用户名: 密码: 验证码:
三峡库区典型堆积层滑坡复活机理及变形预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库蓄水至高水位及正常蓄水后1到3年,是库区库岸再造及滑坡变形活动的活跃期,会有大量堆积层滑体的复活。考虑到堆积层滑坡具有规模大、数量多、分布广等特点,一旦堆积层滑坡滑入江中,除直接造成滑坡体上大量人员伤亡、经济损失外,其诱发的次生灾害涌浪也会造成极其严重的后果。因此,对堆积层滑坡开展以复活机理及变形预测为目的的研究具有重要的理论意义和工程实践意义。
     基于此,以三峡库区堆积层滑坡为研究对象,以监测成果为基础,研究堆积层滑坡变形特征与库水位变动的响应规律,对引起堆积层滑坡变形的内因——工程地质模型进行深入研究,对堆积层滑坡复活变形的外因——地下水作用机理进行深入探讨,在此基础上建立堆积层滑坡的变形预测模型,为防灾减灾提供决策依据。
     本文主要研究内容及成果如下:
     (1)堆积层滑坡对库水位变动的响应规律研究。根据所在地区的库水位变化过程线,确定滑坡所在位置的库水位变化过程,研究了三峡库区两堆积层滑坡(玉皇阁滑坡、鹤峰乡场镇滑坡)在水位波动条件下变形、孔隙水压力等特征曲线,得到了典型堆积层滑坡变形等特征对库水位变动的响应规律,其中玉皇阁滑坡发生明显变形对应水位上升阶段,鹤峰场镇滑坡发生明显变形则对应水位下降阶段。
     (2)堆积层滑坡工程地质模型研究。以三峡库区秭归-万州段89个堆积层滑坡进行统计,得到了库区堆积层滑坡的体积、地形地貌、地层岩性、斜坡类型等分布规律,从滑体的组构特征、动力成因、变形运动特征和发育阶段四组主要控制性因素出发,建立滑坡的基本地质模型。由于堆积层滑坡大多处于库水位变动影响范围内,动力成因详细考虑了库水对不同类型堆积层滑坡的作用模式及库水作用下滑坡的变形特征,进一步划分为浮托减重、渗透力、浮托减重+渗透力(混合)三类,细化了水库型堆积层滑坡的基本地质模型。运用上述基本地质模型建模方法及理论,得出了巫山玉皇阁滑坡的基本地质模型为新生性孕育期渐进牵引式人工水库蓄水浮托减重型土质岩床滑坡,鹤峰乡场镇滑坡的基本地质模型为复活性孕育期剧动牵引式人工水库蓄水渗透压力型土质岩床(+土床)滑坡。
     (3)堆积层滑坡复活过程中地下水水力学作用效应。由于滑坡自身岩土渗透特性的不同,库水波动对其影响也各不相同,以三峡库水一个水文年的正常水位变动线为基础,以鹤峰乡场镇滑坡主剖面建立渗透计算模型,对库水位上升及下降阶段过程中不同渗透特性堆积层滑坡的地下水浸润线进行分析,根据浸润线的分布特征划分了不同水位阶段不同滑坡类型的地下水作用效应,从定性的角度分析了不同地下水水力学作用效应对滑坡稳定性的影响,即:库水位上升阶段时,’①当k>10-4m/s时,有a≤5°,地下水作用效应表现为浮托减重,不利于滑坡的稳定;②当10-5m/s     (4)地下水作用效应对三峡库区堆积层滑坡稳定性影响研究。地下水通过外部激励作用使得滑坡内部暂态的平衡系统被打破,稳定性发生变化。由于滑坡体本身的差异性,不同的地下水作用效应对稳定性影响也各不相同,这是不同类型滑坡在不同的水位阶段发生不同变形差异的主要因素。根据所选研究对象的不同,将地下水对岩土体的力学作用分为两种作用模式,并证明了两种作用模式的等效性;根据滑体内饱水部位与地下水浸润线的关系,稳定性计算时将滑块分为三种不同的状态(“上干下湿”、“饱和”、“上湿下干”)分别予以考虑;研究不同渗透特性滑坡在水位上升及下降阶段渗透力、浮托力导致的滑坡抗滑力及下滑力的影响,得到了稳定性系数随时间、库水位、滑体饱水面积比率等变化规律。及:当库水位上升时,①对强透水滑坡体(k≥10-4m/s),其稳定性系数的变化规律为随水位的上升起初呈加速减小趋势,直到水位恒定为175 m时,滑坡的稳定性系数为一定值。②对中等透水滑坡体(k=10-5m/s),其稳定性系数的变化规律为随水位的上升起初呈加速下降趋势,直到水位恒定为175 m时,定性系数呈减速下降趋势。③对中等透水-微透水滑坡体(k=10-6~k=10-8m/s),其稳定性系数随水位的上升起初呈加速上升趋势,直到水位恒定175 m时,稳定性系数然后呈减速下降趋势。且渗透系数越小,滑坡稳定性系数上升阶段上升也越快,相应下降阶段下降越慢。从上升阶段稳定性下降率与库水的关系来看,当k≥10-5m/s时稳定性系数下降率趋势相同,均为负值;当k≤10-6m/s时稳定性系数下降率亦趋势相同,均为正值。当库水位下降时,①对强透水滑坡体(k≥10-4m/s),其稳定性系数的变化规律为随水位的下降起初呈增长趋势,直到水位恒定145 m时,稳定性系数然后为一定值。②对中等透水滑坡体(k=10-5m/s),其稳定性系数的变化规律为随水位的下降升起初呈下降趋势,然后呈先加速后减速的上升趋势,直到保持某一定值。③对中等透水~微透水滑坡体(k=10-6~k=10-8m/s),其稳定性系数随水位的下降起初呈加速下降趋势,然后呈
     缓慢上升趋势。且多为负值。从稳定性下降率的角度看,当k≥10-4m/s稳定性系数变化率曲线具有相同的变化趋势,且均为正值;当k≤10-6m/s时稳定性系数下降率亦具有相同的趋
     势。基于上述研究成果,建立了水位升降条件下不同类型堆积层滑坡的稳定性随水位的标准变化曲线图。
     (5)典型堆积层滑坡复活变形机理研究。以典型堆积层滑坡——鹤峰乡场镇滑坡工程地质模型为基础,根据水位实际波动曲线所得到的坡体内浸润线的变化特征,得到了稳定性系数随水位变动的关系,建立了鹤峰乡场镇堆积层滑坡的三维数值-力学模拟模型,研究了水位变动条件下滑坡应力场、位移场、剪应变增量、塑性区的发展规律,从外因如何影响内因的角度揭示了典型堆积层滑坡复活变形机理,为滑坡的变形预测奠定了基础。
