用户名: 密码: 验证码:
东北林蛙(Rana dybowskii)遗传多样性及异地引种对种群遗传结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北林蛙(Rana dybowskii)是主要分布于我国东北小兴安岭和长白山地区的重要经济物种,雌性林蛙的输卵管(林蛙油)是传统的名贵中药材,已有几千年的利用历史,目前仍被广泛使用。为了保护野生种群,人们开始在它的自然分布区内进行人工野外包山封沟养殖林蛙。作为解决种源问题的方法,常常在不同地区之间相互引种,这就给本地种群遗传结构的改变埋下了隐患。
     本文利用14个微卫星位点检测东北林蛙的遗传多样性,以及人为干扰下10个种群遗传结构的变异水平。主要分析种群间的等位基因频率、特有等位基因(PA)、杂合度(H)、多态信息含量(PIC)、基因分化系数(FST)、基因流(NM),根据Nei'sDA遗传距离构建NJ系统树,并通过分子方差分析(AMOVA)、主成份分析(PCA)和贝叶斯聚类分析(Bayesian Analysis)方法用STRUCTURE软件来推导种群的遗传结构。得出以下研究结果和结论:
     1.本文从同为Rana属的物种已发表的50个微卫星位点中,筛选了14个能稳定扩增我国东北林蛙300个样本的多态位点,核心序列均由3个或4个碱基组成,成功率仅为28%。共检测到87个等位基因,各位点等位基因数最低为2个,最高为12个,平均为6.2个;平均多态信息含量(PIC)的值为0.57。所有位点的观测杂合度(Ho)介于0.156-0.603之间,平均值为0.319;期望杂合度(HE)为0.315到0.856,平均值为0.596。10个种群的遗传多样性较为丰富,期望杂合度(HE)介于0.568-0.621之间,其中,佳木斯种群最高,蛟河种群最低。另外,在通化和铁力种群中各检测到一个特有等位基因。
     2.14个多态位点的Hardy-Weinberg平衡检验结果显示:位点Rpi107、RsyC52、RsAAT23、RP23和Rpi100在10个种群的检测结果完全或基本符合Hardy-Weinberge平衡(P>0.05);另外5个位点分别在3-8个种群中处于不平衡状态(P<0.01);其余4个位点(RsyC41、RsyD25、RsyD40和RsyD88)在所有种群中都显著不平衡(P<0.01)。由于所研究的部分种群存在异地引种现象,不平衡可能与人工选择有关,也可能存在无效等位基因。
     3.通过基因分化系数(FST)的结果,可以看出除已知的异地引种种群外,小兴安岭和长白山地区的东北林蛙种群分化显著。较低的基因流(NM=3.17-8.28)、相对较远的遗传距离(DA=0.087-0.175),在NJ系统树上聚为两个完全不同的分支,遗传结构存在明显的差异等都证明这两大分布区之间产生了明显的遗传分化。基于保护遗传学的原理,确定为两个单独的管理单元来保护和管理东北林蛙。
     4.研究结果还显示人为异地引种已经改变了佳木斯和本溪本地种群的遗传结构。另外,鞍山历史上并没有东北林蛙分布,现在的种群完全是人为异地引种杂交后,在二三十年的养殖过程中逐步建立起来的人工种群。可见,异地引种已经对东北林蛙种群的遗传结构产生了严重的影响,而这种影响是不可逆的,很容易导致种群退化,甚至会威胁物种的生存和繁衍。
     5.虽然这些种群遗传结构的改变原因并没有完全得到证实,但依据上述遗传数据的分析结果,本文提出如下保护建议:
     (1)依据保护遗传学原理,将小兴安岭和长白山两大东北林蛙的分布区确立为两个单独的管理单元,严格控制和监管在不同管理单元间相互引种的行为;
     (2)从保护物种基因多态性,特别是保护优质基因库的角度,建议将通化、鹤北和铁力种群作为优先保护种群;
     (3)对于遗传结构已经发生改变的种群,应限制种蛙对外销售,防止对周边种群造成更大的影响;
     (4)对于鞍山种群,应将其与相邻的本地种群完全隔离,减少对本地种群基因污染的潜在可能。
The Dybowski's frog (Rana dybowskii) is an importnat economic species mainly distributing in Lesser Khingan Mountains and Changbai Mountains in northeast China, the oviducts of female Dybowski's frog has been used as traditional Chinese medicine for thousands of years and now still being heavily harvested. In order to protect the wild populations, local people cultivate this species in closing hillsides field in their natural habitats. As a measure, frogs are frequently translocated amongst allopatric populations. This potentially alters the genetic structure of local populations.
     Fourteen microsatellite loci were used to investigate genetic diversity, genetic structure and variation level of 10 populations under human disturbance. Allele frequency, private allele, heterozygosity (H), polymorphic information content (PIC), genetic differentiation coefficient (FST) and gene flow (NM) were calculated, NJ phylogenetic trees was constructed based on Nei's DA genetic distance. The genetic structure was further estimated using analysis of molecular variance (AMOVA), principal components analysis (PCA) and Bayesian analysis by STRUCTURE program. Some major results and conclusions were as follows:
     1. We selected 14 polymorphism microsatellite loci with three or four nucleotide repeat, which could steadily amplified 300 samples of Dybowski's frog from 50 loci published in Rana, the proportion was 28%. A total of 87 alleles were observed. The number of allele per locus ranged from 2 to 12 with an average of 6.2, and mean PIC was 0.57. The Ho of these loci ranged from 0.156 to 0.603 (average=0.319) and HE ranged from 0.315 to 0.856 (average=0.596). Genetic diversity was high in 10 populations with estimation of mean expected heterozygosity was from 0.568 to 0.621, which of JMS population was highest, while the lowest was JH population. In addition, one private allele in TH and TL populations respectively were found.
