的下侧分位数为阈值时,该方法具有很好的去除光谱噪声的效果。
     (3)采用小波变换阈值法对木材一阶导数光谱进行去噪研究。以信噪比和均方根误差为标准,对固定阈值规则、无偏似然阈值规则、混合阈值规则和极大极小阈值规则去除导数光谱噪声进行了对比分析。在对导数光谱信号进行小波4尺度分解、选取固定硬阈值规则时,导数光谱信噪比为10.22,均方根误差为0.000307,去噪效果优于其他方法。
     (4)采用小波变换模极大值进行光谱信息特征提取研究。根据信号和噪声在不同尺度上的极大值的不同传播特性,将木材近红外光谱信号进行8尺度小波分解,在相邻尺度间搜寻信号和噪声的小波模极大点,提取信号的模极大值,消除噪声模极大值,经逆小波变换重构去噪信号,达到提取光谱特征信息、去除噪声的目的。经小波4尺度分解,小波模极大值去噪后的光谱信噪比达到15.14,均方根误差为0.000953。小波变换模极大值可以有效提取光谱特征信息,去除光谱噪声。
     (5)采用偏最小二乘法建立了杉木密度预测模型。通过对原始光谱进行一阶导数、二阶导数、移动平均平滑法、卷积平滑法、移动窗口方差法、多元散射校正、数据标准化、小波阈值法和小波模极大值进行预处理后的光谱数据所建立的杉木密度预测模型进行综合分析,移动窗口方差法和小波模极大值法所建校正集模型相关系数分别为0.9391和0.9405,预测集相关系数分别为0.8706和0.8756,所建模型预测效果好于其他光谱信息预处理方法。对模型进一步优化,将一阶导数光谱进行25点卷积平滑剔除6个异常样本并选取10个主成分,所建杉木密度校正集模型相关系数为0.9692、预测集相关系数为0.8976。
     (6)采用偏最小二乘法建立了桉树木质素含量预测模型。通过对预处理后的光谱数据所建立的桉树木质素含量预测模型的综合分析,结果显示,移动窗口方差法所建校正集模型相关系数为0.9011,预测集相关系数为0.8414,预测效果好于其他预处理方法。对模型进一步优化,将原始光谱的一阶导数进行19点移动平均平滑剔除4个异常样本并选取7个主成分,所建校正集模型相关系数为0.9724、预测集相关系数为0.8768。
With the rapid development of China's economy and society, and the growing demand for wood, it is necessary to speed up the directed breeding of wood as well as improve the efficiency in its utilization so as to ease the pressure of its supply. It is, therefore, significant to find fast and accurate methods to detect wood properties with regard to the silviculture improvement, genetic modification and effective utilization for China.
     As a new analytical technique, the NIR spectroscopy can make a fast and accurate nondestructive examination of the physical, mechanical and chemical properties of organic solid, liquid, and powder samples. It combines and integrates the latest findings in modern spectroscopy, computerized information processing, stechiometric data analysis and multivariate correction, and is applied in many fields with its uniqueness. There are still some technical problems in NIR spectroscopy remaining to be solved. One of the problems is how to extract and enhance the effective information in the complicated, overlapping and changing spectrum, so as to provide excellent spectral information to build an NIR composition concentration prediction model.
     This dissertation has made a systematic study of how to extract spectral signatures from wood NIR and how give a quantitative expression, based on the overall analysis of generation mechanism of NIR. With the Chinese fir and eucalyptus NIR in planted forest as the information source, it makes a quantitative analysis on the method of NIR information extraction, builds Chinese fir density and eucalyptus lignin content prediction model by using the principle component analysis and partial least square method, and compares the influences by different spectral information extraction methods.
     The dissertation mainly studies:
     (1) Taking the quadratic sum of the second derivatives of spectra as well as the root-mean-square error as the standard, it compares the influences of average smoothing and fold smoothing of spectral data on the spectral information. For the average smoothing method, when the window widths are 15,17 and 19, it shows sound results in extraction and maintenance of effective spectral information; while for the fold smoothing method, when the optimum window widths are 13,15,17, it also shows sound results in extraction and maintenance of effective spectral information. Both averaging smoothing and fold smoothing methods used in spectral data can remove the measurement noise, and optimize the spectral information.