     (6)堆积层滑坡变形预测模型研究。以鹤峰乡场镇滑坡为例,根据所在地区的库水位变化过程线,调整地质-数值-力学模型中的水位线及岩土体参数,建立滑坡的综合预报模型,通过强变形区实际位移监测值与数值模型中模型监测点位移追踪对比,获得了FLAC3D模型中时步与实际时间的对应关系,通过时步的外延预测了未来一个水文年内滑坡的变形发展趋势。
     本文创新点主要有以下几点:
     (1)以玉皇阁滑坡、鹤峰场镇滑坡为例,得到了不同渗透特性滑坡对库水变动的响应规律,并构建了水库型堆积层滑坡的基本地质模型;
     (2)基于不同渗透特性滑体内的地下水对库水位变动的响应规律和地下水实时监测反演了滑体渗透系数;
     (3)建立了基于三峡水库设计水位变动的不同类型滑坡稳定性系数-水位标准变化曲线。
     综上所述,论文揭示了水库型堆积层滑坡的复活变形机理,从引起滑坡变形的内外因出发,对水位变动条件下滑坡变形进行预测预报,为防灾减灾提供科学决策依据。
1 to 3 years, after the high water level and normal water of the Three Gorges Reservoir, are active period of the reservoir bank rebuilding and the landslide deformation activity in reservoir area, and a large number of accumulative Landslides will revive. As known, the landslide has the features of large scale, large quantities and wide distribution and so on, so once the landslide slips into the Yangtze river, it will result in the heavy casualties and economic losses. Additionally, the serious consequence is caused by that landslide induced secondary disasters surge, so it has important theoretical and engineering significance to study the revival mechanism and deformation prediction of the accumulative landslide.
     In view of the above situation, the accumulative landslide deformation features on the responses of the reservoir water level variation was studied based on monitoring achievements. As the internal cause inducing the accumulative landslide deformation, engineering geological model was further researched, and as the external cause of revival deformation of the accumulative landslide, effect mechanism of groundwater was further discussed, and then deformation prediction model of accumulative landslide was established, it has reference for disaster prevention and mitigation.
     In this paper, the research contents and results are shown as follows.
     (1) Accumulative landslide deformation features on the responses of the reservoir water level variation. According to the changed process level of reservoir water in the Three Gorges Reservoir, reservoir water level on landslide location was determined, and characteristic curves (e.g. deformation, pour water pressure) of two accumulative landslide (e.g.YuHuangge landslide, Hefeng landslide) with water level fluctuations was get to study typical landslide feature rules on the responses of the reservoir water level variation. Significant deformation of YuHuangge landslide occurred at water level rising phase.However, significant deformation of Hefeng landslide occurred at water level drawdown phase.