     2. Results of Hardy-Weinberg equilibrium tests showed that loci Rpi107, RsyC52, RsAAT23, RP23 and Rpi100 were in Hardy-Weinberg equilibrium (P>0.05) in entirely or most populations; another five loci in 3 to 8 populations showed deviation from significant Hardy-Weinberg equilibrium (P<0.01); besides, the other four loci RsyC41, RsyD25, RsyD40 and RsyD88 presented signifieant deviation from Hardy-Weinberg equilibrium in all populations (P<0.01). In our study, some frogs were translocated in different populations, the deviations from Hardy-Weinberg equilibrium of these loci were probably selected by mankind and null alleles maybe exist.
     3. According to pair-wise FST, we could see that population differentiation was significant between Lesser Khingan Mountains and Changbai Mountains, except the known allopatry introduced populations. Low gene flow was between 3.17-8.28, DA genetic distance varied from 0.087 to 0.175, gathered into two different clades, and genetic structure of them was obviously differed from each other, all of these demonstrated that genetic differentiation were highly significant between populations in two distribution areas. Based on the principles of conservation geneties, we identified two distinctive management units (MUs) to protect and manage Dybowski's frog.
     4. The results suggested that two local populations (JMS and BX) were dramatically introgressed due to introduction from allopatric populations. Meanwhile, a hybrid breeding population AS was established outside the natural range of this species, and was consisted of genetic resources from allopatric populations in resently two or three decades. Introduction from allopatry had threatened the genetic structure of Dybowski's frog, because of, and the effect was irreversible, that can easily induce population degradation, even affact the existence and proliferation of species.
     5. Although the consequence of such genetic alterations was not definitely confirmed, we proposed conservation recommendations according to the results above those dentifying two distinctive management units (MUs), namely Lesser Khingan Mountains and Changbai Mountains, to avoid frogs translocated between them. From viewpoint of gene polymorphism conservation, especiaily conservation of high quality gene pools that TH, HB and TL populations should be preserved prior to the others. Introduction from allopatry should not be performed unless these populations were proved genetically homologous, and the extent of introduction should be restricted to a level not impacting the genetic structure. To reduce the potential impacts on local gene pool, the AS population outside natural range should be strictly isolated from natural populations.
引文
[1]陈沪宁,赵华英,初敏等.中国林蛙的生物学特性及其与相似品种的鉴别[J].中草药,2002,33(12):1130-1131
    [2]马常夫,于春林.一种有经济意义的蛙——哈士蟆[J].生物学通报,1958,8:6-8
    [3]卫功庆.中国林蛙养殖技术.金盾出版社.2000
    [4]王晓红,李彤.中国林蛙栖息生境的研究[J].吉林林业科技,2000,29(1):9-12
    [5]赵尔宓.中国濒危动物红皮书(两栖类和爬行类).北京:科学出版社,1998
    [6]遇宝成,刘伟石,刘欣.中国林蛙资源现状调查.北京:中国林业出版社,2006
    [7]刘欣,张伟,遇宝成等.东北三省中国林蛙资源调查研究[J].林业资源管理,2007,3:82-85
    [8]谢锋,叶昌媛,费梁等.中国东北地区林蛙属物种的分类学研究(两栖纲:蛙科)[J].动物分类学报,1999,2:224-231
    [9]赵正阶.中国林蛙的生态研究[J].东北师大学报(自然科学版),1982,3:89-96
    [10]于立忠,孔祥文,李文池.中国林蛙繁殖生态的研究[J].辽宁林业科技,2000,2:32-34
    [11]汉丽梅,汉丽萍,刘明春等.中国林蛙生殖量变化与其形态特征的相关研究[J].特产研究,2001,4:16-18
    [12]王晶琦,李丕鹏,陆宇燕等.桓仁林蛙与东北林蛙蝌蚪的形态特征及比较[J].四川动物,2006,25(2):349-353
    [13]邵永平,郭锐,夏晴等.辽宁产中国林蛙染色体核型及银带研究[J].复旦学报(自然科学版),1999,38(5):557-560
    [14]李宜平,张晋纲,刘淼等.哈蟆油动物基原问题探讨[J].中国中药杂志,2003,28(1):15-17
    [15]裘文泽,裘辉,魏延平.林蛙的养殖区域及引种问题[J].中国农村科技,2003,9:30
    [16]关继忠,仇程萍,关克威.林蛙引种不能随意进行[J].农村养殖技术,2002,12:20
    [17]Stejneger L. Chinese amphibians and reptiles[J]. Proceedings of the National Museum, 1925,66:19-23
    [18]Boring AM. Chinese amphibians[J]. Inst Geobiologie Peking,1945,13:96-100
    [19]Kuramoto M, Furuya E, Takegami M et al. Karyotypes of several speeies of frogs from Japan and Taiwan[J]. Bull Fukuoka Univ Educ,1973,23:67-78
    [20]Orlova EM, Bakjarev VA, Borkin LJ. Karyotypes of some brown frogs of Eurasia and a taxonmic analysis of karyotypes of the group[J]. Proc Zool Inst,1977,74:81-103
    [21]刘承钊,胡淑琴.中国无尾两栖类.北京:科学出版社,1961
