用户名: 密码: 验证码:
三峡库区具台阶状位移特征的滑坡预测预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪中期以来,随着人口的快速增长和全球化工业活动的增加,大规模的人类活动对自然环境扰动很大,加之气候的急剧变化和地震灾害的频发,造成了大量了滑坡灾害。在世界范围内,每年由滑坡和其所引起的次生灾害(如滑坡涌浪)造成的人员伤亡数以千计,造成房屋、厂房、道路、桥梁、大坝、港口等建筑物破坏的损失数以百亿美元。我国三峡库区属于滑坡灾害高发区,每年滑坡灾害造成了巨大的损失。自2003年三峡水库蓄水之后,由于库水位的大幅度上升和水位周期升降的作用,恶化了三峡水库周边的地质环境条件,产生了大量新生滑坡和加剧了原有滑坡变形,使得库区地质灾害防治工作变得更加严峻。
     由于三峡库区所处的特征地质环境和库水位的周期涨落的影响,很多滑坡的累计位移-时间曲线的形状全部或一部分形如台阶状,这种具有台阶状位移特征的滑坡一般经历多次加速变形,变形速度受降雨、库水位等影响表现明显的波动性。此类型的滑坡在变形演化的过程中,降雨、库水位外界荷载作用时,累计位移呈现陡坎式增长,外力去除,累计位移则表现为较平稳。本文的研究对象就是具有台阶状位移特征的滑坡,该类型的滑坡在三峡库区造成了严重的经济损失和一定的人员伤亡。为了减小此类型滑坡所造成的损失,有必要对其预防方法进行研究。传统的减小滑坡灾害的方法主要有工程措施和滑坡预测预报两类方法。但是由于很多滑坡规模大且滑体厚度深,往往现有的工程技术条件难以达到稳定坡体的效果或者就是因为治理的费用过高而往往不采取工程措施。当工程措施失效时,为了减小生命财产的损失,采用滑坡预测预报方法变得尤为重要。
     论文通过现场调查、监测资料分析和理论研究相结合的方式,紧紧围绕三峡库区具台阶状位移特征的滑坡预测预报的各项研究内容展开讨论。论文共七章,第一章论文阐述了三峡库区具台阶状位移特征的滑坡预测研究的研究意义,并通过对国内外文献的分析,提出了此类滑坡预报研究中存在的问题和不足。针对这些不足,在前人研究的基础上,提出了一整套适合三峡库区具台阶状位移特征的滑坡预报的研究思路和体系。第二章对三峡库区具有台阶状位移特征的白水河滑坡、八字门滑坡、卧沙溪滑坡、新滩滑坡和卡子湾滑坡等滑坡实例进行了分析,分析内容主要包括滑坡简介、变形曲线、影响因素和变形破坏模式等。第三章全面分析了三峡库区具台阶状位移特征的滑坡变形时空演化特征,包括滑坡的渐进式破坏、变形速度的波动和滞后性、变形加速破坏阶段特征等时间演化特征和双层滑动、变形区域的划分、局部破坏等空间演化特征,并对其反映滑带的塑性或脆性破坏的力学机制、变形速度和外界影响因素的函数关系进行分析。第四章首先对滑坡的中长期预报模型进行了概述分析,针对上述模型的不足,建立了考虑降雨、库水位等外界影响因子的灰色GM(1,1)—BP神经网络模型,并通过白水河滑坡和八字门滑坡两个滑坡实例与灰色GM(1,1)、BP神经网络模型进行了对比分析。第五章详细的介绍了Voight模型及其适用性,针对台阶状滑坡的位移特征,建立了基于Voight模型的警戒速度预报方法,改变了传统以预报失稳时间的预报方法,并通过白水河滑坡和新滩滑坡对该预报方法进行了验证分析。第六章详细分析了变形速度、位移加速度、位移切线角、滑坡位移比、LURR值等滑坡单因子判据,并对其适用性进行了分析;针对滑坡单因子信息的不全面、充足性,建立了以滑坡变形速率比、裂缝的贯通比、宏观迹象作为三维为基本因子的滑坡三维立体综合判据。第七章对全文研究内容进行了总结,并针对研究过程中尚未很好解决的问题进行了展望。具体而言,论文在以下方面取得了阶段性成果:
     (1)三峡库区具台阶状位移特征的滑坡典型实例分析:
     通过对白水河滑坡、八字门滑坡、新滩滑坡、卡子湾滑坡、卧沙溪滑坡等5个具有台阶状位移特征滑坡的地形地貌、滑体特征、工程地质条件、影响因素、变形曲线特征和变形破坏模式等分析,发现该类型滑坡的累计变形-时间曲线表现为台阶式变化,在整个变形破坏过程都经历了多次加速,并不是一次加速失稳破坏,而且变形持续时间较长,累计变形量大。滑坡的变形表现出不均一性,整体破坏前都有局部变形,变形模式也是多样的,如蠕滑(滑移)-拉裂型、滑移-弯曲型;其破坏模型有牵引式,也有推动式。滑坡变形速度的波动与降雨、库水位等外界因素的变化有着密切的关系,按照影响变形的不同因素可以分为降雨诱发型滑坡和降雨与库水位联合作用型滑坡。由于该类型的滑坡往往规模大、滑体厚度深,在次生失稳时可能也会产生滑坡涌浪等次生灾害,故往往造成的损失也巨大。
     (2)三峡库区具台阶状位移特征的滑坡变形时空演化特征系统研究:
     通过滑坡地质学分析、滑动变形破坏机制识别、变形过程分析和影响因素判别等方法对三峡库区具台阶状位移特征的滑坡进行综合分析,并通过分析不同规模、岩土体类型和影响因素的滑坡实例,来了此类型滑坡的变形时空演化特征。此类型的滑坡经历了较长时间的变形过程,经历的是从局部破坏到整体破坏的渐进式变形破坏,土的应变软化作用使滑带土的剪切强度不断降低。外界因素的波动、地表产生大量裂隙和土的粘性力的存在使滑坡的变形速度存在较大的波动性。滑坡变形速度的改变相对外界因素的改变有一定的滞后性,这是由于外界因素的改变到影响到滑体的变形需要一个过程。此类型滑坡进入加速失稳破坏阶段,其变形速度倒数-时间的关系是渐进形式,速度并不是一直增加的,滑带经历的是塑性破坏。三峡库区此类型的滑坡大多是老滑坡、古滑坡,而且滑带都有一定的厚度,并不是新生成的剪切面,剪切区发生的塑性变形,基底的塑性变形决定了这种特征的变形样式。用无限斜坡模型解释了降雨诱发型滑坡的外界因素与变形速度的关系,还有条分法建立了降雨与库水位联合作用下外界因素与变形的内在函数关系。
     三峡库区具台阶状位移特征的滑坡除了具有上述变形时间演化特征外,还具有双层滑,动、变形区域的划分和局部破坏等变形空间演化特征。双层滑动主要取决于滑坡体的规模、影响因素的强度和滑体的结构,而且浅部和深部滑带相互影响,浅层滑动和深部滑动经常交替出现。推动式滑坡和渐进后退式滑坡两类不同的变形破坏模式其地表的变形性质有着显著的差异。滑坡在整体破坏前,都会出现局部破坏,局部破坏常给人带来滑坡整体滑动的错觉,如何区别滑坡的整体破坏和局部破坏是进行准确预报的关键。
     (3)建立了基于库水位和降雨等影响因子的灰色GM(1,1)-BP神经网络模型
     首先对滑坡中长期预报的统计预报模型、非线性预报模型、物理力学预报模型和耦合预报进行了概述,并上述模型进行了适用性分析。针对非线性模型和统计预报模型无法考虑影响因素、物理力学预报模型无法确定实际的剪切力、耦合模型无法建立实时的稳定性系数与变形速率的函数等不足,本文建立了基于库水位、降雨等影响因子的多因子灰色GM(1,1)-BP神经网络模型。根据分析确定了单月降雨量、两月降雨量、月库水位平均值、月间库水位变化量、当月库水位最大变化量为滑坡的影响因子,并把位移分解为趋势项和偏离量。该模型首先用GM(1,1)模型提取变形的趋势项,然后建立基于上述影响因子的BP神经网络预测位移的偏离量。通过对变形强弱不同的台阶状白水河滑坡和八字门滑坡的实例分析,并与GM(1,1)模型、BP神经网络模型进行了对比分析,发现本文模型拟合程度较高,而且预测的相对误差都小于6%,满足预测的精度要求,说明建立的模型适合此类滑坡的中长期预报。