     (2) It provides a method for preprocessing the wood NIR information, based on the moving window variance method which measures the fluctuations of data using the variances of spectral data over a local band, so as to identify the bands with large fluctuations and then de-noise these bands. Taking the quadratic sum and root-mean-square error of spectral data as the standard, it analyzes and discusses the processing effects of this method under different windows and different thresholds. When the window size takes 4 to 8, the lower quartile of 0.87-0.9 or 0.94-0.95 of window variance are thresholds, this method produces sound de-noising effects.
     (3) It studies the de-noising of the first derivative spectrum from wood by using wavelet transform. Taking the signal-to-noise ratio and root-mean-square error as the standards, it compares the four wavelet threshold rules as fixed sqtwolog, partial likelihood estimation (rigrsure), mixd (heursure) and maximum and minimum (minimaxi), and studies the de-noising of derivative spectral data. When spectral information is decomposed under the scale of 4, and the fixed threshold rule is used, the signal-to-noise ratio (SNR) is 10.22, and root-mean-square error (RMSE) is 0.000307, which shows that the de-noising effect is better than that of other methods.
     (4) It studies the signature extraction of spectral signals by using the wavelet transform modulus maximum. According to the different propagation properties of noise and signal at the maxima of wavelet transform, it carries out wavelet decomposition under scale 8 on the wood NIR signals, and searches the wavelet modulus maxima of signals and noise in the neighboring scales., extracts signals modulus maximum, eliminate noise modulus maximum. After wavelet inverse transform, it rebuilds de-noised signals, which achieves the purposes of extracting spectral signatures, and removing the noise. After decomposition under the scale 4, and de-noising by wavelet modulus maximum, the signal-to-noise ratio (SNR) reaches 15.14, and the root-mean-square error (RMSE) is 0.000953. Wavelet transform modulus maximum can effectively extract the spectral information and remove the spectral noise.
     (5) It builds the Chinese fir density prediction model by using the principle component regression method and partial least square method. After the comprehensive analysis and assessment of Chinese fir density prediction model built based on the original spectra and the spectral data preprocessed by the first derivative method, the second derivative method, the moving average smoothing method, fold smoothing method, moving window variance method, multivariate scattering correction, data standardization, wavelet threshold method, and wavelet modulus maximum, the correlation coefficients of correction set models by the moving window variance method and wavelet maximum are 0.9391 and 0.9405, and for prediction set, the correlation coefficients are 0.8706 and 0.8756 respectively, which shows better results than that by other preprocessing methods. It carries out 25 point fold smoothing on the first derivative of original spectra, rejects 6 abnormal samples, and selects 10 principle components to further optimize the models, then the correlation coefficient for the correction set model built is 0.9692, and for prediction set, it is 0.8976.
     (6) It builds the prediction model of eucalyptus lignin content by the partial least square method. After the whole analysis of model of eucalyptus lignin which after predispose.The results shows that the correlation coefficient of correction set models by the moving window variance method is 0.9011, and for prediction set, the correlation coefficient are 0.8414, which shows a better result than that by other preprocessing methods. It carries out 19-point moving average smoothing on the first derivative of original spectra, rejects 4 abnormal samples, and selects 7 principle components to further optimize the models, the correlation coefficient for the correction set model built is 0.9742, and for prediction set, it is 0.8768.