    [22]Pope CH. Notes on Amphibians from Fukien, Hainan and Other of China[J]. Bull Amer Mus Nat Hist,1931,61(8):78-85
    [23]魏刚,陈服官.中国林蛙Rana chensinensis系统发育及物种形成和分化的研究[J].动物学报,1990,1:76-81
    [24]江建平,周开亚.中国林蛙的分子系统关系[J].动物学研究,2001,22(1):27-32
    [25]杨学干,王义权,周开亚等.从细胞色素b基因序列探讨我国林蛙属动物的系统发生关系[J].动物学研究,2001,5:345-350
    [26]江建平,谢锋,郑中华.我国林蛙分子系统关系及染色体演化的研究[J].四川大学学报(自然科学版),2002,39:85-89
    [27]Bandyopadhyay A, Bandyopadhyay J, Choi H-H et al. Plasma Membrane Mediated Action of Progesterone in Amphibian(Rana dybowskii) Oocyte Maturation[J]. General and Comparative Endocrinology,1998,109:293-301
    [28]Kim JW, Im W-B, Choi HH et al. Seasonal Fluctuations in Pituitary Gland and Plasma Levels of Gonadotropic Hormones in Rana[J]. General and Comparative Endocrinology, 1998,109:13-23
    [29]Ko SK, Kang HM, Im W-B et al. Testicular Cycles in Three Species of Korean Frogs: Rana nigromaculata, Rana rugosa and Rana dybowskii[J]. General and Comparative Endocrinology,1998,111:347-358
    [30]Bandyopadhyay J, Bandyopadhyay A, Choi H-S et al. Cloning and Characterization of cDNA Encoding Cdc2 Kinase, a Component of Maturation-Promoting Factor, in Rana dybowskii[J]. General and Comparative Endocrinology,2000,117:313-322
    [31]Yoo MS, Kang HM, Choi HS et al. Molecular cloning, distribution and pharmacological characterization of a novel gonadotropin-releasing hormone ([Trp8] GnRH) in frog brain[J]. Molecular and Cellular Endocrinology,2000,164:197-204
    [32]Ju J-W, Bandyopadhyay A, Im W-B et al. Involvement of Phosphatidylinositol 3 Kinase in the Progesterone-Induced Oocyte Maturation in Rana dybowskii[J]. General and Comparative Endocrinology,2002,126:213-220
    [33]Wang L, Sanyal S, Oh DY et al. Molecular cloning and characterization of an amphibian progesterone receptor from Rana dybowskii[J]. General and Comparative Endocrinology, 2004,135:142-149
    [34]汉丽梅.中国林蛙繁殖期生理生化学研究[D].沈阳农业大学博士学位论文,1999
    [35]汉丽梅,汉丽萍,刘明春等.中国林蛙排卵前后血液葡萄糖、血清蛋白质及血红蛋白的测定与分析[J].中国兽医杂志,2002,38(5):37-38
    [36]高志光,邓秋香.中国林蛙生殖休眠的生理和环境分析[J].吉林林学院学报,1999,15(3):153-155
    [37]田兴贵.中国林蛙休眠期代谢生理及若干生理生化指标的研究[D].沈阳农业大学硕士学位论文,1999
    [38]田兴贵,冯莹,刘玉文.中国林蛙休眠期呼吸代谢的初步研究[J].襄樊学院学报,2001, 22(2):79-82
    [39]王利民,王永军等.雌激素对中国林蛙性别分化的影响[J].经济动物学报,2002,6(2):44-46
    [40]翟洪亮.中国林蛙雌性繁育技术的研究[D].东北师范大学硕士学位论文,2002
    [41]林春艳,韩登娇.林蛙雌性诱变技术[J].黑龙江动物繁殖,2004,12(1):44
    [42]卫功庆.东北林蛙蝌蚪的蛋白质需要及圈养对成蛙形态和生产性能影响的研究[D].东北林业大学博士学位论文,2003
    [43]杨富亿,邵庆春.中国林蛙蝌蚪对盐度的适应性[J].水利渔业,2004,24(2):36-38
    [44]杨富亿.中国林蛙蝌蚪对水环境pH的适应性[J].现代农业科学,2009,16(3):181-183
    [45]何晓燕,张庆增,乔淑芬等.弱氦-氖激光对东北林蛙卵孵化和蝌蚪生长速度的影响[J].通化师范学院学报,2008,29(12):47-49
    [46]陈伟庭,李东风.中国林蛙早期胚胎发育观察[J].华南师范大学学报(自然科学版),2005,3:36-41
    [47]陈伟庭,李东风.中国林蛙胚胎期性腺发育的组织学观察[J].华南师范大学学报(自然科学版),2008,1:118-124
    [48]郑鑫,刘景圣等.中国林蛙输卵管上皮细胞的培养及其生物学特性研究[J].食品科学,2006,27(5):118-121
    [49]杨翠军.黑龙江省东北林蛙低温耐受机制的初步研究[D].东北林业大学硕士学位论文,2006
    [50]Kim SS, Shim MS, Chung J et al. Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii[J]. Peptides,2007,28:1532-1539
    [51]Conlon JM, Kolodziejek J, Nowotny N et al. Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii[J]. Toxicon,2007,50:746-756
    [52]韩彤彤.东北林蛙皮肤抗菌肽抗病毒活性的初步研究[D].东北林业大学硕士学位论文,2007
    [53]孙芳.东北林蛙皮肤活性肤HPLC分离纯化及体外抗病毒活性研究[D].东北林业大学硕士学位论文,2007
    [54]张晶钰.东北林蛙皮肤活性肤对MCF-7和平滑肌细胞膜离子通道的影响[D].东北林业大学硕士学位论文,2007
    [55]朱倩.东北林蛙皮肤抗菌肽mRNA多样性的研究[D].东北林业大学硕士学位论文,2007
    [56]周杰.中国林蛙抗菌肤RTCI的结构功能研究[D].吉林大学博士学位论文,2007
    [57]郑淼,周亚丹,赵敏.东北林蛙皮中胶原蛋白含量的测定及提取工艺[J].东北林业大学学报,2008,36(7):81-83
    [58]虞凤慧,张丽芳,李俊峰等.中国林蛙皮肤抗菌肽基因的cDNA克隆及抗菌、抗癌和 溶血活性的测定[J].生物工程学报,2009,25(1):101-108
    [59]徐兴军,陈丽,吕建伟等.中国林蛙和中华蟾蜍皮肤抗菌肽的分离纯化及其抗菌活性[J].四川动物,2009,28(2):164-167
    [60]刘红玉,崔洪斌,许岩.中国林蛙蛙皮肽抗菌性质及其机理的研究[J].食品科学,2009,30(5):64-67
    [62]寺田文次郎等.吉林产哈蚂油及び其药效[J].临床大陆,1940,11:1312
    [63]李霞.中国林蛙生长发育参数与产油量关系的研究[D].东北林业大学硕士学位论文,2005
    [64]王丽兰,王春霖,张洪志等.哈士蟆油成分分析[J].中草药,1982,13(9):5-7
    [65]李成义等.中国林蛙卵油中的激素成分及卵油对血小板聚集和血脂的影响[J].中草药,1994,25(11):584-585
    [66]李成义等.高效液相色谱法分离定量吉林产哈士蟆卵油中脂溶性维生素[J].白求恩医科大学学报,1995,21(6):647-649
    [67]马艳梅.林蛙油酶解条件的优化及其蛋白水解营养液的研制[D].吉林农业大学硕士学位论文,2007
    [68]陈侠.中国林蛙卯油的活性追踪[D].沈阳药科大学硕士学位论文,2004
    [69]王宇.中国林蛙蛙卵抗癌活性蛋白的研究[D].辽宁师范大学硕士学位论文,2005
    [70]刘玉兰等.哈蟆油的抗衰老作用[J].沈阳药科大学学报,1998,15(1):56-58
    [71]牛慧玲.哈士蟆油对衰老模型小鼠N0、NOS和免疫功能影响的研究[D].东北林业大学硕士学位论文,2000
    [72]高桂华.哈士蟆油提取物对小鼠学习记忆功能的影响及作用机制的初探[D].东北林业大学硕士学位论文,2003