     (4)建立了三峡库区具台阶状位移特征的滑坡的警戒速度预报方法
     首先对滑坡的蠕变理论和临滑得Voight模型进行了分析,并对35个滑坡临滑前的加速度和速度进行了统计分析,发现滑坡临滑前加速度与速度存在幂函数关系,符合Voight模型,并选用瓦伊昂滑坡和卧沙溪滑坡两个实例来说明此模型在具台阶状位移特征的滑坡中的适用性。对于具台阶状位移特征的滑坡,无法准确判断滑坡何时最后加速失稳阶段,故直接采用Voight模型预报临滑失稳时间则会产生误判,本文改变了传统以预报失稳时间的方法,建立了基于Voight模型的警戒速度预报方法。该方法采用Voight模型对累计位移-时间曲线进行非线性回归分析求得模型参数,在假定的时间下根据风险的要求求得不同状态的警戒速度值:紧急状态、警戒状态、提前警戒状态,并根据警戒速度阀值与实际监测数度的对比去评介滑坡所处的危险等级。通过白水河滑坡和新滩滑坡两个实例对该警戒速度预报方法进行了验证分析。
     (5)提出了基于滑坡变形速度比、裂缝贯通比和宏观迹象的三维立体综合判据
     .论文首先对常用的诸如变形速度、位移加速度、蠕变曲线角、滑坡位移比和LURR值等单因子滑坡进行了适用性分析,发现采用上述单因子滑坡判据所界定的阀值常常不能适合某些滑坡,用如此单因子判据会常常造成误判。滑坡的成功预报需建立在对滑坡类型、变形特征、变形演化机制等深入研究的基础上,以监测资料为基础,考虑宏观变形迹象等因素的综合判据。然后,对国内学者所建立的多因子的综合判据进行了分析,在滑坡综合判据中对多因子信息的表达上,本文提出了通过“立体”的概念耦合滑坡的多因子信息,建立了考虑变形速度比、裂缝贯通比和宏观迹象等关键因子信息的三维立体综合判据,通过判断表征滑坡当时状态的点是否落在体内来判断该滑坡是否进入临滑状态,该综合判据非常形象直观。变形速度比是通过警戒速度预报方法求得的,对于宏观迹象各个因子的处理方法采用的是模糊数学的方法。通过对已发生滑动的新滩滑坡和正在变形的白水河滑坡所建立的三维立体综合判据分析,发现此三维立体综合判据适合此类滑坡。
With the fastest growing population and global industry development in the world since the mid-age of the 20th century, the expanding urbanization and changing land-use practices lead to many environmental problems, such as landslides.In addition, the climate change and frequent earthquakes are the important factors in increasing the frequency of their occurrence. Landslides, as one of the major natural hazards, account for enormous economical losses and human casualties each year in terms of both direct and indirect costs in the world A large number of landslides exsit in the Three Gorges Reservoir in China,which exert a heavy social, economic, and environmental toll. Since the first impoundment of the Three Gorges Reservoir in June 2003, a number of new landslides have occurred and existing landslides made worse.
     Due to the big rise and periodic fluctuation of water level, the shape of cumulative displacement-time curve of landlides in the special geology environment of the Three Gorges Reservoir is step-like. The landslides with step-like deformation behave multi-acceleration beforce failure.The velocity of displacement fluctuation with the combined effects of rainfall and water level in the reservoir. The displacement curve consists 'power law' acceleration phases during the external loading separated by phases of decreasing velocity during the non-loading. The landslides with step-like deformation also result in the economic loss and human casualties.In order to reduce the risk and loss of the landslides, it is necessary to study the prevention methods. Remedial countermeasures are not often useful when coping with large landslides in the Three Gorges Reservoir because of the extremely high kinetic energy potentially and deep depth involved in the phenomena. In such conditions, landslide prediction is the only effective tool to reduce the vulnerability of the potentially involved areas by means of evacuation or river closure. Prediction of landslide failure is an inherently difficult task because of the difficulty in quantifying the temporal evolution of the driving forces and the shear resistances where both of which are complicated by the effects of rainfall and reservoir water level.