引文
[1]王立海,杨学春,徐凯宏木材无损检测技术的研究现状与进展森林工程200117(6):1-3
    [2]戚大伟木材无损检测图像处理系统的研究林业科学200137(6):92-96
    [3]武中臣复杂凝聚态体系中近红外光谱信号的信息提取及定量表示南开大学博士论文2006.3
    [4]Stark E.,Luchter K.,Near-Infrared Analysis:A Technology for Qantitative and Qanlititive Analysis,Applied Spectroscopy Review,1986,22(4):335-339
    [5]严衍禄:近红外光谱分析基础与应用(M)中国轻工业出版社2005
    [6]Herschel W.,Investigation of the Powers of the prismatic Colours to heat and illuminate Objects;with Remarks that prove the different Refrangibility of radiant Heat.To which is added an Inquiry into the Method of viewing the Sun advantageously with Telescopes of large Apertures and high magnifying Powers, Philosophical Transactions,1800,90:255-326
    [7]Kaye W. Spectrochim Acta,1954,6:257-162
    [8]Kaye W. Spectrochim Acta,1955,7:181-187
    [9]Birth G S and Norris K H. Food Tecnol,,1958,12:592-596
    [10]Norris K H and Rowan J D. Agric Eng,1962,43:154-161
    [11]Hart J R, Norris K H and Columbic C. Cereal Chem,1962,39:64-71
    [12]Massie D R and Norris K H.Trans Am Soc Agric Eng,1965,8:598-603
    [13]Norris K H, Agric Eng,1964,45:154-159
    [14]McCaig,T.N.,Extending the use of visible/near-infrared reflectance spectrophotometers to measure color of food and agricultural products,Food Research Intemational,2002,35(8): 731-736
    [15]De Boever J.L.,Cottyn B.G.,De Brabander D.L.,et al.,Prediction of the feeding value of grass silages by chemical parameters,in vitro digestibility and near-infrared reflectance spectroscopy,Animal Feed Science and Technology,1996,60(1):103-115.
    [16]Fearn T,Hindle H,Practical NIR spectroscopy with application in food and beverage analysis,NewYork:Longman Scientific&Technical,1993.99-141.
    [17]Marie-France Laporte,Paul Paquin,Near-Infrared Analysis of Fat,Protein,and Casein in Cow's Milk,Journal of Agricultural Food Chem.,1999,47:2600-2605.
    [18]Elena Albanell,Paloma Caceres,Gerardo Caja etal,Determination of Fat,Protein,and Total Solids in Ovine Milk by Near-Infrared Spectroscopy,Journal of AOACInternational,1999. 82(3):753-757
    [19]Slobodan Sasic,Yukihiro Ozaki,Short-Wave Near-Infrared Spectroscopy of Biological Fluids.1.Quantitative Analysis of Fat,Protein,and Lactose in Raw Milk by Partial Least-Squares Regression and Band Assignment,Analytical Chemistry,2001,73(1):1-6
    [20]Woo,Young-Ah,Kim.Hyo-Jin,Cho.JungHwan,Identification of Herbal Medicines Using Pattern Recognition Techniques with Near-Infrared Reflectance Spectra,Microchemical Journal,1999,63(1):61-70
    [21]Woo,Young-Ah,Kim.Hyo-Jin,Cho.JungHwan,Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques,Journal of Pharmaceutical and Biomedical Analysis,1999,21(2): 407-413
    [22]Kim Minjin,Lee Young-Hak,Han Chonghun,Real-time classification of petroleum products using near-infrared spectra,Computers and Chemical Engineering,2000,24(2): 513-517
    [23]Aske Narve,Kallevik Harald,Sj?blom Johan,Water-in-crude oil emulsion stability studied by critical electric field measurements.Correlation to physico-chemical parameters and near-infrared spectroscopy Journal of Petroleum Science and Engineering,2002,36(1):1-17
    [24]Malley Diane F.,Williams Philip C.,Stainton Michael P.,Rapid measurement of suspended C,N,and P from precambrian shield lakes using near-infrared reflectance spectroscopy, Water Research,1996,30(6):1325-1332