    [73]吴政安.中国产中国林蛙——哈士蟆的染色体组型的初步报道[J].动物学报,1982,28(1):23-27
    [74]罗学娅,李家坤.哈尔滨、兰州和四川红原产中国林蛙R. temporana chensinensis染色体组型比较研究[J].两栖爬行动物学报,1985,4(1):5-11
    [75]殷建文,赵文阁.东北产中国林蛙—哈士蟆的染色体组型及C带分析[J].哈尔滨师范大学自然科学学报(自然科学版),1989,5(3):82-87
    [76]曾科文,陈凤英,肖向红等.逊克产中国林蛙的染色体组型[J].东北林业大学学报,2001,29(3):47-49
    [77]肖向红,曾科文,邱彦涛等.黑龙江省不同地区居群东北林蛙染色体组型分析[J].两栖爬行动物学研究,2005,10:310-316
    [78]Tanaka T, Matsui M, Takenaka O. Phylogenetic relationships of Japanese brown frogs (Rana:Ranidae) assessed by mitochondrial cytochrome b gene sequences[J]. BiochSystand Ecology,1996,24(4):299-307
    [79]Tanaka-Ueno T, Matsui M, Sato T et al. Phylogenetic relationships of brown frogs with 24 chromosomes from East Russia and Hokkaido assessed by mitochondrial cytochrome b gene sequences (Rana:Ranidae)[J]. Zool Sci,1998a,15:289-294
    [80]Tanaka-Ueno T, Matsui M, Chen SL et al. Phylogenetic relation-ships of brown frogs from Taiwan and Japan assessed by mitochondri-al cytochrome b gene sequences (Rana: Ranidae)[J]. Zool Sci,1998b,15:283-288
    [81]Tanaka T, Matsui M, Takenaka O. Estimation of phylogenetic relationships among Japanese brown frogs from mitochondrial cytochrome b gene (amphibia:anura)[J]. Zoological Science,1994,11:753
    [82]江建平.中国蛙科系统学研究[D].南京师范大学博士学位论文,1999
    [83]宁方勇.林蛙人工繁育及185测序的研究[D].东北农业大学硕士学位论文,2004
    [84]杨学干,王义权,周开亚.中药材哈蟆油PCR鉴定的初步研究[J].应用与环境生物学报,2000,6(2):166-170
    [85]白秀娟,李剑虹,顾志刚.中国林蛙Sox基因的PCR扩增[J].经济动物学报,2001,5(3):37-39
    [86]郭立宏.中国林蛙真伪品的分子鉴别及其性别的分子鉴定[D].东北农业大学硕士学位论文,2006
    [87]张辉,吴清江.中国林蛙乳酸脱氢酶多基因系统及基因间连锁关系的研究[J].遗传学报,1996,23(1):11-17
    [88]谢峰,叶昌媛,费梁等.中国林蛙遗传多样性初步研究[J].应用与环境生物学报,1997,3(4):328-332
    [89]Xiao XH, Zheng D, Li F et al. Population genetic diversity and regional differentiation of Chinese forest frogs(Rana chensinensis) in Heilongjiang Province[J]. Journal of Forestry Research,2001,1(12):40-42
    [90]李志伟,杨宝田,白秀娟.应用RAMP标记分析长白山地区中国林蛙的遗传多样性[J].经济动物学报,2009,13(2):87-94
    [91]吴华.梅花鹿保护遗传学研究[D].浙江大学博士学位论文,2004
    [92]Frankham R, Ballou JD, Briscoe DA. Introduction to conservation geneties:Cambridge University Press,2002
    [93]Moritz C. Defining evolutionarily significant units for conservation[J]. Trends Ecol Evol 1994,9:373-375
    [94]Kraytsberg Y, Schwartz M, Brown TA et al. Recombination of human mitochondrial DNA[J]. Science,2004,304(14):98
    [95]Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331
    [96]Williams JGK, Kubelik AR, Kenneth JL et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research,1990,18:6531-6535
    [97]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research,1990,18(24):7213-7218
    [98]Zebeau M, Vos P. Selective restriction fragment amplification:a general method for DNA finger printing. In:No0534 858 Al. Edited by Appliction EP,1993
    [99]Wang DG, Fan JBN, Siao CJ et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science,1998,280:1077-1082
    [100]Baralle M, Baralle FE. Genetics and molecular biology:single nucleotide polymorphism associations and their functional significance[J]. Curr Opin Lipidol,2006,17(3):360-362
    [101]Tautz D, Renz M. Simple sequences are ubiqutitous repetive components of eukaryotic genomes[J]. Nucleic Acids Res,1984,17:6463-6471
    [102]Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers[J]. Nucleic Acids Res 1989,12:4127-4138
    [103]Weber JL. Informativeness of human (dC-dT)n (dG-dC)n polymorphisms[J]. Genomics, 1990,7:524-530
    [104]Sota T, Sasabe M. Utility of nuclear allele networks for the analysis of closely related species in the genus carabus, subgenus ohomopterus[J]. Syst Biol,2006,55(2):329-344
    [105]Marta B, Kai NS, Walter S et al. Sympatric speciation in Niearaguan crater lake cichlid fish[J]. Nature,2006,439:719-723
    [106]Saha S, Jenkins JN, Wu J et al. Eeffcts of chromosome-specific introgression in upland cotton on fiber and agronomic traits[J]. Genetics,2006,172(3):1927-1938
    [107]Brookfield JFY. A simple new method for estimating null allele frequency from heterozygote deficiency [J]. Mol Ecol,1996,5:453-455
    [108]Berlin S, Merila J, Ellegren H. Isolation and characterization of polymorphic microsatellite loci in the common frog, Rana temporaria[J]. Mol Ecol,2000,9:1919-1952