     Predticon of landslides with step-like in the Three Gorges Reservoir is researched based on site investigation and the analysis of monitoring data. There are seven chapters in the thesis, the first chapter introduces the practical significance of the research and discovers the existing questions by the means of literature review. The second one describes site condition, landslide deformation, influencing factors and failure mode of Baishuihe landslide, Xintan landslide, Bazimen landslide, Kaziwan landslide and Woshaxi landslide which belong to the landslides with step-like deformation. The third one discusses the temparal and spatial evolvement characteristics of landslide deformation, involving progressive failure, velocity fluctuation and hysteresis, movement patterns during the phase of acceleration, double sliding surface, local failure and deformation zoning of landslide surface. The fourth chapter firstly reviews prediction models of landslide. Then aiming at the exsiting problems of the traditional methods the couping GM(1,1)-BP model is established based on the influencing factors of the water level and rainfall. Finally, the validity of this model was confirmed by investigating two landslide cases through compairing the GM(1,1) model and BP model. The fifth chapter discusses the applicability of Voight model and proposes the prediction method of alert velocity on the basis of displacement curve shape. The alert velocity of Baishuihe landslide and Xintan landslide are computed. The sixth one analyzes the applicability of the single prediction criteria of landslide including velocity, acceleration, ratio of displacement, LURR. In order to improve the precision of landslide prediction,the three-dimensional criteria of landslide prediction is proposed on the basis of the alert velocity, earth crack of landslide surface and macroscopical evidences.The seventh part is the conclusions of the thesis and prospect of the next step research. The achievement are set forth in details as follows:
     (1) Typical landslides with step-like deformation in the Three Gorges Reservoir are investigated.
     Typical landslides incuding Baishuihe landslide,Xintan landslide, Bazimen landslide, Woshaxi landslide and Kaziwan landslide are introduced in the chapter 2, involving the site investigation, deformation character, influencing factors and tpyes of deformation and failure. The shape of displacement curve is step-like.There are multi-acceleration and the large displacement through long period's deformation before landslide failure. The velocity fluctuates with the external factors of water level and rainfall. The failure modes are various, inculding retrogressive failure and advancing failure. Local failure often occurred before general failure. The landslides result in large loss of property and human life due to the scale and the secondary hazard arosed by the slope sliding.
     (2)The temparal and spatial evolvement characteristics of landslide deformation are systemically studied.
     The temparal and spatial deformation characteristics of landslide are investigated by means of the analysis of engineering geology condiction, deformation process, deformation mechanism and influencing factors. The landslides often deformed for long time due to progressive failure of the sliding belt when experiencing from local failure to general failure.The descending shear strength with time may arise from the strain weakening soil. In addition to expericing the strain weaking process of the sliding one, the displacement velocity of landslide movement flucutated with rainfall and water level and there is hysteresis. The possible reseasons are the occurrence of the flucutation of the external factors, earth crack of landslide surface and soil viscosity. The pattern of movement approaching the landslide failure displays ian asymptotic form in a plot of 1/v against time (v is velocity). The style occurs where movement is taking place across existing sliding belt or as a result of ductile deformation processes. The slice method and infinite slope method are adopted to elucidate inherent function relationship between external factors and displacement change.The existence of viscous force.is crucial to the change of displacement velocity.
     The double sling of the landslides with step-like deformation is affectd by the external factors, landslide scale and the thickness of the sliding body. The shallow and deep sliding surfaces are interactional. The different deformation property in the landslide surface including tension zone, compression zone, sliding zone and falling zone ocurred in different landslides. Local failure often occurered before landslide sliding in whole. Therefore, the distinguish of local failure and general failure of landslide is important in landslide prediction.
     (3) Based on the affecting factors of the water level and rainfall, the couping GM(1,1)-BP model is established for landslide displacement prediction.
     The chapter reviews the statistical models, nonlinear models, physically-based mechanical models, the coupling models and discusses the applicability of their methods. The traditional methods of landslide prediction are used to modeling the displacement-time curve, not consideing the influencing factors. Or the uncertaintie related to the heterogeneity of soil/rock mass, the geological boundaries, the pore pressures acting on the sliding surface makes the models based on the stress-strain relation unrealistic. Aim at the exsiting shortages of the methods, the couping GM(1,1)-BP model is established on the basis of the water level and rainfall. Firstly, the displacement is divided into trend part and departure part. The trend part is extracted using GM(1,1) model. Secondly, BP model is used in calculating departure part consideing the water level and rainfall. One month rainfall, two months rainfall, the elevation of the water level, maximum change of reservoir water in one month, water level change between two months are chosen according to the literature review. The couping model, GM(1,1) model and BP model are compared througth the analysis of Baishuihe landslide and Bazimen landslide. The results find that the proposed model is the best and the precision of the model is less 10% by comparing the prediction displacement and the monitoring one.
     (4) The prediction method of aler velocity is set up for the landslides prediction.
     The Voight's relation through the analysis of acceleration and velocity of 35 landslide appoaching the failure was foud that the logarithm of acceleration is proportional to the logarithm of the velocity of slope displacement. Voight model is widely used in landslide failure time predition. Due to the step-like displacement of the landslides, the final acceleration phase of deformation could not be identified. Therefore, Voight mothed could not be directly used in prediction of failure time. As a result, a more practical and much simpler method based on the Voight model has been suggested to assess the phases of a landslide by means of threshold values of velocity by Crosta. This method has been attempted in a large rock slide and validated by analyzing historical landslide failures. Crosta's proposal give us to a new insight in changing the prediction of failure time to forecasting the alert velocity where the similar deformation patterns occurred in the landslides with step-like deformation.According to the same procedure, alert velocity could be got from the Voight's method and the paraments of the model are obtained from the nonlinear regression. In estimating the parameter values of the Voigt model, a better fit could be obtained by adopting the displacement as the variable rather than velocity. Alert velocity thresholds (corresponding to 7,15 and 30 days before predicted failure) can be computed according to Voight model, allowing the definition of different thresholds of velocity according to the needs of the emergency management.The feasibility of the method are validated through the cases of Baishuihe landslide and Xintan landslide. The calculated alert velocities are very cosed to the monitoring displacement of Xintan landslide.
     (5) The three-dimensional criteria of landslide prediction is proposed on the basis of the alert velocity, earth crack and macroscopical evidences.
     The applicability of the single prediction criteria of landslide including velocity, acceleration, ratio of displacement, LURR is researched through the landslide cases. In order to improve the precision of landslide prediction and avoid the shortage of information, the synthetical prediction criteria are also discussed. It is crucial for synthetical prediction criteria that how to express the multi-factor. The multi-factor is exhibited through the multi-dimension body. The three-dimensional criteria of landslide prediction is proposed on the basis of the alert velocity, earth crack of landslide surface and macroscopical evidences. The alert velocity could be obtained from the Voight's method.The three-dimensional criteria was proved by the analysis of Baishuihe landslide and Xintan landslide.
