用户名: 密码: 验证码:
三峡库区渐进式库岸滑坡的预测预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外水库工程特别是大型水库工程中,水库蓄水及库水位周期性的循环涨落,经常会诱发库岸新老滑坡的产生或复活,这类受库水影响、由库岸斜坡孕育的滑坡通常称为库岸滑坡(或水库型滑坡)。大量调查和研究表明,在丘陵和山区水库中,因蓄水运行而造成库岸滑坡产生和复活的现象非常普遍,而且其失稳破坏的后果常常十分严重,有时甚至是灾难性的。目前,在水库库区地质灾害防治工作实践中,开展滑坡的监测预报工作已经成为避免和减轻库岸滑坡危害的重要手段之一
     在当前的滑坡研究领域,滑坡预测预报也是最重要和最前沿的研究热点之一。尽管经过数十年的发展,滑坡预测预报方法和理论得到了长足发展,在实践方面也取得了一些成功经验,但是大量滑坡预测预报的实践表明,现行的滑坡预测预报理论、模型或判据仍不能对滑坡的变形演化行为和具体的失稳时间做出真正准确的预测预报。原因在于:一方面大多数的预测预报理论、模型或判据还缺乏坚实的地质、力学方面的物理基础,并与个体滑坡的特殊变形演化机制结合不足;另一方面,过于侧重于探索滑坡具体失稳时间的预测模型或判据,往往忽略滑坡在环境因素(如降雨和库水位涨落)变化下变形动态的预测、基于实际监测信息的中长期变形趋势的预测以及滑坡变形演化阶段判别等内容,这种预报思路割裂了滑坡的孕育-变形-失稳破坏的内在演化规律。具体到库岸滑坡的预测预报,在复杂的库水涨落作用下,特别是与降雨等因素叠加后,库岸滑坡的变形破坏机制及其表现形式更是千差万别,难以把握。因此,针对这种复杂性和多样性,仅仅依赖于滑坡具体失稳时间的预测模型或判据,对于库岸滑坡的预测预报而言是远远不够的。
     鉴于以上问题,论文以三峡库区库首段近80处大型库岸滑坡的长时期位移监测资料和大量野外调查工作为基础,综合采用地质学、滑坡学、岩土力学、可靠度分析理论、数值模拟技术、统计分析方法以及非线性理论,针对三峡库区渐进式库岸滑坡的预测预报问题开展了较为系统的探讨:紧紧围绕库岸滑坡渐进破坏的力学作用过程及其表现形式,结合降雨及库水位变动的联合作用,进行了库岸滑坡渐进破坏概率预测的研究;结合滑坡的实际位移监测信息,进行了滑坡变形演化阶段判别方法和定量失稳预报模型的研究。通过以上一系列的分析和研究,论文主要取得了以下一些成果和结论:
     (1)基于滑坡分类理论,将滑坡的变形过程和受力状态特征结合,建立了反映滑坡变形时空演化特征的地质模型分类,把滑坡分为渐进推移式滑坡、渐进牵引式滑坡、渐进平移式滑坡、突变推移式滑坡、突变牵引式滑坡和突变平移式滑坡等六种类型。
     (2)以大量实例滑坡的长时期实际监测资料和大量野外工作为基础,探讨了库岸滑坡渐进破坏的影响因素:发现库首段渐进式滑坡的坡体多由松散堆积物构成,堆积物坡体结构松散、物质成分分布不均,可为滑坡的局部不均匀变形提供变形发展空间,渐进式滑坡的滑带或潜在滑带以碎石土、含碎石粘土或粉质粘土、粘土为主,抗剪强度具有一定程度的峰残强度差;滑坡的坡体结构特别是潜在滑动面的形态与滑坡渐进破坏形式具有很好的对应关系,牵引式滑坡的滑面类型主要为近平直型、下陡-中缓-上陡型和上陡下缓型,而推移式滑坡则主要为上陡下缓型;通过对实例滑坡位移加速过程与降雨和库水位的变化过程的相关分析,指出降雨和库水位变动是区内滑坡渐进破坏的主要动因。并基于土体的渐进破坏理论,总结了降雨和库水位联合作用下库岸滑坡的渐进破坏机制。
     (3)针对滑坡在降雨和库水位变动条件下的“事件”预报问题,发现传统的滑坡转移概率分析方法,存在相邻两条块间沿不同路径转移概率相等和不能分析非均质滑带土滑坡两个问题;在假设应变软化岩土材料为理想脆性材料和不考虑条间力随机性的基础上,推导了考虑滑带土应变软化特征的滑坡渐进破坏概率分析方法,并结合小概率的极值降雨过程及三峡库区实际库水位变动双重因素联合作用对滑坡渗流场的影响,通过非稳定渗流分析方法,建立了库水位变动及降雨条件下库岸滑坡的渐进破坏概率预测模型。
     (4)采用极值Ⅰ型分布函数,对库首段巴东站26年来的降雨资料进行了分析,得出其特征性极值降雨的拟合参数和多日累积最大降雨的降雨量与降雨过程特征;运用K-S有限比较法,对2938组抗剪强度参数试验数据分类进行了拟合优度检验,发现三峡库区五类易滑坡地层中滑坡滑带土抗剪强度参数的概率统计特征为:一般均能接受正态分布和对数正态分布,但不同类型滑带土参数指标的最优分布有所不同;总体而言,内摩擦角φ值相对于内聚力c值,最优分布服从正态分布概型的更多,服从对数正态分布的更少;对于参数变异性,无论在何种状态下,内聚力c值的变异系数均大于相应内摩擦角φ值。
     (5)对实例枣子树坪滑坡降雨和库水位变动条件下渐进破坏概率的预测结果表明:不同的库水位状态,滑坡出现初始破坏的发育部位不同,破坏可能性的大小也不相同,当初始破坏出现于不同降雨条件下时,滑坡渐进破坏的潜在规模不同;若滑坡发生破坏,不同条件下其潜在破坏模式不同,可能推移式破坏,也可能渐进牵引式破坏,但绝大多数情况下不会一次完成渐进破坏过程,不同变形破坏方式下存在不同的阻滑地段或锁固地段;滑坡出现不同形式的渐进性破坏,当以整体破坏概率阀值作为预报判据时,其潜在的危险性是完全不同的,其中,175m库水位叠加50年重现期降雨时潜在危险性最高。通过实例滑坡探讨了的渐进破坏概率预测结果在滑坡监测预报中的运用:与相关判据阀值结合,可开展降雨和库水位变动条件下的滑坡“事件”预报,预报目标为滑坡失稳可能性和潜在的初始破坏位置、变形破坏模式及最危险的破坏规模;并可以指导监测预报中关键性(或控制性)监测点的布设。
     (6)基于前人总结的滑坡断裂构造生成次序规律和滑坡裂缝分期配套特征,通过滑坡地表裂缝成因机制的分析,构建和完善了滑坡变形演化阶段的地表裂缝判据。基于渐进式滑坡破坏过程的一般特性,将位移速率接近度与滑坡累积加速度和累积加加速度判据相结合,并考虑滑体不同空间位置监测点加速度和加加速度的相互关系,建立了改进的位移动力学参数判据;该判据不仅保留了原判据中对滑坡变形破坏过程在演化时间上规律性的反映,而且考虑了在滑坡不同变形阶段,滑坡体空间变形的发育规律,在实际监测预报中通过与外界影响因素的相关性分析,不仅能对滑坡整体进入加速阶段进行准确的判别,也可以对滑坡局部位移出现“阶跃式”变化的间歇加速过程进行较为准确的判断。
     (7)提出了滑坡定量失稳预报中的三个基本问题,即:滑坡初始状态的问题、反映滑坡动态信息源的问题和滑坡预测预报模型适用性的问题。指出:整体加速变形阶段的出现是滑坡变形演化过程的重要转折点,滑坡加速变形阶段之前的预测预报均可为中长期预测预报,加速变形阶段之后则开展短临预报;中长期预报可考虑采用处理复杂性问题较为有效的非线性科学的理论和方法建立预测预报模型或判据,以滑坡的变形发展趋势或具体的位移值为主要预报目标(失稳时间可为次要目标);短临预报可考虑建立确定性较强的模型或判据进行预报,并以失稳时间作为最主要的预报目标,同时,临滑预报必须针对不同滑坡类型选择适宜的模型和方法、并以确切的加速阶段(或临滑加速阶段)的位移数据为基础,才可能得出相对准确的预报结果。