    [25]Palmborg Cecilia,Nordgren,Anders,Partitioning the variation of microbial measurements in forest soils into heavy metal and substrate quality dependent parts by use of near infrared spectroscopy and multivariate statistics,Soil Biology&Biochemistry,1996,28(6): 711-720
    [26]Bittner A.Marbach R.,Heise H.M.,Multivariate Calibration for Protein,Cholesterol and Triglycerides in Human Plasma Using Short-Wave Near Infrared Spectrometry,Journal of Molecular Structure,1995,349:341-344
    [27]Mark R.Robinson,Noninvasive glucose monitoring in diabetic patient:a preliminary evaluation,Clinical Chemistry,1992,38(9):1618-1622
    [28]Shengtian Pan,Hoeil Chung,Mark A.Arnold,Near-Infrared spectroscopic measurement of physiological glucose level in variable matrics of protein and triglycerides,Anal.Chem, 1996,68(7):1124-1135
    [29]Stephen F.Malin,Non-invasive measurement of glucose by near-infrared diffuse reflectance spectroscopy,31st Annual Oak Ridge Conference,San Jose,California,1999, April 23-24
    [30]Price,J.,Long,J.,Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection,Environment International, 1997,23(5):5-6
    [31]Malley Diane F.,Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency,Water Science and Technology,1998,37(6): 181-188
    [32]刘建学实用近红外光谱技术科学出版社2008.1
    [33]郑咏梅,张铁强,张军等平滑、导数、基线校正对近红外光谱PLS定量分析的影响研究光谱学与光谱分析2004 24(12):1546-1548.
    [34]柴今朝,金尚忠光谱预处理对棉涤混纺面料近红外定量模型的影响中国计量学院学报2008 19(4):325-328.
    [35]夏俊芳,李培武,李小昱等不同预处理对近红外光谱检测脐橙VC含量的影响农业机械学报2007 38(6):107-111.
    [36]马兰,夏俊芳,张战峰等光谱预处理对近红外光谱无损检测番茄可溶性固形物含量的影响华中农业大学学报2008 27(5):672-675.
    [37]徐广通,袁洪福,陆婉珍CCD近红外光谱谱图处理方法研究光谱学与光谱分析200025(5):619-622.
    [38]张录达,沈晓南,赵龙莲等近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量分析化学研究简报2000.28(6):723-726
    [39]Mcshane Michael J. Cote Gerard L, andSpiegelman Clifford H., Assessment of Partial Least-Squares Calibration and wavelength Selection for Complex Near-Infrared Spectra, Spectroscopy,1998,52(6):878-884
    [40]S.Kamaledin Setarehdan,John J.Soraghan,etal,Variable selection for Partial Least-Squares Calibration of Near-infrared Data from Orthogonally Designed Experiments, Applied Spectroscopy,2002 56 (3):665-669
    [41]徐惠荣,汪辉君,黄康等PLS和SMLR建模方法在水蜜桃糖度无损检测中的比较研究光谱学与光谱分析2008 28(11):2523-2526
    [42]黄安民江泽慧近红外光谱技术在木材性质预测中的应用进展世界林业研究2007.20(1):49-54
    [43]Birkett M D, Gambino M J T. Paper Southern Africa,1988,25(6):34-38
    [44]Wright J A, Birkett M D, Gambino M J T. TAPPI Journal,1990,73(8):165-170.
    [45]Raymond C A,Schimleek L R. Canadian Journal of Forest Rescarch,2002,32(1):170-176.
    [46]Yeh T F, Chang H M. Journal of Agricultural and Food Chemistry,2004,52:1435-1440.
    [47]Yamada T, Yeh, T F, Chang H M, et al. Holzforschung,2006,60(1):24.
    [48]Kelley S S, Rials T G, Snell R, et al Use of near infrared spectroscopy to measure the chemical and mechanical properties of aolid wood[J]. Wood Science and technology,2003, (Accepted).
    [49]Hoffmeyer P. Pedersen J G Evaluation of density and strength of Norway spruce wood near infared reflectance spectroscopy [J]. Holz als Roh-und Werkstoff,1995,53:165-170.
    [50]Schimleck L R,Bvans R. Estimation of microfibenial angle of increment cores by near infrared spectroscopy.IAWA Journal,2002b 23(3):225-234.