引文
[1]http://www.cigem.gov.cn/
    [2]黄润秋.20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报,2007,26(3):433-454.
    [3]Kilburn CRJ, Petley DN.2003.Forecasting giant, catastrophic slope collapse:lessons from Vajont, Northern Italy.Geomorphology,54:21-32.
    [4]贺可强,周敦云,王思敬.降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义.岩石力学与工程学报,2004,23(16):2665-2670.
    [5]汪洋,殷坤龙.水库库岸滑坡初始涌浪叠加的摄动方法.岩石力学与工程学报,2004,23(5):717-720.
    [6]许强,汤明高,徐开祥,等.滑坡时空演化规律及预警预报研究.岩石力学与工程学报,2008,27(6):1104-1112.
    [7]Sitar N, MacLaughlin MM.1997.Kinematics and discontinuous deformation analysis of landslide movement.The 2nd Panamerican Symp. on Landslides, Rio de Janeiro.
    [8]Petley DN, Bulmer MH, Murphy W.2002.Patterns of movement in rotational and translational landslides. Geology,30(8):719-722.
    [9]Petley DN, Mantovani F. Buhner MH, Zannoni A.2005.The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology,66:133-147.
    [10]Hilley GE, Burgmann R, Ferretti A,et al.2004. Dynamics of slow-moving landslides from permanent scatterer analysis.Science,304:1952-1954.
    [11]贺可强,白建业,王思敬.降雨诱发堆积层滑坡的位移动力学特征分析.岩土力学.2005,26(5):705-709.
    [12]Seno S, Thuring M.2006. Large landslides in Ticino, Southern Switzerland:geometry and kinematics.Engineering Geology,83:109-119.
    [13]Van Asch ThWJ, Malet JP, Van Beek LPH.2006. Influence of landslide geometry and kinematic deformation to describe the liquefaction of landslides:Some theoretical considerations. Engineering Geology,88:59-69.
    [14]曾凡宇.风峪沟滑坡变形特征与治理方案.科技创新,2007,33(5):47-49.
    [15]Rotaru A, Oajdea D, Raileanu P.2007.Analysis of the Landslide Movements. INTERNATIONAL JOURNAL OF GEOLOGY,3(1):70-79.
    [16]Parry S, Campbell SDG 2007.Deformation associated with a slow moving landslide, Tuen Mun, Hong Kong, China. Bull Eng Geol Env,66:135-141.
    [17]Pytharouli SI, Kontogianni VA, Stiros SC.2007. Kinematics of two deep-seated landslides in Greece. Geotechnical Engineering,160(3):179-183.
    [18]熊道锟.四川宣汉天台滑坡的变形位移特征及形成机理.岩土工程技 术,2008,22(4):198-202.
    [19]岳超俊,马文超,莫德国.巩义铁生沟滑坡变形特征研究及稳定性分析.路基工程,2008,6:61-62.
    [20]Baldi P, Cenni N, Fabris M, et al.2008.Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology,102:435-444.
    [21]黄玉华,武文英,薛强,等.陕北子长县阎家沟黄土滑坡特征及其变形机制.灾害学,2009,24(1):64-67.
    [22]许强,曾裕平.具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究.岩石力学与工程学报,2009,28(6):1099-1105.
    [23]Erismann T.H.1979. Mechanisms of large landslides.Rock Mechanics,12:15-46.
    [24]胡广韬,文宝萍,赵法锁.缓动式低速滑坡的滑移机理.陕西水力发电,1991,3:13-20.
    [25]王士天,张倬元.斜坡岩体变形破坏的基本地质力学模式.1983.
    [26]张倬元,王士天,王兰生.工程地质分析原理.北京:地质出版社,1997.
    [27]程谦恭.剧冲式高速岩质滑坡运动全过程动力学机制研究:[博士论文].成都:西南交通大学,1997.
    [28]Furuya G, Sassa K., Hiura H,et al.1999.Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan. Engineering Geology,53:311-325.
    [29]刘涌江.大型高速岩质滑坡流体化理论研究:[博士论文].成都:西南交通大学,2002.
    [30]Sitar N, MacLaughlin MM., Doolin DM.2005.Influence of Kinematics on Landslide Mobility and Failure Mode.Journal of Geotechnieal and Geoenviromental Engineering, 131(6):716-728.
    [31]殷跃平.三峡库区边坡结构及失稳模式研究.工程地质学报,2005,13(2):145-154.
    [32]Geertsema M, Clague JJ., Schwab JW., et al.2006. Evans.An overview of recent large catastrophic landslides in northern British Columbia, Canada. Engineering Geology,83:120-143.
    [33]Bonzanigo L, Oppizzi P, Tornaghi M, et al.2006.Hydrodynamics and rheology:key factors in mechanisms of large landslides. ECI Conference on Geohazards, Lillehammer, Norway:46.
    [34]严绍军,项伟,唐辉明,等.大岩淌滑坡滑带土蠕变性质研究.岩土力学,2008,29(1):58-68.
    [35]李晓,李守定,陈剑,廖秋林.地质灾害形成的内外动力耦合作用机制.岩石力学与工程学报,2008,27(9):1792-1804.
    [36]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式成因机制分类.岩石力学与工程学报,2009,28(6):1240-1249.
    [37]Satio M.1965. Forecasting the time fo occurrence of a slope failure.Proc.6th Int.Conf. S.M.F.E,Montreal,2:537-541.
    [38]Satio M.1969.Forecasting time of slope failure by tertiary creep. Proc.7th Int.Conf. S.M.F.E,Mexico,2:677-683.
    [39]Noriaki S.2001.Normalization of displacement rate for roughly predicting the time to failure in rock slope, Oyo Technical Report,21:1-8.
    [40]Hayashi S,Komamura F.Park B,et al.1988.On the forecast of time to failure of slope-Approximate forecast in the early period of the tertiary creep. Journal of Japan Landslide Society,25(3):11-16.
    [41]Voight B.1988.A method for prediction of volcanic eruption. Nature,332:125-130.
    [42]Voight B.1989.A relation to describe rate-dependent material failure. Science,243:200-203
    [43]Fukuzono T.1990. Recent Studies on Time Prediction of Slope Failure, Landslide News,Japan.