     (8)从渐进式滑坡变形演化的阶段性出发,提出了中长期变形趋势预测的R/S分析方法、位移预测的时间序列-神经网络模型以及临滑预报的改进Verhulst模型。得出相关结论为:滑坡地表位移监测时间序列集中地反映了滑坡变形趋势的非线性特征,描述和刻画复杂非线性时序的R/S分析方法能有效对其进行分析,但增量位移是更有效的分形结构,它的Hurst指数H值不仅能判断滑坡不同监测点位移在时间上的趋势性及其强度,还能从空间上判断(在同一时刻)滑坡不同部位的变形趋势特征,并进一步提出了判断滑坡加速变形阶段的概念模型判据。位移预测的时间序列-神经网络模型通过对监测位移总量的分解预测,并考虑影响因素与位移变化的响应关系,实现了滑坡变形影响因素与位移动态的综合分析,提高了预测结果的精度和可靠性,位移预测结果通常可与常规的经验性判据阀值结合,进行滑坡失稳预报。将位移速率最大值作为失稳时间预报值时,原始Verhulst预报模型存在一定的滞后误差,提出可将位移速率作为预报参数,位移加速度及位移加加速率分别达到最大值时刻作为失稳时间预报的上下限值,在不明确滑坡启动类型的前提下按上下限时间范围值进行临滑预报更为合理,当监测周期一定时,上下限值的时间差距只与模型参数a值相关。
     (9)任何单一的预报模型或方法都有其自身的局限性,开展滑坡的综合信息预测预报是实现滑坡相对准确预报的必然途径之一。论文以三峡库区在蓄水以来出现过重大险情的秭归白水河滑坡和卧沙溪滑坡为例,在对它们的地质背景、监测手段、宏观变形历史及累积位移曲线特征进行系统分析的基础上,运用文中提出的方法和模型对它们进行了综合信息预报的实际应用和检验验证分析,结果表明本文提出的基于滑坡渐进破坏过程的相关预测预报方法科学合理,具有一定的实用性和普适性。
     以上研究成果和结论,不仅为提高和完善滑坡预测预报理论,提供了一些有意义的新思路和新方法,同时对于三峡库区地质灾害监测预警和生态环境建设等实际工作,也具有十分积极的现实意义。
Reservoir at home and abroad, especially in the large reservoir, the cycle of periodic fluctuations of water level often induce the production of new or revived old landslide. Such landslides affected by reservoir water and conceived by bank slope are often referred to as bank landslides. A large number of surveys and studies show that the landslides caused by reservoir operation and the phenomenon of generation and resurrection are widespread in the hills and mountains. The consequences of failure often cause very serious damages, sometimes are even catastrophic. At present in the work of geological disaster prevention, landslide monitoring and forecasting is one of the important means to avoid and reduce the bank landslides hazards.
     In the current research of landslide, landslide prediction is one of the most important and cutting-edge research focuses. Despite several decades of development, the methods and theory of landslide prediction has made considerable progress, and in practice also had some success. However, many landslide forecasting and warning practice has shown that the present theory, model or criterion of landslide prediction still can not make accuracy forecast of the deformation evolution behavior and the specific failure real time. For the reason, on the one hand the most of the prediction theories, models or criterion are lack of solid geological, mechanical and physical basis which is inadequately combined with the specific deformation and evolutionary mechanisms of the single landslide; on the other hand it emphasis too much on exploring the models or criterion to predict the failure time, while ignoring the dynamical prediction in facts of environment (rainfall and water level change) and the prediction of long-term deformation trends based on real time monitoring information as well as landslide evolution stage discrimination. Such forecast ideas separate the inherent evolution law of preparation-deformation-instability. For the prediction of reservoir landslide, under the complex fluctuation of reservoir water, in particular, overlapped with the rainfall and other factors, the deformation mechanism and its manifestations are different. Therefore, in view of the complexity and diversity, it is not enough only depending on the forecasting models or criterion for predicting specific failure time in terms of the prediction of bank landslides.