    [109]Graham R, Beebee TJC. Polymerase chain reaction primers for microsatellite loci in the common frog Rana temporaria[J]. Mol Ecol Notes,2001,1:6-7
    [110]Pidancier N, Gauthier P, Miquel C et al. Polymorphic microsatellite DNA loci identified in the common frog (Rana temporaria, Amphibia, Ranidae)[J]. Mol Ecol Notes,2002,2: 304-305
    [111]Funk WC, Blouin MS, Corn PS et al. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape[J]. Mol Ecol,2005,14(2):483-496
    [112]Hauswaldt JS, Fuessel J, Gugenther J et al. Eight new tetranucleotide microsatellite loci for the agile frog(Rana dalmatina)[J]. Mol Ecol Resour,2008,8:1457-1459
    [113]Zhan AB, Fu JZ. Microsatellite DNA markers for the Chinese wood frog (Rana chensinensis) and tests for their cross-utility in 15 ranid frog species[J]. Mol Ecol Resour, 2008,8:1126-1129
    [114]Koizumi N, Watabe K, Mori A et al. Isolation and characterization of 19 polymorphic microsatellite DNA markers in the Japanese brown frog (Rana japonica)[J]. Mol Ecol Resour,2009,9:248-250
    [115]Xu YC, Pan ZC, Xu ZR et al. Status of microsatellites as genetic markers in cervids[J]. J Forest Res,2001,12(1):55-58
    [116]Xu YC, Li B, Li WS et al. Individualization of tiger by using microsatellites[J]. Forensic Science International,2005,151:45-51
    [117]徐艳春.虎(Panthera tigris)微卫星位点多态性及其在圈养种群管理中的应用[D].东北林业大学博士学位论文,2001
    [118]Konfortov BA, Miller JR. Three new microsatellite markers on bovine chromosome 17[J]. Anim Genet,1998,29:463-464
    [119]Wilson GA, Strobeck C. The isolation and characterization of microsatellite loci in bison, and their usefulness in other artiodactyls[J]. Anim Genet,1999,30:226-227
    [120]Nijman IJ, Vastenburg JBL, Williams JL et al. Thirteen bovine microsatellite markers that are polymorphic in Sheep[J]. Anim Genet,1998,29(6):460-477
    [121]Ganai NA, Yadav BR. Genetic variation within and among three Indian breeds of goat using heterologous microsatellite markers[J]. Anim Biotechnol,2001,12(2):121-136
    [122]Ritz LR, Glowatzki ML, MacHugh DE et al. Phylogenetic analysis of the tribe Bovini using microsatellite[J]. Anim Genet,2000,31:178-185
    [123]Okada A, Tamate HB. Pedigree analysis of the sika deer (Cervus nippon) using microsatellite markers[J]. Zoological Science,2000,17(3):335-340
    [124]Dufour E, Morisson M, Berge R et al. Seven mapped polymorphic chicken microsatellite markers[J]. Anim Genet,1997,28:59-60
    [125]Levin I, etal. Turkey microsatellite DNA loci amplified by chicken specific primers[J]. Anim Genet,1995,26:107-110
    [126]陈妍珂.我国六盘山地区大石鸡和石鸡的渐渗杂交[D].兰州大学博士学位论文,2008
    [127]Xu YC, Fang SG, Li ZK. Sustainability of the South China tiger:implications of inbreeding depression and introgression[J]. Conserv Genet,2007,8:1199-1207
    [128]张于光,李迪强,饶力群等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用[J].动物学报,2003,49(1):118-123
    [129]Richter SC, Broughton RE. Development and characterization of polymorphic microsatellite DNA loci for the endangered dusky gopher frog, Rana sevosa, and two closely related species, Rana capito and Rana areolata[J]. Mol Ecol Notes,2005,5:436- 438
    [130]Schmeller DS, Merila J. Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria[J]. Conservation Biology,2006,21(1): 142-151
    [131]Knopp T, Merila J. Microsatellite variation and population structure of the moor frog (Rana arvalis) in Scandinavia[J]. Mol Ecol,2009,18:2996-3005
    [132]Wang MQ, Weigend S, Barre-Dirie A et al. Analysis of two Chinese yak (Bos grunniens) populations using bovine microsatellite primers[J]. Journal of Animal Breeding and Genetics,2003,120:237-244
    [133]Solis A, Jugo BM, Meriaux JC et al. Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis:implications for conservation[J]. Journal of Heredity,2005,96:670-678
    [134]Marta B, Matthias S, Axel M. Genetic admixture of burbot (Teleostei:Lota lota) in Lake Constance from two European glacial refugia[J]. Mol Ecol,2006,15:3583-3600
    [135]曾盛诚.利用20个微卫星标记分析国内外11个鸡群体的遗传多样性[D].中国农业科学院北京畜牧兽医研究所硕士学位论文,2009
    [136]Palo JU, Schmeller DS, Laurila A et al. High degree of population subdivision in a widespread amphibian[J]. Mol Ecol,2004,13:2631-2644
    [137]Lesbarreres D, Primmer CR, Laurila A et al. Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria[J]. Mol Ecol,2005,14:311-323