    [44]Federico A, Popescu M, C Fidelibus, et al.2004.On the prediction of the time of occurrence of a slope failure:a review. In:Proceedings 9th International Symposium on Landslides. Rio de Janeiro, Taylor and Francis, London 2,979-983.
    [45]晏同珍.滑坡统计预测方法[A].滑坡文集[C].北京:中国铁道出版社,1988.
    [46]晏同珍.水文工程地质与环境保护.武汉:中国地质大学出版社,1994.
    [47]殷坤龙,晏同珍.滑坡预测及相关模型.岩石力学与工程学报,1996,15(1):1~8.
    [48]殷坤龙.滑坡灾害预测预报.武汉:中国地质大学出版社,2003.
    [49]陈明东,王兰生.新滩滑坡的灰色预报分析.新滩滑坡讨论会文集,1986.
    [50]夏元友.滑坡灰色系统预测模型及其应用.自然灾害学报,1995,4(1):74-78.
    [51]廖野澜等.监测位移的灰色预报.岩石力学与工程学报,1996,15(3):193~200.
    [52]李天斌,陈明东,王兰生,等.滑坡实时跟踪预报.成都:成都科技大学出版社,1999.
    [53]李晓红,靳晓光,亢会明,等.GM(1,1)优化模型在滑坡预测中的应用.山地学报,2001,19(3):265-269.
    [54]许东俊,陈从新,刘小巍,等.岩质边坡滑坡预报研究.岩石力学与工程学报,1999,18(4):369-372.
    [55]赵静波,李莉,高谦.边坡变形预测的灰色理论研究与应用.岩石力学与工程学报,2005,24(2):5799-5802.
    [56]万全,范书龙,林炎.滑坡的多模型综合预测预报研究.水土保持研究,2005,12(5):181~185.
    [57]孙景恒,李振明,苏万益.Pearl模型在边坡失稳时间预报中的应用.中国地质灾害与防治学报,1993,4(2):36~41.
    [58]徐峻龄,马辉.滑坡临滑预报方法之讨论.中国地质灾害与防治学报,1998,9(增刊):364~369.
    [59]王建锋.滑坡发生的时间预测分析.中国地质灾害与防治学报,2003,14(2):1-7.
    [60]阳吉宝.堆积层滑坡临滑预报的新判据.工程地质学报,1995,3(2):70~73.
    [61]阳吉宝,钟正雄.滑坡时间预报的双参数判据.中国地质灾害与防治学报,1996,7(增刊):61~66.
    [62]阳吉宝,贺可强,等.堆积层滑坡时间预报问题的讨论.河北地质学院学报,1995,18(1):46~50.
    [63]贺可强,阳吉宝,王思敬.堆积层边坡表层位移矢量角及其在稳定性预测中的作用与意 义.岩石力学与工程学报,2003,22(12):1976~1983.
    [64]刘文军,贺可强.堆积层滑坡位移矢量角的R/S分析—以新滩滑坡分析为例.青岛大学理工学报,2006,27(1):32~35.
    [65]门玉明,胡高社,刘玉海.指数平滑法及其在滑坡预报中的应用.水文地质工程地质,1997,1:16~18.
    [66]梁桂兰,徐卫亚.模糊马尔科夫链状模型在斜坡稳定性预测中的应用.中国地质灾害与防治学报,2006,17(4).
    [67]张倬元,黄润秋,等.岩体破坏时间预测的黄金分割数法.第三次全国工程地质大会文集[C].成都:成都科技大学出版社,1988.1236-1237.
    [68]史永胜,许东俊.时序分析法在边坡位移预测中的应用.岩土力学,1995,16(4):1~7.
    [69]李强,李瑞有.滑坡位移监测动态预报时间序列分析技术研究.长江科学院院报,2005,22(6):16-19.
    [70]Caudill M. Neural Networks Primer. San Francisco, CA:Miller Freeman Publications,1989.
    [71]葛宏伟,梁艳春,刘玮,等.人工神经网络与遗传算法在岩石力学中的应用.岩石力学与工程学报,2004,23(9):1542-1550.
    [72]沈强,陈从新,汪稔.边坡位移预测的RBF神经网络方法.岩石力学与工程学报,2006,25(s1):2882-2887.
    [73]曹茂森,任青文,毛伟兵.基于解耦子波和优化神经网络的大坝变形预测.岩石力学与工程学报,2005,24(10):1751-1757.
    [74]刘晓,曾祥虎,刘春宇.边坡非线性位移的神经网络-时间序列分析.岩石力学与工程学报,2005,24(19):3499-3503.
    [75]许强,黄润秋.用加卸载响应比理论探讨边坡失稳前兆.中国地质灾害与防治学报,1995,6(2):25~30.
    [76]Zhang WJ, Chen YM, Zhan LT.2006. Loading/Unloading response ratio theory applied in predicting deep-seated landslides triggering. Engineering Geology,82: 234-240.
    [77]贺可强,王荣鲁,李新志,等.堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测---以三峡库区八字门滑坡分析为例.岩石力学与工程学报,2008,27(08):1644-1650.
    [78]许建聪,尚岳全,王建林.松散土质滑坡位移与降雨量的相关性研究.岩石力学与工程学报,2006,25(S1):2854-2860.
    [79]姜彤,马瑾,许兵.基于加卸载响应比理论的边坡动力稳定分析方法.岩石力学与工程学报,2007,26(03):626-631.
    [80]秦四清.非线性工程地质学导引.成都:西南交通大学出版社,1993.83-90.
    [81]秦四清,王思敬.斜坡滑动失稳演化的非线性机制与过程研究进展.地球与环境,2005,33(3):75-81.
    [82]刘汉东.边坡失稳定时预报理论与方法.郑州:黄河水利出版社,1996.10-36.
    [83]龙辉,秦四清,朱世平,万志清.滑坡演化的非线性动力学与突变分析.工程地质学 报,2001,9(3):331-335.
    [84]文宝萍.滑坡预测预报研究现状及发展趋势.地学前缘,1996,3(1-2):86~91.
    [85]罗红明,唐辉明,胡斌,等.基于突变理论的反倾层状岩石边坡稳定性研究.地质科技情报,2007,(06):101-104.
    [86]姜永东,鲜学福,郭臣业.层状岩质边坡失稳的燕尾突变模型.重庆大学学报,2008,(05):553-557.
    [87]孙强,刘天霸,秦四清,等.斜坡失稳的燕尾突变模型.工程地质学报,2006,(06):852-855.
    [88]黄润秋,许强.斜坡失稳时间的协同预测模型.山地研究,1997,15(1):7-12.