     In view of the above problems, based on the long displacement monitoring data of about 80 large-scale bank landslides in head region of the Three Gorges Reservoir Area and a large number of field investigations, integrated with geology, landslide science, rock and soil mechanics, reliability theory, numerical simulation technology, statistical analysis and nonlinear theory, combining the prediction issues of progressive landslide in the Three Gorges Reservoir Area, the paper develops its research systematically:Centering on the mechanical process of progressive failure of reservoir landslide and its manifestations, combined with the joint action effects of rainfall and changes of the reservoir water level, progressive failure probability of reservoir landslide is studied; Besides, according to the displacement information of actual landslide, the method of landslide deformation evolutionary stage identification and quantification prediction model of landslide failure are also studied. The main results and conclusions are as follows:
     (1) On the basis of landslide classification theory, according to the deformation and stress states of landslide, the geological model classification which can reflect the temporal evolution characteristics of landslide deformation is put forward. The landslide can be grouped into six types, respectively, progressive lapsed landslide, progressive and tractive landslide, progressive translational landslide, mutational lapsed landslide, mutational tractive landslide, mutational and translational landslide.
     (2) study the reservoir landslide influencing factors based on a large number of actual monitoring data of the landslide instances in long time and a lot of field work:I find that the progressive landslide's slope body, whose structure is loose and material composition is uneven which can provide deformation development space for landslide local inhomogeneous deformation, is mainly consist of loose deposits in reservoir head. At the same time, I can discovery that the slip zone or potential slip zone of progressive landslides is composed of gravel soil,stony clay or gravel soil and clay mainly whose shear strength has a strength difference between peak intensity and residual intensity in some degree. Moreover, I acquire that landslide slope body especially potential slip surface feature has a good relationship with the form of progressive failure about landslides, the main type of the slip surface in pull landslides is nearly straight, below steep-middle slow-up steep and up steep-bellow slow, but the main type of the slip surface in push landslides is up steep-bellow slow. Finally, according to the correlation analysis to the acceleration process of landslide instances,rainfall and the changing of reservoir water level,I conclude that the combined effect of rainfall and changed reservoir water level is major motivation for the progressive failure of landslides.Meanwhile, based on soil progressive failure theory, I summarize the progressive failure mechanism of landslides under the combined effect of rainfall and changed reservoir water level.
     (3) Based on the landslide "incident" forecasting under the condition of rainfall and changed reservoir water level,I found the traditional landslide transition probability analysis methods have two problems that the two adjacent blocks sliding along different paths have the same transition probability and don't analyze the landslides with non-homogeneous slip soil. At the same time, I have derived landslide progressive failure probability analysis method considering slip soil strain softening characteristics on the condition that strain softening geotechnical materials are ideal brittle materials and don't consider the randomness among blocks. At last, combined with the combined effect of double factors to the influence for landslide seepage field between a very small probability extreme rainfall and the real changed reservoir water level in Three Gorges Reservoir Area, I have established the progressive destruction probability prediction model of bank landslides under the condition including rainfall and the changed reservoir water level according to the unsteady seepage analysis method.
     (4) Using extreme value I Distribution function the 26 years of rainfall data of Badong in the reservoir head were analyzed, and obtained the fitting parameters of the characteristic extreme rainfall and largest of many days cumulative precipitation and characteristic of rainfall process. Based on the 2938 group of shear strength test data using K-S fit contrast method set classification of goodness of fit test, and found that in the 5 categories of landslide prone strata of Three Gorges reservoir, the probability statistics features of shear strength parameters of slip soil is:generally acceptable normal distribution and lognormal distribution, but the optimal distribution of different types slip soil parameters are different.
     Generally, internal friction angle (φ) of optimal distribution submit to normal distribution is more than the cohesion (c) value, and lognormal distribution less. For parameter variability, no matter in what state, coefficient of variation of cohesion (c) values were higher than the corresponding value of the friction angle(φ).
     (5) Take the Zaozishuping Landslide for example, in the conditions of rainfall and changes of reservoir water level, the prediction results showed that:in the state of different reservoir water level, the initial damage occurred in the different parts of the landslides, and the damage possibility was also not the same. When the initial damage occurred in different rainfall conditions, the potential scale of landslide progressive failure was different. If the landslide occurred, the potential damage under different conditions had different modes, may lapse damage or progressive traction damage. But in the vast majority of cases will not be a progressive failure to complete the process. In the different pattern of deformation and failure, there were different anti-skid lots or locking lots. The landslide had many forms of progressive failure. When made the threshold value of whole failure probability as the prediction criterion, the potential risk is completely different, which has highest risk when in the 175m water level and stack the 50-year return period rainfall. We can use the prediction result of potential failure probability in the landslide monitoring and predicting. Combined with the relevant threshold value of criterion, we can make landslide event prediction in the rainfall and changes of reservoir water level. The goals of prediction include the possible, potential initial damage location, failure modes and the scale of the destruction of the most dangerous, and can guide the layout of key point in the monitoring prediction.
     (6) Based on the generation order rules of landslide fault structure and stage matching characteristics of landslides fissure summarized by previous, this paper build and improve the ground crack criterion on the stage of the landslide deformation and evolution by the analysis of landslide ground crack genetic mechanism. On the basis of general characteristics of progressive landslide failure process, this paper combined the approach degree of displacement rate and cumulative acceleration and cumulative jerk criterion of landslide, and considered the relationship of monitoring point acceleration and jerk on the different spatial location of sliding mass, and built improved displacement dynamics parameters criterion; the criterion is not only retains the original criterion reflect on regularity in the evolution of time of landslide deformation and failure process but also considered development law of landslide spatial deformation in the landslide different deformation stages. In the actual monitoring and prediction, based on the correlation analysis with external factors, it not only accurately discriminant that the landslide slide into the acceleration phase as a whole, but also more accurately discriminant the process of intermittent acceleration when the local displacement of the landslide appeared a "step-type" speed up change.
     (7) This paper presented three basic problems about quantitative instability prediction of landslide, namely:problems about the initial state of landslide reflect the dynamic information sources of landslide and suitability of landslide prediction model. It pointed out:the emergence of a whole accelerated deformation phase of is an important turning point of landslide deformation and evolution process. Forecast before the stage of landslide accelerated deformation all are the medium and long term forecast, and then carried out short-term prediction after the stage of accelerated deformation. Long-term forecast could considered to established prediction model or criteria using theories and methods of non-linear scientific which is more effective to treat complexity problem, and took the deformation trend of the landslide or concrete displacement value as the main forecast objective(unstable time as the secondary target). Short temporary forecast can consider establishing a stronger deterministic model or criteria to predict and take the forecast failure time as the main target, on the same time, forecasting impending slide must select suitable models and methods according to different type of landslide, and on the basis of the exact displacement data on the speed stage (or before sliding accelerated phase), it may come relatively accurate prediction results.