    [51]Gindl W, Teischinger A, Schwanninger M, et al. The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties.Journal of Near Infrared Spectroscopy,2001.9(4):255-261
    [52]Brunner M, Eugster R, Trenka E, et al. FT-NIR spectroscopy and wood identification. Holzforschung,1996.50(2):130-134
    [53]Michell A J, SchimleckL R. Further classification of eucalypt pulpwoods using principal components analysisof near-infrared spectra. APPITA Journal,1998a.51(2):127-131
    [54]Schimleck L R, Michell A J, Winden P. Eucalypt wood classification by NIR spectroscopy and principal component analysis. Appita Journal,1996.49(5):319-324
    [55]Tsuchikawa S, Inoue K, Noma J. Application of near-infrared spectroscopy to wood discrimination. Journal of Wood Science,2003a.49(1):29-35
    [56]Anduaga J, Mayoral K, Garmendia I, et al. Development of a NIR devicefor measuringvarnish thicknesson-line, presentation abstract.11th International Conference on Near-Infrared Spectroscopy, Spain 2003.
    [57]Rials T G, Kelley S S, So C-L. Use of advanced spectroscopic techniques for predicting the mechanical properties of wood composites, Wood and Fiber Science,2002.34(3): 398-407
    [58]Meder R, Thumm A, Bier H. Veneer stiffnesspredicted byNIR spectroscopy calibrated using mini-LVL test panels. Holz als Roh-und Werkstoff,2002.60(3):159-164
    [59]江泽慧,黄安民,王斌木材不同切面的近红外光谱信息与密度快速预测光谱学与光谱分析2006 26(6):1034-1027.
    [60]江泽慧,黄安民木材中的水分及其近红外光谱分析光谱学与光谱分析200626(8):1464-1468.
    [61]江泽慧,黄安民,费本华等利用近红外光谱和X射线衍射技术分析木材微纤丝角光谱学与光谱分析2006 26(7):1230-1233.
    [62]黄艳辉,费本华,赵荣军木材微纤丝角四中测试方法对比研究光谱学与光谱分析2009 29(6)1682-1686
    [63]王玉荣,费本华,傅峰等基于近红外光谱技术预测木材纤维长度中国造纸200827(6):6-9.
    [64]江泽慧,李改云,王戈等近红外光谱法测定毛竹综纤维素的含量研究林产化学与工业200727(1):15-18.
    [65]黄安民,江泽慧,李改云杉木综纤维素和木质素的近红外光谱法测定光谱学与光 谱分析2007 27(7)1328-1331.
    [66]杨忠,任海清,江泽慧PLS-DA法判别分析木材生物腐朽的研究光谱学与光谱分析2008 28(4):793-796.
    [67]李庆波近红外光谱分析中若干关键技术的研究天津大学博士论文2002.12
    [68]李民赞光谱分析技术及其应用(M)科学出版社2006.8
    [69]武子玉矿物近红外光谱信息提取及应用研究吉林大学博士论文2005.5
    [70]G.赫兹堡分子光谱与分子结构(M),第一卷(王鼎昌译).科学出版社,1983.8
    [71]郑一善分子光谱学导论(M).上海:上海科学技术出版社,1963
    [72]许禄化学计量学(M)科学出版社2004.2
    [73]费强遗传算法在近红外光谱药物无损定量分析中的应用研究吉林大学博士论文2009.5
    [74]赵羚志短波近红外光谱结合人工神经网络用于药物无损定量分析的研究吉林大学博士论文2009.5
    [75]孙延奎小波分析及其应用机械工业出版社2005.10
    [76]刘青格近红外光谱的特征提取苏州大学硕士论文2003.4
    [77]Mallat S A theory of multiresolution signal decomposition:the wavelet representation [J]. IEEE Trans Pattern Anal Machine Intell,1989,11:674-693
    [78]李弼程小波分析及其应用电子工业出版社2003.5
    [79]王学顺,戚大伟,黄安民基于小波的木材近红外光谱去噪研究,光谱学与光谱分析,2009,29(8):2059-2062
    [80]张玉新,滕桂法,赵洋等基于小波变换模极大值的信号去噪方法研究河北农业大学学报200932(1)114-116.