    [138]Johansson M, Primmer CR, Merila J. History vs. current demography:explaining the genetic population structure of the common frog (Rana temporaria)[J]. Mol Ecol,2006,15: 975-983
    [139]Matsuba C, Merila J. Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (Rana temporaria)[J]. Mol Ecol Resour,2009,9:555-562
    [140]Knopp T, Cano JM, Pierre-Andre et al. Contrasting levels of variation in neutral and quantitative genetic loci on island populations of Moor Frogs (Rana arvalis)[J]. Conserv Genet,2007,8:45-56
    [141]Arens P, Sluis Tvd, Westende WPCvt et al. Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands[J]. Landscape Ecol,2007,22:1489-1500
    [142]Newman RA, Squire T. Microsatellite variation and fine-scale population structurenin the wood frog (Rana sylvatica)[J]. Mol Ecol,2001,10:1087-1100
    [143]Julian SE, King TL. Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica[J]. Mol Ecol Notes,2003,3:256-258
    [144]Zhan AB, Li C, Fu JZ. Big mountains but small barriers:Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China[J]. BMC Genetics,2009,10(17):1-10
    [145]Canon J, LCheca M, Carleos C et al. The genetic structure of Spanish Celtic horse breeds inferred from microsatellite data[J]. Anim Genet,2000,1:39-48
    [146]Aberle KS, Hamann H, Drogemuller C et al. Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers[J]. Anim Genet,2004,35(4):270-277
    [147]Xu QH, Fang SG, Wang ZP et al. Microsatellite analysis of genetic diversity in the Chinese alligator (Alligator sinensis) Changxing captive population[J]. Conserv Genet,2005,6:941-951
    [148]荆伟.扬子鳄微卫星位点的筛选及其多态性分析[D].浙江大学硕士学位论文,2008
    [149]Ji YJ, Liu YD, Ding CQ et al. Eight polymorphic microsatellite loci for the critically endangered crested ibis, Nipponia Nippon (Ciconiiformes:threskiornithidae)[J]. Mol Ecol Notes,2004,4:615-617
    [150]何陆平.朱鹮多态性微卫星位点的筛选及物种的遗传多样性研究[D].浙江大学博士学位论文,2007
    [151]Savage AE, Jaeger JR. Isolation and characterization of microsatellite markers in the lowland leopard frog (Rana yavapaiensis) and the relict leopard frog (R. onca), two declining frogs of the North American desert southwest[J]. Mol Ecol Resour,2009,9:199-202
    [152]Waldbieser GC, Bosworth BG, Nonneman DJ et al. A microsatellite-based genetic linkage map for channel catfish, Ictaurus punctatus[J]. Genetics,2001,158:727-734
    [153]Yu ZN, Guo XM. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin[J]. Biological Bulletin,2003,204:327-338
    [154]Lee SY, Cho GJ. Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing[J]. J Vet Sci,2006,1:63-67
    [155]Waser NM. Population structure, optimal outbreeding and assortative mating in angiosperm. Chicago:The University of Chicago Press,1993
    [156]Osborne WA, Norman JA. Conservation genetics of corroboree frogs, Pseudophryne corroboree Moore (Anura:Myobatraehidae):population subdivision and genetic divergence[J]. Australian Journal of Zoology,1991,39:285-297
    [157]Sunnueks P, Tait N. Velvet woms:tales of the unexpected[J]. Nature Australia,2001,27: 60-69
    [158]Zhou J, Wu Q, Wang Z et al. Genetic Variation Analysis within and among Six Varieties of Commol/Lon Carp (Cyprinus carpio L.) in China Using Microsatellite Markers[J]. Russian Journal of Genetics,2004,40:1144-1148
    [159]Hanfling BH, Bolton P, Harley M et al. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp.and Cyprinus carpio)[J]. Freshwater Biology,2005,50(3):403-417
    [160]Sekino M, Saido T, Fujita T et al. Microsatellite DNA markers of Ezoabalone (Haliotis discus hannai):a preliminary assessment of natural populations sampled from heavily stocked areas[J]. Aquaculture,2005,243:33-47
    [161]韩联生,周彬,张锡崇.应用人工—生态养殖技术促进林蛙生产的发展[J].中国林副特产,1992,23(4):43-46
    [162]陈荣民,瞿中亮,王庆林.中国林蛙的生活习性观察及饲养[J].中国林副特产,1995,34(3):27-28
    [163]杨富亿,邵庆春,李景林等.长白山区林蛙野外封沟养殖技术[J].水利渔业,2000,20(3):16-18
    [164]吴耀先,杨玉林,杨尉峰等.中国林蛙养殖经济效果与相关因子的分析[J].吉林林业科技,2003,32(6):9,10,22
    [165]顾宇书,何敬宾,张志通等.中国林蛙半人工养殖条件及技术探讨[J].防护林科技,2008,83(2):85-86
    [166]黄孝明,徐艳春,应璐等.半人工饲养条件下东北林蛙变态后的生长规律[J].东北林业大学学报,2008,36(1):63-65
    [167]王寿兵,屈云芳,经佐琴等.中国林蛙幼体适宜生存环境的探讨[J].动物学杂志,1997,32(1):38-41
    [168]纪文录,王星文,梁彗香.中国林蛙全人工养殖技术(Ⅰ)[J].辽宁林业科技,2004,5:39-41