     (8) Based on the stage of progressive landslide deformation, it has proposed R/S analysis method to predict long-term deformation trends, displacement time series prediction-Neural Network Model and improved Verhulst Model for temporary sliding forecast. The relevant results are:Landslide time series of surface displacement monitoring has consistently reflected the Nonlinear characteristics of landslide deformation trend, depicted that Complex nonlinear time series of R/S analysis method can be used to do analysis effectively, but the more analysis structure is Incremental Displacement. The Hurst index H can not only decide timely trends and strength of displacement of different monitoring points, but also can judge the space (at the same time) landslide characteristics in different parts of deformation trend.
     What is more, it furthered the accelerate deformation stage to judge the concept of landslide model criterion. Displacement time series prediction-neural network model forecasted by monitoring the displacement of the total decomposition, and considered the influence factors and displacement response relationship to realize the landslide deformation and displacement of dynamic integrated analysis, so as to improve the prediction accuracy and reliability. Displacement and conventional forecast results usually combine empirical criterion threshold, unstable landslide prediction.
     Taking the maximum displacement rate as a failure time prediction value, the original Verhulst model has a lagged forecast error, the displacement rate can be raised as a forecast parameter, displacement, filling and emptying rates of acceleration and displacement as the maximum moment of failure time prediction upper and lower limits. When the Startup type is not clear,the temporary landslide forecast according to the value of the minimum and maximum time frame is more reasonable. When the monitoring period is constant, the time gap between the upper and lower limits is only associated with the model parameters a.
     (9)Any single forecasting model or method has its own limitations, carrying out comprehensive information landslide forecast is a inevitable way to achieve a relatively accurate prediction of the landslide. Taking Wo Shaxi and Zigui Baishuihe landslides both of which appeared significant danger since the Three Gorges reservoir impoundment for example, This thesis analyzed the practical application of comprehensive information forecast and test verification proposed in this thesis based on the systematic analysis of geological background, monitoring tools, macro-deformation history and the accumulated displacement curves. The results show that the proposed process of progressive failure of landslides based on relevant scientific and reasonable prediction method proposed in this thesis has certain practical and universal.
     The above research results and conclusions can not only enhance and improve the predictive and forecasting theory, provide some interesting new ideas and methods, but also has a very positive significance in monitoring of geological disasters in Three Gorges Reservoir Area for early warning and ecological environment construction and other practical work.
引文
[1]国土资源部.三峡库区地质灾害防治总体规划(简本)[J],国土资源通讯,2002,3,5-9.
    [2]蔡耀军,郭麒麟,余永志.水库诱发岸坡失稳的机理及其预测[J],湖北地矿,2002,16(4):4-8.
    [3]钟立勋.意大利瓦依昂水库滑坡事件的启示[J],中国地质灾害与防治学报,1994,5(2):77-78.
    [4]汝乃华.大坝事故与安全:拱坝[M],北京:中国水利水电出版社.1995,64-79.
    [5]L. Muller-Salzburg. The Vajont Slide[J],Engineering Geology,24(1987):513-523.
    [6]E. Nonveiler. The Vajont Reservoir Slope Failure[J],Engineering Geology,24(1987):493-512.
    [7]汪洋.水库库岸滑坡速度及其涌浪灾害研究[D],中国地质大学博士学位论文,2005:1-2.
    [8]王治华,杨日红.三峡水库区千将坪滑坡活动性质及运动特征[J],中国地质灾害与防治学报,2005,16(3):5-11.
    [9]张业明,刘广润,常宏,等.三峡库区千将坪滑坡构造解析及启示[J].人民长江,2004,35(9):24-26.
    [10]徐峻龄,廖小平,李何生.黄茨滑坡的预报及其理论和方法[J],铁道工程学报,1996,2(50):199-204.
    [11]胡高社,门玉明.新滩滑坡预报判剧研究[J],中国地质灾害与防治学报,1996,7:77-72.
    [12]吕贵芳.鸡鸣寺滑坡的形成及监测预报[J],中国地质灾害与防治学报,1994,5(S),376-395.
    [13]王尚庆.长江三峡滑坡监测预报[M].北京:地质出版社,1998.
    [14]王念秦,王永锋,罗东海等.中国滑坡预测预报研究综述[J],地质论评,2008,54(3):355-360.
    [15]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J],地球科学进展,2004,19(3):478-483.
    [16]黄润秋.论滑坡预报[J],国土资源科技管理,2004(6):15-20.
    [17]殷坤龙.滑坡预测预报分类,中国地质灾害防治学报[J],2003,14(4):13-16.
    [18]殷坤龙.滑坡灾害预测预报[M].北京:中国地质大学出版社,2004,3-10.
    [19]许强,汤明高,徐开祥等.滑坡时空演化规律及预警预报研究[J],岩石力学与工程学报,2008,27(6):1104-1112.
    [20]严福章.水库滑坡复活机理及其发展趋势预测研究[D].中国科学院地质与地球物理所博士论文,2004.
    [21]秦朝霞.水库库岸滑坡地质体三维建模与稳定性分析研究[D],天津大学硕士学位论文,2007.
    [22]Skempton A. W. Long term stability of clay slopes [J]. Geotechnique, London,1964,14(1): 77-101.
    [23]BishopA.W. The strength of soils as engineering materials[J]. Geotechnique,1966,16(2): 91-128.
    [24]Bjerrum D L.Progressive failure in slopes of over-consolidated plastic clay and clay shales[J]. J. Soil Mechanics and Foundation. Div. ASCE,1967,9:33-49.
    [25]Palmer A. C., Rice J. R. The growth of slip surface in the progressive failure of over-consolidated clay[J]. Proc. Roy. Soc. Lond.,1973, A332:527-548.
    [26]刘祖典,党发宁.强度指标对滑坡稳定性的影响[J.]岩土工程技术,2002,3:140-141.
    [27]卢肇钧.粘性土抗剪强度研究的现状与展望[J],土木工程学报,1998,8:3-9.
    [28]Samyr El Bedoui, Yves Guglielmi, Thomas Lebourg. Deep-seated failure propagation in a fractured rock slope over 10,000 years:The La Clapiere slope, the south-eastern French Alps[J]. Geomorphology 105 (2009):232-238.