    [81]尹思慈木材品质和缺陷,北京中国林业出版社,1990.8
    [82]姚胜,蒲俊文近红外光谱分析技术在木材材性分析中的研究进展光谱学与光谱分析2009 29(4):974-978
    [83]Hoffmeyer P, Pedersen J G. Evaluation of density and strength of Norway spruce wood near infared reflectance spectroscopy. Holz als Roh-und Werkstoff,1995,53:165-170.
    [84]Thumm A, Meder R. Stiffness prediction of radiata pine clearwood test pieces using infrared spectroscopy. Journal of Near Infrared Spectroscopy,2001,9(3):117-122
    [85]Gindl, W., A. Teischinger, M. Schwanninger, and B. Hinterstoisser. The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J. Near Infrared Spectrosc.2001.9(4):255-261.
    [86]Schimleck L R, Robert E, Jugo I. Application of near infrared spectroscopy to a diverse range of species demonstrating wide density and stiffness variation. IAWA Journal, 2001,22(4):415-429
    [87]Schimleck L R, Evans R, Matheson A C. Estimation of Pinus radiata D.Don clear wood properties by near infrared spectroscopy. Journal of Wood Science,2002,48(2):132-137.
    [88]黄安民人工林杉木木材性质的近红外(NIR)光谱预测博士论文中国林业科学研究院2006.7,27(9):1700-1702
    [89]黄安民,费本华、江泽慧等表面粗糙度对近红外光谱分析木材密度的影响光谱学与光谱分析2007
    [90]Brian K.Via. Modeling longleaf pine (pinus palustris mill)wood properties using near infrared spectroscopy. Doctor thesis. Louisana state university,2004.12
    [91]苏同福,高玉珍,刘霞等木质素的测定方法研究进展河南农业大学学报2007,41(3):356-360
    [92]杨淑蕙植物纤维化学,中国轻工业出版社,2001.7.
    [93]贾举庆,胡尚连,孙霞等四川2种丛生竹木质素和纤维含量的研究西北植物学报2007,27(1):197-200
    [94]黄安民,费本华,刘君良杉木木材性质研究进展世界林业研究2006,19(1):47-52
    [95]聂志东,韩建国,玉柱FT-NIR光谱法测定紫花苜蓿青干草的6项品质指标光谱学与光谱分析2007,27(7):1308-1311
    [96]黄安民,江泽慧,李改云毛竹、杉木木质素的近红外光谱法快速分析北京林业大学2006,28(增刊2):111-114
    [97]丁丽,相玉红,黄安民BP神经网络与近红外光谱定量预测杉木中的综纤维素、木质素、微纤丝角光谱学与光谱分析2009,29(7):1784-1787
    [98]李冬云,李改云近红外光谱信号的优化处理计算机与应用化学2007,24(10):1418-1420
    [99]李改云,黄安民,王戈等近红外光谱法快速测定毛竹Klason木质素的含量光谱学与光谱分析2007.27(10):1977-1980
    [100]Schimleck L R, Wright P J, Michell A J et al. Near-infrared spectra and chemical compositions of E. globulus and E. nitens plantation woods. APPITA,1997,50(1):40-46.
    [101]Schimleck L R, Michell A J, Raymond C A et al. Assessment of the pulpwood quality of standing trees using near infared spectroscopy. Journal of Near Infrared Spectroscopy, 1998,6:117-213.
    [102]Brian K.Via. Modeling longleaf pine (pinus palustris mill)wood properties using near infrared spectroscopy. Doctor thesis. Louisana state university,2004.12
    [103]杨忠.近红外光谱技术预测人工林湿地松木材性质和腐朽特性的研究.博士论文.中国林业科学研究院.2005.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700