    [89]孙强,张小宝,秦四清,等.关于边坡非线性研究的几点思考.铁道勘察,2007,(04):67-70.
    [90]周翠英,陈恒,朱凤贤.基于渐进演化的高边坡非线性动力学预警研究.岩石力学与工程学报,2008,(04):818-824.
    [91]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展.地球科学进展,2004,19(3):478-483.
    [92]贺可强,孙林娜,王思敬.滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用.岩石力学与工程学报,2009,28(6):1107-1115.
    [93]廖小平.滑坡破坏时间新理论探讨.地质灾害与环境保护,1994,5(3):25-29.
    [94]伍法权,王年生.一种滑坡位移动力学预报方法探讨.中国地质灾害与防治学报,1996,7(增刊):38~41.
    [95]Vulliet L,Hutter K.1988.Viscous-type sliding laws for landslides. Canadian geotechnical journal,25(3):467-477.
    [96]Angeli MQ Caspatetto P, Menotti RM, et al.1996.A viso-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy. Quarterly Journal of Engineering Geology. 29:233-240.
    [97]Leroueil S, Locat J, Vaunat J, et al.1996.Geotechnical characterization of landlsides. In: Senneset K (ed) 7th International Symposium on Landslides. Trondheim, A.A. vol.1. Balkema, Rotterdam,53-74.
    [98]Corominas J. Moya J, Ledesma A, et al.2005. Prediction of ground displacement and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees). Landslides,2:83-96.
    [99]Maugeri M, Motta E, Raciti E.2006.Mathematical modeling of the landslide occurred at Cagliano Castelferrato (Italy). Natural Hazards and Earth System Sciences,6:133-143.
    [100]Van Asch ThWJ, Van Beek LPH, Bogaard TA.2007.Promblems in predicting the mobility of slow-moving landslides, Engineering Geology,91:46-55.
    [101]Faure R.M, Gress JC, Rojat F.2002. An easy to use model for taking in account rainfall in soil displacement. European Slope Stability Symposium, Rybar, Prague.
    [102]Ferlisi S.2004. A simple mechanical model for the interpretation of translational active landslides involving detrital covers. Proceedings of the IX International Symposium on Landslides, Rio de Janeiro,2:1227-1232.
    [103]Desai CS, Samtani NC, Vulliet L.1995. Constitutive modeling and analysis of creeping slopes. Journal of Geotechnical Engineering; 121(1):43-56.
    [104]Desai CS, Somasundaram S, Frantziskonis G.1996.A hierarchical approach for constitutive modeling of geologic materials. International Journal for Numerical and Analytical Methods in Geomechanics; 10:225-257.
    [105]Duncan JM.1996.State of the art:limit equilibrium and finite-element analysis of slope. Journal of Geotechnical Engineering,3:577-596.
    [106]Chen H, Lee CF.2003.A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology,51(4):269-288.
    [107]Maffei A, Martino S, Prestininzi A.2005.From the geological to the numerical model in the analysis of gravity-induced slope deformations:An example from the Central Apennines(Italy). Engineering Geology,78:215-236.
    [108]Hurlimann M, Ledesma A, Corominas J, et al.2006.The deep-seated slope deformation at Encampadana, Andorra:Representation of morphologic features by numerical modelling. Engineering Geology,83:343-357.
    [109]Stead D, Eberhardt E, Coggan JS.2006.Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Engineering Geology, 83:217-235.
    [110]钟荫乾.黄蜡石滑坡综合信息预报方法研究.中国地质灾害与防治学报,1995,6(4):68-75.
    [111]胡高社,门玉明,刘玉海,等。新滩滑坡预报判据研究.中国地质灾害与防治学报,1996,7(增刊):67~72。
    [112]万全,范书龙,林炎。滑坡的多模型综合预测预报研究.水土保持研究,2005,12(5):181~185.
    [113]李东山,黄润秋,许强,等.三峡库区滑坡综合预报系统的设计与实现.中国地质灾害与防治学报,,2003,14(2):24-27.
    [114]Calvello M, Cascini L, Sorbino G.2008. A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces.International Journal for Numerical and Analytical Methods in Geomechanics 32,327-351.
    [115]钟荫乾.滑坡与降雨关系及其预报.中国地质灾害与防治学报,1998,9(3):81-86.
    [116]张先发,李明华,张小刚.长江上游暴雨与滑坡崩塌关系.地理,1995,8(3):102-106.
    [117]杜榕桓,刘新民,袁建模,等.长江三峡工程库区滑坡与泥石流研究.成都:四川科学技术出版社,1990.
    [118]李明华.降雨滑坡的区域性预测预报研究.成都:中国科学院成都地理研究所,1985.
    [119]林孝松.滑坡与降雨研究.地质灾害与环境保护,2001,12(3):1-7.
    [120]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析.岩土 力学,1995,16(3):62-69.
    [121]陈剑,杨志法,李晓.三峡库区滑坡发生概率与降水条件的关系.岩石力学与工程学报,2005,24(17):3053-3056.
    [122]Guidicini G, Iwasa Y.1977. Tentative correlation between rainfall and landslides in a humid tropical enviroment, Bulletin of IAEG, Prague, No 16.
    [123]Keefer DK, Wilson RC, Mark PK, et al.1987. Real-time landslide warning during heavy rainfall. Science,238:921~925.
    [124]Larsen MC, Simon A.1993.A rainfall intensity-duration threshold for landslides in a humid-tropical environment,Puerto Rico[J]. Physical Geography,75A(1-2):13~23.
    [125]王尚庆,等.长江三峡滑坡监测预报.北京:地质出版社,1998.
    [126]李秀珍,许强.滑坡预报模型和预报判据.灾害学,2003,18(4):71-78.
    [127]吴树仁,金逸民,等.滑坡预警判据初步研究—以三峡库区为例.吉林大学学报,2004,34(4):596~600.
    [128]吴树仁,石玲,谭成轩,等.长江三峡黄腊石和黄土坡滑坡分形分维分析.地球科学—中国地质大学学报,2000,25(1):61~65.
    [129]吴树仁,韩金良,石菊松,等.三峡库区巴东县城附近主要滑坡边界轨迹分形分维特征与滑坡稳定性关系.地球学报,2005,26(5):455~460.
    [130]凌荣华,陈月娥.塑性应变与塑性应变率意义下的滑坡判据研究.工程地质学报,1997,5(4):346~350.