    [29]Eileen M. Dornfest, John D. Nelson, and Daniel D. Overton Case History and Causes of a Progressive Block Failure in Gently Dipping Bedrock[J]. Proceedings of the First North American Landslide Conference. Vail, Colorado. June 3-8,2007.
    [30]Gilbert R.B., Long J.H.& Moses B.E. Analytical model of progressive slope failure in waste containment systems [J], Int. J. Mumer. And analytical methods in Geomech,1996,20: 35-36.
    [31]Jun Otani, Yoshiaki Kikuchi & Toshifumi Mukunoki. Investigation of progressive failure in composite soils using an X-ray ct scanner [J]. Geomechanics ASCE,2003:642-653.
    [32]George M. Filz, Jacob J. B. Esterhuizen, J. Michael Duncan. Progressive Failure of Lined Waster Impoundments [J]. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, October,2001,841-8348.a
    [33]Bemander S, Olofsson L. On formation of progressive failure in slopes [J]. In:Proc.10th ICSFME. Rotterdam:A. Balkema,1981.
    [34]刘爱华,王思敬.平面坡体渐进破坏模型及其应用[J],工程地质学报,1994,3:1-7.
    [35]马崇武.边坡稳定性与滑坡预测预报的力学研究[D],博士学位论文,兰州:兰州大学,1999
    [36]Leroueil S. Natural slopes and cuts:movement and failure mechanisms[J]. Geotechnique, 2001,51(3):197-243.
    [37]Urciuoli GLocal soil failure before general slope failure[J]. Geotech Geol Eng (2007) 25:103-122
    [38]Chia-Nan Liu. Progressive failure mechanism in one-dimensional stability analysis of shallow slope failures[J].Landslides (2009) 6:129-137.
    [39]鲁群志.矿山边坡稳定性的动态计算机仿真[J],化工矿物与加工,1999,7:8-11.
    [40]程谦恭,胡厚田,彭建兵等.高边坡岩体渐进性破坏粘弹塑性有限元数值模拟[J].工程地质学报,2000,8(1):25-30.
    [41]谭文辉,王家臣,周汝弟.岩体边坡渐进破坏的物理模拟和数值模拟研究[J].矿业研究与开发,2000,20(5):9-10.
    [42]Eberhardt, E., Stead, D., Coggan, J.S.. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. International Journal of Rock Mechanics and Mining Sciences.2004,41 (1):68 87.
    [43]王志伟,王庚荪.裂隙性粘土边坡渐进性破坏的FLAC模拟[J],岩土力学,2005,26(10):1637-1640.
    [44]陈亚军,王家臣,常来山等.节理岩体边坡渐进破坏的试验研究[J],金属矿山,2005,35(8):11-13.
    [45]刘爱华,颜荣贵.坡体平面渐进破坏模型分析研究[J].湖南有色金属,1994,10(1):5-9.
    [46]Miao Tiande, Ma Chongwu, Wu Shengzhi. Evolution Model of Progressive Failure of Landslide [J]. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, October, 1999,827-831, Discussion by K. S. Li, Joley Lam.
    [47]刘忠玉,陈少伟.应变软化土质边坡渐进破坏的演化模型[J],郑州大学学报(工学版),2002,6:37-40.
    [48]李杰.边坡稳定性问题的理论分折及其应用研究[D],硕士学位论文,大连:大连理工大学,2002.
    [49]邵江.开挖边坡的渐进性破坏分析及桩锚预加固措施研究[D],西南交通大学,博士学位论文,2007.
    [50]ZHANG Junfeng, XU Yongjun, QI Tao & LI Zhengguo. Mechanism on progressive failure of a faulted rock slope due to slip-weakening[J]. Science in China Ser. E Engineering & Materials Science 2005 Vol.48 Supp.18-26.
    [51]Chowdhury R N, Dimitri A Grivas. Probabilitic model of progressive failure of slope [J]. Geotech. Eng. Division ASCE 1982,108(GT6):803-819.
    [52]Chowdhury R N, Tang W T. Reliability model of progressive slope failure [J]. Geotechnique, 1987,37(4):167-481.
    [53]周前祥.边坡二维渐进破坏的随机模糊可靠性[J],中国矿业大学学报,1996,25(2):105-110.
    [54]王庚荪.边坡的渐进性破坏及稳定性分析[J],岩石力学与工程学报,2001,19(1):29-33.
    [55]王家臣,谭文辉.边坡渐进破坏三维随机分析[J],煤炭学报,1997,22(1):27-31.
    [56]江学平,于远忠.边坡渐进失稳破坏的概率分析[J].西南科技大学学报,2007,22(2):19-23.
    [57]涂帆.土坡渐进破坏的可靠度[J].岩土力学,2004,1:87-90.
    [58]吉峰,刘汉超.渐进性破坏随机法在边坡稳定性分析中的应用[J].工程地质学报,2004,3:62-67.
    [59]杨庆,季大雪,栾茂田.土工格栅加筋边坡渐进破坏可靠性分析[J].大连理工大学学报,2005,45(1):85-90.
    [60]吴晓明.均质土坡渐进破坏可靠度分析[D].浙江大学硕士学位论文,2006.
    [61]K.Y Lo, C.F Lee.Analysis of progressive failure of a clay slope [J]. Journal of Geoteehnieal Engineering,1989 Vol.115, No.7.1021-1025
    [62]D.N. Petley, D.J. Petley, R.J. Allison.Temporal prediction in landslides-Understanding the Saito effect. Landslides and Engineered Slopes,2008,865-871.
    [63]仵彦卿.地下水与地质灾害[J],地下空间,1999,19(4):303-310.
    [64]蔡耀军,崔政权,Cojean R.水库诱发岸坡变形失稳的机理[A],见:中国岩石力学与工程学会第六次学术大会论文集[C].北京:中国科学技术出版社,2000,618-622.
    [65]李维光,楼建国,2006.降雨条件下顺层滑坡影响因素和稳定性分析.采矿与安全工程学报,23(4):498-501.
    [66]郑颖人,时卫民,唐伯明.重庆三峡库区滑坡勘察工作中的一些问题[J].重庆建筑,2003,(1):6-7.
    [67]刘耀涛,邓荣贵,刘汉超.某滑坡区滑带土工程地质特性研究[J].地质灾害与环境保护,1996,7(2):6-11.
    [68]时卫民,郑宏录,刘文平等.三峡库区碎石土抗剪强度指标的试验研究[J].重庆建筑,2005,2:30-35.