    [169]纪文录,王星文,王兴奎等.中国林蛙全人工养殖技术(Ⅱ)[J].辽宁林业科技,2004,6:42-44
    [170]纪文录,张晓东,张健飞等.中国林蛙全人工养殖技术[J].辽宁林业科技,2005,l:51-52
    [171]刘跃男,金一,徐妲.中国林蛙人工繁殖技术要点[J].黑龙江动物繁殖,2008,16(1):30-31
    [172]蒋超.中国林蛙全人工养殖越冬技术研究[D].东北林业大学硕士学位论文,2006
    [173]柏永明,田秀华,沈广爽.人工养殖东北林蛙生长与发育规律的初步研究[J].野生动物杂志,2009,30(2):93-96
    [174]田秀华,柏永明,沈广爽等.饲料对东北林蛙蛾抖生长发育影响的研究[J].野生动物杂志,2009,30(3):149-151
    [175]Wake DB. Declining amphibian populations[J]. Science,1991,253:860
    [176]Alford RA, Richards SJ. Global amphibian declines:a problem in applied ecology[J]. Annu Rev Ecol Syst,1999,30:133-165
    [177]Houlahan JE, Findlay CS, Schmidt BR et al. Quantitative evidence for global amphibian population declines[J]. Nature,2000,404:752-755
    [178]Stuart SN, Chanson JS, Cox NA et al. Status and trends of amphibian declines and extinctions worldwide[J]. Science,2004,306:1783-1786
    [179]Arens P, Bugter R, Westende W et al. Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation[J]. Conserv Genet,2006,7:825-835
    [180]Knopp T, Cano JM, Crochet P-A et al. Contrasting levels of variation in neutral and quantitative genetic loci on island populations of Moor Frogs (Rana arvalis)[J]. Conserv Genet,2007,8(1):45-56
    [181]Funk W, Tallmon DA, Allendorf FW. Small effective population size in the long-toed salamander[J]. Mol Ecol,1999,8(10):1633-1640
    [182]Beebee TJC, Griffiths RA. The amphibian decline crisis:a watershed for conservation biology?[J]. Biol Conserv,2005,125(3):271-285
    [183]Monsen KJ, Blouin MS. Genetic structure in a montane ranid frog:restricted geneflow and nuclear-mitochondrial disconcordance[J]. Mol Ecol,2003,12:3275-3286
    [184]Brede EG, Beebee TJC. Contrasting population structures in two sympatric anurans: implications for species conservation[J]. Heredity,2004,92:110-117
    [185]Measey GJ, Galbusera P, Breyne P et al. Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya[J]. Conserv Genet,2007,8(5):1177-1188
    [186]Morten E A, Hans R S, Lars B et al. Microsatellite analysis of the natterjack toad (Bufo calamita) in Denmark:populations are islands in a fragmented landscape[J]. Conserv Genet,2009,10(1):15-28
    [187]周洲,谢锋,江建平等.两栖动物种群衰退研究进展[J].应用与环境生物学报,2004,10(1):128-132
    [188]Bodzsar N, Eding H, Revay T et al. Analysis of genetic variability in the Czech Dachshund population using microsatellite markers[J]. Anim Genet,2009,40(4):516-523
    [189]Hubisz MJ, Falush D, Stephens M et al. Inferring weak population structure with the assistance of sample group information[J]. Mol Ecol Resour,2009,9(5):1322-1332
    [190]Blaustein AR, Wake DB, Sousa WP. Amphibian declines:judging stability, persistence and susceptibility of populations to local and global extinctions[J]. Conserv Biol,1994,8: 60-71
    [191]Beebee TJC. Conservation genetics of amphibians[J]. Heredity,2005,95:423-427
    [192]Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA. Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis[J]. Mol Ecol,2005, 14:3307-3315
    [193]Vitt LJ, Caldwell JP, Wilbur HM et al. Amphibians as harbingers of decay[J]. BioScience, 1990,40:418
    [194]Blaustein AR, Wake DB. Declining amphibian populations:a global phenomenon?[J]. Trends Ecol Evol,1990,5:203-204
    [195]潘晓赋,周伟,周用武等.中国两栖类种群生态研究概述[J].动物学研究,2002,5:426-436
    [196]季达明等.辽宁动物志.沈阳:辽宁科学技术出版社,1987
    [197]孟德新,于海涛,孟广才等.中国林蛙半人工饲养初报[J].江宁林业科技,1990,2:58-62
    [198]Elphinstone MS, Hinten GN, Anderson MJ. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies[J]. Mol Ecol Notes,2003,3:317-320
    [199]Julian SE, King TL. Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica[J]. Mol Ecol Notes,2003 3:256-258
    [200]Hoffman EA, Ardren WR, Blouin MS. Nine polymorphic microsatellite loci for the northern leopard frog (Rana pipiens)[J]. Mol Ecol Notes,2003,3:115-116
    [201]Garner TWJ, Tomio G. Microsatellites for use in studies of the Italian Agile Frog, Rana latastei (Boulenger)[J]. Conserv Genet,2001,2:77-80
    [202]狄冉.中国产绒山羊微卫星和单核苷酸多态性研究[D].中国农业科学院北京畜牧兽医研究所博士学位论文,2008
    [203]Nei M, Royehoudhury AK. Genetic variation within and between the three major races of man, Caueasoids, Negroids, and Mongoloids[J]. Am J Hum Genet,1974,26:421-443
    [204]Botstein D, White R, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331