    [131]李秀珍,许强,黄润秋,汤明高.滑坡预报判据研究.中国地质灾害与防治学报,2003,14(4):5~10.
    [132]陈红旗,黄润秋.反倾层状边坡弯曲折断的应力及挠度判据.工程地质学报,1997,12(3):243~246.
    [133]朱冬林,任光明,等.库水位变化下对水库滑坡稳定性影响的预测.水文地质工程地质,2002,(3):6-9.
    [134]Hutchinson, JN,1988. In:Bonnard, C. (Ed.), General report:Morphological and geotech-nical parameters of landslides in relation to geology and hydrogeology.Proceedings,5th Inter-national Symposium on Landslides, vol.1. Balkema, Rotterdam,3-35.
    [135]Li DY, Yin KL, Leo C.2010.Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environmental Earth Sciences,60 (4):677-687.
    [136]王尚庆,徐进军,罗勉.三峡库区白水河滑坡险情预警方法研究.武汉大学学报,2009,34(10):1218-1221.
    [137]王兰生,詹铮,苏道刚等.新滩滑坡发育特征和运动、滑动及制动机理的初步研究.见:中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会编.中国典型滑坡[C].北京:科学出版社,1988,211~217.
    [138]薛果夫,吕贵芳,任江.新滩滑坡研究.见:中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会编.中国典型滑坡.北京:科学出版社1988,200-210.
    [139]汪洋.水库库岸滑坡速度及其涌浪灾害研究:[博士论文].中国地质大学,武汉,2005.
    [140]贺可强,阳吉宝,王思敬.堆积层滑坡位移动力学理论及其应用—三峡库区典型堆积层滑坡例析.北京:科学出版社,2007.
    [141]陆业海.新滩滑坡研究及其监测预报.见:甘肃科学院地质自然灾害研究协调中心,铁道部科学研究院西北研究所编.滑坡文集.北京:中国铁道出版社,1988,256~265.
    [142]张咸恭,王思敬,张倬元等著.中国工程地质学.北京:科学出版社,2000.
    [143]缪海波.三峡库区堆积层滑坡渐进破坏机理及其预测预报研究—以八字门滑坡为例[硕士学位论文].武汉:中国地质大学,2009.
    [144]Leroueil S,Marques MES.1996. "State of the Art on the importance of strain rate and temperature effects in geotechnical engineering". ASCE Convention, Washington, Geotechnical Special Publication,61:1-60.
    [145]王庚荪.边坡的渐进破坏及稳定性分析.岩石力学与工程学报,2000,19(1):29-33.
    [146]王家臣,谭文辉.边坡渐进破坏三维随机分析.煤炭科学,1997,22(1):27-31.
    [147]唐芬,郑颖人.边坡渐进破坏双折减系数法的机理分析.地下空间与工程学报,2008,4(3):436-464.
    [148]Kemeny J.2005.Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities. International Journal of Rock Mechanics & Mining Sciences,42:35-46.
    [149]Petley DN.2004.The evolution of slope failures:mechanisms of rupture propagation. Natural Hazards and Earth System Sciences,4:147-152.
    [150]Pathak D R., Gharti HN., Singh AB.2008. Stochastic Modeling of Progressive Failure in Heterogeneous Soil Slope. Geotech Geol Eng,26:113-120.
    [151]孙强,胡秀宏,王媛媛,等.两种应变软化介质组成的边坡失稳研究.岩土力学,2009,30(4):976-980.
    [152]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [153]程东幸,刘大安,丁恩保,等.滑带土长期强度参数的衰减特性研究.岩石力学与工程学报,2005,24S(2):5827-5834.[154]Terazaghi K, Peck RB, Mesri G1996.Soil mechanics in engineering practice.3rd Ed.Wiley, New York.
    [155]严春杰,唐辉明,孙云志.利用扫描电镜和x射线衍射仪对滑坡滑带土的研究.地质科技情报,2001,20(4):90-93.
    [156]Main IG, Sammonds PR, Meredith PG. 1991.Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophysical Journal International,115:367-380.
    [157]Cooper MR, Bromhead EN, Petley DJ,et al.1998.The Selborne cutting stability experiment[J]. Geotechnique,48:83-101.
    [158]Salt, GA.1985.Aspects of landslide mobility:Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco,3:1167-1172.
    [159]Selby, MJ.1993.Hillslope materials and processes:Oxford, Oxford University Press,451.
    [160]薛果夫,吕贵芳,任江.新滩滑坡研究.见:国家科委三峡工程科技办公室,地质矿产部水文地质工程地质司.新滩滑坡讨论会文集,1985.33-71.
    [161]湖北省西陵峡岩崩调查工作处.新滩滑坡及其监测预报.见:国家科委三峡工程科技办公室,地质矿产部水文地质工程地质司.新滩滑坡讨论会文集,1985.14-33.
    [162]胡其裕,邓德润.长江西陵峡新滩滑坡的监测系统及其分析预报.水利水电技术,1986, (4):28-59.
    [163]Rotaru A, Oajdea Daniel.2007.Analysis of the Landslide Movements.INTERNATIONAL JOURNAL OF GEOLOGY,3(1):70-78.
    [164]张卫民,陈兰云.地下水位线对土坡稳定的影响分析.岩石力学与工程学报,2005,24(s2):5319-5322.
    [165]Fredlund DG, Morgenstern NR., Widger RA.1978.The shear strength of unsaturated soils. Canadian Geotechnical J,15(3):313-321.
    [166]Fredlund DG, Vanapalli S, Xing A,et al.1995(a). Predicting the shear strength function for unsaturated soils using soil-water characteristic curve.1st Int. Conf. On Unsaturated Soils, Paris,63-69.
    [167]Fredlund DQ Xing A, Fredlund MD, et al.1995(b). "The relationship of the unsaturated soil shear strength to the soil-water characteristic curve". Canadian Geotechnical J,32(3):440-448.
    [168]林鹏,赵思健,李昂,等.坡积土渗水软化对边坡稳定性的影响.工程勘察,2002,(1):26-28.
    [169]严福章.水库滑坡复活机理及其发展趋势预测研究[博士学位论文].北京:中国科学院地质与地球物理所,2004.
    [170]李会中,潘玉珍,王复兴.三峡库区奉节县新城区滑坡带土抗剪参数试验研究.湖北地矿,2002,16(4):28-32.
    [171]余宏明,胡艳欣,唐辉明.红色泥岩风化含砾粘土的抗剪强度参数与物理性质相关性研究.地质科技情报,2002,21(4):94-96.