    [69]郑晓晶,殷坤龙,基于非饱和渗流的水库库岸滑坡稳定性计算.水文地质工程地质.2007.34(2):29-32.
    [70]文宝萍,申建,谭健民.水在千将坪滑坡中的作用机理[J].水文地质工程地质,2008,35(3):12-18.
    [71]郑颖人,时为民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,23(18):3203-3210.
    [72]刘新喜,夏元友,练操等.库水位骤降时的滑坡稳定性评价方法研究[J].岩土力学,2005,26(9):1427-1431,1436.
    [73]魏玉虎,许模,曹宁.长江三峡工程奉节库岸边坡地下水渗流场模拟分析[J].地质灾害与环境保护,2002,13(1):77-80,84.
    [74]刘红岩,秦四清.库水位上升条件下边坡渗流场模拟[J].工程地质学报,2007,15(6):796-801.
    [75]柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报,2004,23(8):1280-1284.
    [76]王锦国,周云,黄勇.三峡库区猴子石滑坡地下水动力场分析岩石力学与工程学报[J],2006,25(S1):2757-2762.
    [77]Cevik S.Y., Ulusay R. Engineering Geological Assessments of the Repeated Plane Shear Slope Instability Threatening Babadag (Turkey) and its Enviromental Impacts[J]. Environmental Geology,,2005 47:685-701.
    [78]Fredlund, D.G., Xing, A., Huang, S.. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31: 533-546.
    [79]郑颖人,唐晓松.库水作用下的边(滑)坡稳定性分析[J].岩土工程学报,2007,29(8):1115-1121.
    [80]李晓,张年学,廖秋林等.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩石力学与工程学报,2004,23(21):3714-3720.
    [81]罗先启,刘德富,吴剑等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报,2005,24(14):2476-2483.
    [82]杨宗佶,乔建平,陈晓林等.三峡库区万州侏罗系红层滑坡成因机制研究[J].世界科技研究与发展,2008,30(2):174-176.
    [83]Wang, F.W., Zhang, Y.M., Huo, Z.T., et al.. Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslide,2008b,5:321-329.
    [84]Wang, G., Sassa, K.. Factors affecting rainfall-induced flowslides in laboratory flume tests[J]. Geotechnique,2001,52(7):587-599.
    [85]张保军,马水山.墓坪滑坡体位移机制监测分析[J].大坝观测与土工测试,2001,25(4):20-21,26.
    [86]张保军,李振作,程俊祥,等,2008.茅坪与新滩滑坡体变形机理类比研究[J].长江科学院院报,25(1):40-43,57.
    [87]张华伟,王世梅,霍志涛,等,2006.白家包滑坡变形监测分析[J].人民长江,37(4):95-97.
    [88]王尚庆,邓兴林,严学清等.清江隔河岩库区重要滑坡的监测分析及预测模型研究[J].中国地质灾害与防治学报,2000,2.
    [89]闵弘,谭国焕,戴福初等.蓄水期库岸古滑坡的水动力学响应监测——以三峡库区泄滩滑坡为例[J].岩石力学与工程学报,2004,23(21):3721-3726.
    [90]张振华,罗先启,吴剑,等,2006.三峡水库水位变化对滑坡监测变量影响的数值分区—以泄滩滑坡为例.第一届中国水利水电岩土力学与工程学术讨论会论文集[J],287-289.
    [91]姜晨光,李少红,贺勇,等,2008.地下水位变化与库岸滑坡体稳定性关系的研究.岩土力学,28(增):403-406.
    [92]贺可强,李相然,孙林娜,王思敬.水诱发堆积层滑坡位移动力学参数及其在稳定性评价中的应用[J].岩土力学,2008,29(11):2983-2989.
    [93]文海家,张永兴,柳源.滑坡预报国内外研究动态及发展趋势[J],中国地质灾害与防治学报,2004,15(1):2-15.
    [94]吴树仁,金逸民等.滑坡预警判据初步研究-以三峡库区为例[J].吉林大学学报,2004,34(4):596 600.
    [95]李秀珍,许强.滑坡预报模型和预报判据[J].灾害学,2003,18(4):71-77.
    [96]李秀珍,许强,黄润秋,汤明高.滑坡预报判据研究[J].中国地质灾害与防治学报,2003,14(4):5-10.
    [97]文宝萍.滑坡预测预报研究现状及发展趋势[J].地学前缘,1996,3(1-2):86-91.
    [98]张倬元,黄润秋.岩体失稳前系统的线性和非线性状态及破坏时间预报的”黄金分割数”法[A].见:全国第三次工程地质大会论文集[C].成都:成都科技大学出版社,1988,1233-1240.
    [99]殷坤龙.滑坡灾害长期时间预测的灰色模型[J].地学探索,1993,第8期,pp91-95.
    [100]殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,Vol.15,1996,pp1-8.
    [101]黄润秋,许强.斜坡失稳时间的协同预测模型[J].山地研究,1997,15(1):7-12.
    [102]刘汉东.边坡失稳定时预报理论与方法[M].郑州:黄河水利出版社,1996,5.
    [103]秦四清,张倬元.滑坡时间预报的突变理论与灰色突变理论[J].大自然探索,1993,12(4):62-68.
    [104]周创兵,等.蠕变—样条联合模型及其在滑坡时间预报中的应用[J].自然灾害学报,1996,5(4).
    [105]杨顺安,晏同珍,预测滑坡学概要[J].中国地质灾害防治学报,1998,v.o19,增刊,1-6.
    [106]李天斌,陈明东,王兰生等.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999.
    [107]黄志全.滑坡工程非线性分析理论及应用[M].郑州:黄河水利出版社,2005.
    [108]杨志法,陈剑.关于滑坡预测预报方法的思考[J],工程地质学报,2004,12(2):119-122.
    [109]贺可强,周敦云,王思敬.降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义.岩石力学与工程学报,2004,23(16):2665-2670.
    [110]Saito, M. Forecasting the time of occurrence of a slope failure. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering.1965, vol.2, pp. 537-539.
    [111]Saito.M, Uezawa H. Failure of soil due to creep [A]. In:Proceedings ofthe5thInternational Conference on Soil Mechanics and Foundation Engineering[C],1961, Vol.1,315-318.
    [112]Saito, M. Forecasting time of slope failure by Tertiary creep. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering,1969, vol.2, pp. 677-683.
    [113]Hayashi.S.1988. On the forecast of time to failure of slope(Ⅱ)-Approximate forecast in early period of the tertiary creep, Journal of Japanese Landslide Society,Vol.25.3,p11-16.