    [205]Goudet J. FSTAT, version 2.9.3, A program to estimate and test gene diversities and fixation indices. In:http://www2unilch/popgen/softwares/fstathtm.2001
    [206]Nei M. Molecular Evolutionary Geneties. Newyork:Columbia University Press,1987
    [207]Rousset F, Raymond M. Testing heterozygote excess and deficiency [J]. Genetics,1995, 140:1413-1419
    [208]Gou SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles[J]. Biometrics,1992,48:361-372
    [209]Weir BS, Cockerham CCE. Stimating F-statistics for the analysis of population structure[J]. Evolution,1984,38:1358-1370
    [210]Wright S. The interpretation of population structure by Fstatistics with special regard to systems of mating[J]. Evolution,1965,19:395-420
    [211]Excoffier L, Laval G, Schneider S. Arlequin ver.3.0:an integrated software package for population genetics data analysis[J]. Evol Bioinform Online,2005,1:47-50
    [212]Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. Ⅱ. Gene frequency data[J]. J Mol Evol,1983,19:153-170
    [213]Nei M. Genetic distance between populations [J]. Amer Nat,1972,106:283-291
    [214]Cavalli-sforza LL, Edwards AW. Phylogenetic analysis:models and estimation procedures[J]. Am J Hum Genet,1967,19:233-257
    [215]Goldstein DB, ARuiz L, Cavalli-sforza LL et al. An evaluation of genetic distances for use with microsatellite loci[J]. Genetics,1995,139(1):463-471
    [216]Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[J]. Genetics,1996,144(1):389-399
    [217]Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155:945-959
    [218]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol,2005,14:2611-2620
    [219]Pritchard JK, Wen XQ, Falush D. Documentation for structure software:Version 2.3 Software from http://pritch.bsd.uchicago.edu/structure.html,2009
    [220]Excoffer L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes:applieationt to human mitochondrial DNA restriction data[J]. Geneties,1992,131:479-491
    [221]Paulo OS, Jordan WC, Bruford MW et al. Using nested clade anaysis to asseess the history of colonization and the persistence of populations of an Iberian Lizard[J]. Mol Ecol, 2002,11:809-819
    [222]Cote SD, Dallas JF, Marshall F et al. Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer[J]. Mol Ecol,2002,11:1923-1930
    [223]Abbott CL, Double MC. Genetic structure, consevation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses[J]. Mol Ecol,2003,12: 2953-2962
    [224]Balakrishnan CN, Monfort SL, Gaur A et al. Phylogeography and conservation genetics of Eld's deer (Cervuseldi)[J]. Mol Ecol,2003,12:1-10
    [225]刘忠权.中国泽蛙线粒体基因组结构及种群系统地理学研究[D].南京大学博士学位论文,2003
    [226]Ficetola GF, Garner TWJ, Bernardi FD. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei[J]. Mol Ecol,2007,16:1787-1797
    [227]Li YC, Korol AB, Fahima T et al. Mierosatellites:genomic distribution, putative functions and mutational mechanisms:a review[J]. Mol Ecol,2002,11(12):2453-2465
    [228]Paetkau D, Strobeck C. The molecular basis and evolutionary history of a microsatellite null allele in bears[J]. Mol Ecol,1995,4(4):519-520
    [229]Meffe GK, Carroll CR. Princeples of Conservation Biology. Sunderland:Sinauer Assoeiates,1994
    [230]Liu LH, Wang LX, Zhao CP et al. Genetic diversity and alterations of population structure in restorers of dual cross-line hybrid wheat with thermo-photoperiod sensitive male sterile[J]. Chinese Journal of Biochemistry and Molecular Biology,2009,25(9):867-875
    [231]Witzenbergera KA, Hochkircha A. Genetic consequences of animal translocations:A case study using the field cricket, Gryllus campestris L.[J]. Biol Conserv,2008,141:3059-3068
    [232]Mock KE, Latch EK, Rhodes JOE. Assessing losses of genetic diversity due to translocation:long-term case histories in Merriam's turkey (Meleagris gallopavo merriami)[J]. Conserv Genet,2004,5:631-645
    [233]熊飞,李文朝,潘继征.云南抚仙湖外来鱼类现状及相关问题分析[J].江西农业学报,2008,20(2):92-94
    [234]Gido KB, Brown JH. Invasion of North American drainages by alien fish species[J]. Freshwater Biology,1999,42:387-399
    [235]Koehn JD. Carp (Cyprinus carpio) as a powerful invader in Australian waterways[J]. Freshwater Biology,2004,49:882-894

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700