    [172]刘新喜,夏元友,练操,等.库水位骤降时的滑坡稳定性评价方法研究.岩土力学,2005,26(9):1427-1431.
    [173]邹正盛,程祖锋,张征.双层滑体边坡稳定性计算法及其应用.长春科技大学学报,1999,29(1):64-67.
    [174]王荣鲁,王启胜,陈淑奎,等.长江三峡区八字门滑坡稳定性分析与评价.青岛理工大学学报,2007,28(5):9-13.
    [175]贺可强.大型坡积层斜坡的双层滑移模型与双层滑移规律--以新滩滑坡分析为例.河北地质学院学报,1992,15(1):51-59.
    [176]贺可强.大型堆积层斜坡滑移性质的趋势时空分析--以新滩滑坡分析为例.水文地质工程地质,1993,6:13-19.
    [177]Urciuoli G,Picarelli L,Leroueil S.2007.Local soil failure before general slope failure.Geotech Geol Eng,25:103-122.
    [178]李天斌.滑坡实时跟踪预报概论.中国地质灾害与防治学报,2002,13(4):17-22.
    [179]Faure RM, Burlon S, Gress JC,et al.New models linking piezometric levels and displace-ments in a landslide.Landslides and Engineered Slopes-Chen et al. (eds)(?) 2008 Taylor & Francis Group, London, ISBN 978-0-415-41196-7.
    [180]Vulliet L, Hutter K.1986.Continuum model for natural slopes in slow movement. Geotechnique,38(2),199-217.
    [181]Cartier G, Pouget P.1988. "Etude du comportement d'un remblai construit sur un versant instable, le remblai de Salledes (Puy-de-Dome)". Laboratoire Central des Ponts et Chausses, Research Report,153:.153-130.
    [182]Morgenstern NR.1995. Keynote paper:The role of analysis in the evaluation of slope stability.6th Int. Symp. On Landslides, Christchurch, Editor DH Bell, Balkema, Rotterdam,3: 1615-1629.
    [183]吴益平,滕伟福,李亚伟.灰色-神经网络模型在滑坡变形预测中的应用.岩石力学与工程学报,2007,26(03):632-636.
    [184]高玮,冯夏庭.基于灰色---进化神经网络的滑坡变形预测研究.岩土力学,2004,25(4):514-517.
    [185]陈明东,王兰生.边坡变形破坏的灰色预报方法.全国第三次工程地质大会论文选集(下).成都:成都科技大学出版社,1988:1226-1232.
    [186]林鲁生,冯夏庭,白世伟,刘祖德.人工神经网络在边坡滑移预测中的应用.岩土力学,2002,23(4):508-510.
    [187]邓聚龙.灰色系统基本方法.武汉:华中工学院出版社,1987.
    [188]刘思峰,郭天榜.灰色系统理论及应用.开封:河南大学出版社,1991.
    [189]李秀珍,孔纪名,王成华.灰色GM(1,1)残差修正模型在滑坡预测中的对比应用.山地学报,2007,25(6):741-746.
    [190]樊伟,杨军,刘廷廷.灰色神经网络组合模型及在滑坡预测中的应用.人民长江,2005,36(11):48-50.
    [191]姚颖康,张春艳,张坤.改进的GM(1,1)模型在滑坡变形预测中的应用[.2009,5:102-124.
    [192]王朝阳,许强,范宣梅,等.灰色新陈代谢GM(1,1)模型在滑坡变形预测中的应用.2009,2:108-111.
    [193]刘莉,贺聪.基于时间序列的BP神经网络的滑坡预测预报及其在Matlab中的实现.中国水运,2006,12(4):72-74.
    [194]杨喆,王家鼎,谷天峰.滑带黄土振陷预测中的BP神经网络方法.西北大学学报(自然科学版),2007,37(5):815-818.
    [195]谭成仟,刘池阳.基于神经网络模型的井间参数预测方法.西北大学学报(自然科学版)2007,37(1):95-98.
    [196]汪华斌,徐瑞.BP神经网络在鱼洞河滑坡稳定性评价中的应用[J].长江科学院院报,2002,19(4):62-64.
    [197]张桂荣.基于WEBGIS的滑坡灾害预测预报与风险管理:[博士学位论文].武汉:中国地质大学,2005:54-65.
    [198]Fukuzono T.1985. A new method for predicting the failure time of a slope. In Proceedings of the 4th International Conference and Field Workshop on Landslides, Tokyo, Tokyo University Press,145-150.
    [199]Crosta GB, Agliardi F.2003. Failure forecast for large rock slides by surface displacement measurements.Canadian Geotechnical Journal,40:176-191.
    [200]Crosta GB, Agliardi F.2002.How to obtain alert velocity thresholds for large rockslides. Physics and Chemistry of the Earth,27:1557-1565.
    [201]李树平,刘遂庆,黄廷林.用麦夸尔特法推求暴雨强度公式参数.给水排水,1999,25(2):26-28.
    [202]Li DY, Yin KL, Chen WM.2008. Application of GPS monitoring data in landslide prediction[J].International conference on earth observation data processing and analysis, (ICEODPA2008),Vol.7285,pp.72854S-1-72854S-7.
    [203]Salt G.1988. Landslide mobility and remedial measures.Proceedings of the Fifth International Symposium on Landslides, (Bonnard ed.) Balkema, Rotterdam, Vol.1, pp.757-762.
    [204]Wylie DC, Munn FJ.1978.The use of movement monitoring to minimise production losses due to put slope failures. Proceedings of the First International Symposium on Stability in Coal Mining, Vancouver, Miller Preeman, pp.75-94.
    [205]Ryan TM, Call RD.1992. Application of rock mass monitoring for stability assessment of put slope failure.Rock Mechanics, Proceedings of the 33rd US Symposium, (J.R. Tillerson and W.R. Wawersik ed.) Santa Fe, New Mexico, Balkema, Rotterdam, pp.221-229.
    [206]Martin DC.1993. Time dependent deformation of rock slopes.PhD Thesis, University of London.
    [207]Zavodni ZM,Broadbent CD.1980.Slope failure kinematics. CIM Bulletin, pp.69-74.
    [208]许强,曾裕平,钱江澎,等.一种改进的切线角及对应的滑坡预警判据.地质通报,2009,28(4):501-505.
    [209]孙广忠.工程地质与地质工程.北京:地震出版社,1993.
    [210]王尚庆.回顾新滩滑坡预报.中国地质灾害与防治学报,1996,7(S):11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700