    [114]Azimi,c.et al.1988, Forcasting time of failure for a rockslide in gypsum, Proc. Of 5th I.S.L, VOL.1, pp.531-536.
    [115]Fukuzono T. A new method for predicting the failure time of a slope.In:Proceedings of the fourth international conference and field workshop on landslides. Tokyo:Japan Landslide Society,1985.pp 145-50.
    [116]Fukozono, T. Recent studies on time prediction of slope failure. Landslide News,1990.4, 9-12.
    [117]Voight B. A method for prediction of volcanic eruption. Nature,1988,332:125-130.
    [118]Voight B. A relation to describe rate dependent material failure. Science,1989,243: 200-203.
    [119]Bhandari, R.K.1988. Special lecture:some practical lessons in the investigation and field monitoring of land Symposium on Landslides,1984,3:93 95.slides. In Proceedings of the 5th International Symposium on Landslides, Lausanne. Edited by Ch. Bonnard. A.A. Balkema, Rotterdam, Vol.2, pp.1435-1457.
    [120]Zvelebil, J. Time prediction of a rockfall from a sandstone rock slope. In:Proceedings of the IVth International Symposium on Landslides,1984,3:93-95.
    [121]Kawamura, K.1985. Methodology for landslide prediction. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Calif.,12-16 Aug.1985. Edited by Publications Committee of the ICSMFE. A.A. Balkema, Rotterdam, The Netherlands. Vol.3,pp.1155-1158.
    [122]Guidicini G, Iwasa Y. Tentative correlation between rainfall and landslides in a humid tropical enviroment, Bulletin of IAEG, Prague,1977, No 16.
    [123]Noverraz F. Risque lies aux versants instable, lecture au I'Universite de Geneve, Switzerland, 1998.
    [124]Hungr, O.& Kent, A.1995. Coal mine waste dump failures in British Columbia, Canada. Landslide News,9:26-28.
    [125]Suwa, H. Visually observed failure of rock slope in Japan. Landslide News.1991.5:8-10.
    [126]Hutchinson, J.:Landslide risk-to know, to foresee, to prevent, Geologia Tecnica and Ambientale,2001,9,3-24.
    [127]Helmstetter, A., D. Sornette, J.-R. Grasso, J.V., Andersen, S. Gluzman, S.& Pisarenko, S. 2003. Slider-block friction model for landslides:implication for prediction of mountain collapse. Journal of Geophysical Research,108(B2):409-432.
    [128]Helmstetter, A.& Sornette, D.2004. Slider block friction model for landslides; application to Vaiont and La Clapiere landslides. Journal of Geophysical Research,109(B2):210-225.
    [129]Mark.E,.Reid, And Richaad.G,.Lahuse. Real-Time Monitoring of Active Lanslides along Highway 50, Ei Dorado County. Adapted from:California Geology,1998,5(3):17-20.
    [130]Sornette D, Helmstetter A, Andersen J V, Gluzman S, Grasso J R, Pisarenko. Towards landslide predictions:two case studies [J]. manuscript,16 May 2003,1-30.
    [131]Harris C,Davia M,Rea B,. Geotechnical centrifuge modeling of mass movement mrocesses associated with taawing permafrost soil. Landslides In Reaserch, Theory And Pratice,2000, Vol,2:693-700.
    [132]Crosta GB, Agliardi F. Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 2003;40:176-91.
    [133]Crosta G B, Agliardi F. How to obtain alert velocity thresholds for large rockslides [J]. Physics and Chemistry of the Earth,2002,27:1557-1565.
    [134]R. R. Cornelius and P. A. Scott. A Materials Failure Relation of Accelerating Creep as Empirical Description of Damage Accumulation.Rock Mechanics and Rock Engineering, (1993) 26 (3),233-252.
    [135]Hungr, O., Corominas, J., and Eberhardt, E.2005. Estimating landslide motion mechanism, travel distance and velocity. In:Hungr, O., Fell, R., Couture, R., and Eberhardt, E. Landslide Risk Management. Taylor and Francis, London, pp.99-128.
    [136]Rose, N.D.& Hungr, O.2007. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. International Journal of Rock Mechanics and Mining Sciences 44:308-320.
    [137]Petley, D.N., Bulmer, M.H.K.& Murphy, W.2002. Patterns of movement in rotational and translational landslides.Geology,30(8),719-722.
    [138]Petley, D.N., Dunning, S.A.& Rosser, N.J.2005a. The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In:Hungr, O.Fell, R., Couture, R., and Eberhardt, E. Landslide Risk Management, A.T. Balkema, Amsterdam, 367-374.
    [139]Petley, D.N., Higuchi, T., Petley, D.J., Bulmer,M.H.&Carey, J.2005b. The development of progressive landslide failure in cohesive materials. Geology 33(3):201-204.
    [140]Federico A, Popescu M, Fidelibus C, Interno G (2004) On the prediction of the time of occurrence of a slope failure:a review.In:Proceedings 9th International Symposium on Landslides. Rio de Janeiro, Taylor and Francis, London, vol.2, pp 979-983.
    [141]晏鄂川,刘广润.试论滑坡基本地质模型[J].工程地质学报,2004,12(1):22-24.
    [142]陈守义.试论土的应力应变模式与滑坡发育过程的关系[J].岩土力学,1996,17(3):21-26.
    [143]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(1):27-30.
    [144]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001.
    [145]李智毅,王智济,杨裕云等.工程地质学基础[M].武汉:中国地质大学出版社,1989.
    [146]Cooper M R, Bromhead E N, Petley D J,et al. The Selborne cutting stability experiment[J]. Geotechnique,1998,48(1):83-101.
    [147]Angeli M G, Gasparetto P, Menotti R M. A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy[J].Quarterly Journal of Engineering Geology,1996, 29:233-240.
    [148]贺可强,阳吉宝,王思敬.堆积层滑坡位移动力学理论及其运用[M].北京:科学出版社,2007.
    [149]田斌,戴会超,王世梅.滑带土结构强度特征及其强度参数取值研究[J].岩石力学与工程学报,2004,23(17):2887-2892.
    [150]任光明,聂德新.大型滑坡滑带土结构强度再生特征及其机理探讨[J].水文地质工程地质,1997,3:28-31.
    [151]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [152]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社.1993,第四版.
    [153]陈祖煜.土质边坡稳定分析——原理方法程序[M].北京:中国水利水电出版社,2002.
    [154]罗文强,龚珏.Rosenblueth方法在斜坡稳定性概率评价中的应用[J].岩石力学与工程学报,22(2):232-235.
    [155]王刘洋.Rosenblueth法在土坡稳定可靠度分析中的应用[J].岩土工程技术,19(2):71-73.
    [156]张年学,盛祝平,孙光忠等.长江三峡工程库区顺层岸坡研究[M].北京:地震出版社,1993.
    [157]谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J],1995,3(2):60-69.
    [158]Floris,M., Bozzano,F. Evaluation of landslide reactivation:A modified rainfall threshold model based on historical records of rainfall and landslides.Geomorphology, 94,Issuesl-2,2008:40-57.
    [159]陈丽霞.三峡水库库岸单体滑坡灾害风险预测研究[D].中国地质大学博士学位论文,2008.
    [160]徐超,杨林德.随机变量拟合优度检验和分布参数Bayes估计[J].同济大学学报,1998,26(3):341-342.
    [161]范明桥.黏性填筑土强度指标的概率特性[J].南京水利科学研究院报,2000,(1):14-15.
    [162]陈立宏,陈祖煜,刘金梅.土体抗剪强度指标的概率分布类型研究[J].岩土力学,2005,26(1):37-40.
    [163]罗冲,殷坤龙,陈丽霞等.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报,2005,24(9):1588-1593.
    [164]晏同珍.水文工程地质与环境保护[M].武汉:地质出版社,1994.
    [165]卢螽槱.浅论易滑地层[J].山地研究,1988,6(2):119-122.
    [166]Duncan J M. Factors of safety and reliability in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(4):307-316.
    [167]张博庭.用有限比较法进行拟合优度检验[J].岩土工程学报,1991,13(6):84-91.
    [168]徐军,雷用,郑颖人.岩土参数概率分布推断的模糊BAYES方法探讨[J].岩土力学,2000,21(4):294-400.
    [169]湖北省地质环境总站.三峡库区巴东县地质灾害监测预警工程专业监测预警(三期)专业监测简报.2009年2月.
    [170]地矿保定工程勘察院.三峡库区巴东县滑坡东瀼口镇4处滑坡施工地质勘查报告.2006年12月.
    [171]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994,184-231.
    [172]周德培 编著.流变力学原理及其在岩土工程中的应用[M].重庆:西南交通大学出版社.1995,205-214.
    [173]叶米里扬诺挂.滑坡作用基本规律[M].重庆:重庆出版社.1984,130-136.
    [174]黄润秋,许强,李秀珍等.滑坡时间预测预报研究及其信息系统开发.三峡库区常见多发型滑坡预报模型建立及预报判据研究成果报告六,2004年7月.
    [175]晏同珍,杨顺安,方云著.滑坡学[M].武汉:中国地质大学出版社,2003,125-128.
    [176]曾裕平.重大突发性滑坡灾害预测预报研究[D].成都理工大学博士学位论文,2009,12-13.
    [177]杨杰.用加加速运动预报高速滑坡和山崩[J].水文地质工程地质,1995,4:11-12.
    [178]王建锋.滑坡发生时间预报分析[J].中国地质灾害与防治学报,2003,14(2):1-8.
    [179]杜娟,殷坤龙,柴波.基于诱发因素响应分析的滑坡位移预测模型研究[J].岩石力学与工程学报,2009,28(9):1-7.
    [180]秦四清.斜坡失稳过程的非线性演化机制与物理预报[J].岩土工程学报,2005,27(11):1241-1248.
    [181]燕爱玲,黄强,刘招等.R/S法的径流时序复杂特性研究[J].应用科学学报,2007,25(2):214-217.
    [182]黄勇,周志芳,王锦国等.R/S分析法在地下水动态分析中的应用[J].河海大学学报,2002,30(1):83-87.
    [183]刘文军,贺可强.堆积层滑坡位移矢量角的R/S分析[J].青岛理工大学学报,2006,27(1):32-35,67.
    [184]宋怀庆.R/S方法应用于变形数据预报的算法研究[J].现代农业科学,2008,15(11):107-112.
    [185]陈(?),陈凌编著.分形几何学[M].北京:地震出版社,2005.
    [186]徐绪松,马莉莉,陈彦斌.R/S分析的理论基础:分数布朗运动[J].武汉大学学报(理学版),2004,50(5):547-550.
    [187]Edgar E Prters. Fractal market analysis[M].Beijing:Economics science Press,2002.
    [188]Mandelbrot B. Statistical methodology for nonperiodic cycles:from the covariance to R/S analysis [J]. Annals of Economic and Social Measurement,1972,1(12):257-288.
    [189]吴益平,滕伟福,李亚伟.灰色-神经网络模型在滑坡变形预测中的应用[J].岩石力学与工程学报,2007,26(3):632-636.
    [190]潘虹宇.时间序列分析[M].北京:对外经济贸易大学出版社,2006.
    [191]许传华,房定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报,2002,21(6):858 862.
    [192]李端有,陈鹏霄,张保军.茅坪滑坡位移预测的BP网络方法应用研究[J].长江科学院院报,22(6):3-6.
    [193]张桂荣.基于WEBGIS的滑坡灾害预测预报与风险管理[博士学位论文][D].中国地质大学,2005:54 65.
    [194]Keefer D K, Wilson R C, Robert K M, et al. Real-time landslide warning during heavy rainfall[J]. Science,1987,238:921 925.
    [195]黄润秋,许强,戚国庆著.降雨及水库诱发滑坡的评价与预测[D].北京:科学出版社,2007.
    [196]黄润秋,许强,李秀珍等.滑坡预报模型及预报判据研究.三峡库区常见多发型滑坡预报模型建立及预报判据研究成果报告五,2004年7月.
    [197]温文,吴旭彬.Vethulst模型在黄茨滑坡临滑预测中的应用[J].人民珠江,2005(5):38-40.
    [198]周柏成,王磊,杨辉建.两种数学模型在黄茨滑坡预报中的应用研究[J].高新技术,2007,18,1-4.
    [199]熊传治,徐诚,姜军.用灰色理论Verhulst模型进行富家坞矿北帮边坡大滑坡的预报[J].矿冶工程,1998,18(3):5-9.
    [200]徐嘉谟.关于滑坡预报问题[J].工程地质学报,1998,6(4):319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700