     (2) Engineering geological model of accumulative landslide. Statistics of 89 accumulative landslides in Zigui-Wanzhou section in Three Gorges Reservoir shows the distribution rules of volume, terrain and physiognomy, formation litho logy, slope types. Four major controlling factors involving fabric characteristics of sliding mass, dynamic causes, deformation characteristics and developmental stages, and the based landslide engineering geological model was established. As the most accumulative landslide is in the influential area of water level changes, detailed dynamic causes consider the action mode of the reservoir water on different types of landslide, so dynamic causes were further divided into three categories such as float effect weight reduction, penetration, float weight and penetration (mixed), which refine the basic geological model of accumulative landslide. Use the above basic methods and theory building geological model and get the basic geological model of Yuhuangge landslide that it is the artificial reservoir float effect weight reduction soil sliding mass and rock bed landslide which belong to the freshmen gestation period and is progressive traction, in addition, the basic geological model of Hefeng landslide is the artificial reservoir osmotic pressure soil and rock bed (and soil bed) landslide that it is the revived gestation period and is dynamic traction.
     (3) Mechanical effect of groundwater water in the accumulative landslide revival process. Due to the different permeability of rock and soil mass of the landslide itself, reservoir fluctuations has different effect on landslide body. Based on the normal changed water level of a hydrological year of Three Gorges reservoir, the groundwater seepage line of different permeable landslide body with the rising and falling process of water level was analyzed, the groundwater effects were divided according to the distribution of invasive lines at different stages of water level and different types of landslide. Different mechanical effect of groundwater have different effect on the landslide stability from qualitative view, so reservoir-landslide was future divided into float effect weight reduction, penetration, float effect weight reduction and penetration (mixed).When the water level rises, if permeability coefficient k>10-4m/s, a≤5°, effects of groundwater acts as float weight, so it favorable to landslide stability, if permeability coefficient 10-5m/s     (4) Stability factor of the typical accumulative landslide with mechanical effect of groundwater water. Internal transient balance of landslide would be disturbed when it was inspired by external ground water, and at the same time the stability changed. For differences of landslide mass itself, different groundwater water effects have different influence on stability, and this is the main reason why deformation differences of landslide mass caused under the different water level. According to different research objects, two effect models of water to soil-rock mass were divided and they were confirmed to be equivalent. According to the relationship between saturated parts of landslide mass and saturation line, the slide block will be viewed as three different conditions when stability factor was calculated, and then the stability equation of penetration landslide is improved as well. Penetration pressure or float pressure will changed with rise and down of reservoir water level, and it effect the resistance and the sliding force of landslide mass with different permeability, and then variation regularity of stability coefficient with time, water level, ratio of saturated area is obtained.When the water level rises, and for strong permeable landslide (k≥10-4m/s), factor of stability with water level is accelerating decrease trend in the beginning, and it not keeps a certain value until water level reaches 175m.for medium permeable landslide (k=10-5m/s), factor of stability is accelerating decrease trend with water level in the beginning, and then it is decelerating decrease trend after water level reaches 175m.for medium to micro permeable landslide (k=10-6~k=10-8m/s), factor of stability is accelerating increase trend with water level in the beginning, and then it is decelerating decrease trend after water level reaches 175m.From relation between decreasing rate of the stability and reservoir water, decreasing rate has a the same trend when k≥10-5m/s it is negative, but when k≤10-6m/s it is positive.When the water level drawdown, and for strong permeable landslide (k≥10-4m/s), factor of stability is increase trend with water level in the beginning, and it not keeps a certain value until water level reaches 145m. for medium permeable landslide (k=10-5m/s), factor of stability is decrease trend with water level in the beginning, and then it is accelerating and then decelerating decrease trend after water level reaches 145m.for medium to micro permeable landslide (k=10-6~k=10-8m/s), factor of stability is accelerating decrease trend with water level in the beginning, and then it is slow increase trend after water level reaches 145m.From relation between decreasing rate of the stability and reservoir water, decreasing rate has a same trend when k≥10-5m/s it is positive, but when k≤10-6m/s it is negative.Based on above result, last the standard change chart of stability with water level was get under decreased and increased condition.
     (5) Revival deformation mechanism of the typical accumulative landslide. Stability coefficient of the typical accumulative Hefeng landslide with the water level was obtained according to the variation of the saturation line in landslide body got by the actual water level fluctuation curve, and then Numerical-Mechanical simulation model was established, the development law of the Landslide stress field, displacement field, shear strain increment, the plastic zone under water level changes were obtained, so revival deformation mechanism of the typical accumulative landslide was revealed by that how the external cause effect internal cause, and it lays the foundations of deformation prediction of landslide.
     (6) Deformation prediction model of the accumulative landslide. Taking Hefeng landslide for example, and according to the changed water level in landslide zone in the Three Gorges Reservoir, water level and the rock mass parameters of the geological-mechanical model were adjust, and last the comprehensive prediction model of landslide was established, and then comparing the actual monitoring displacement in strong deformation zone and the displacement tracking model points in numerical model, the correspondence between the actual time and the step in FLAC3D model was obtained, and deformation trends of landslide was forecast for next hydrological year by the extension of the time step.
     In this paper, the Innovation of this paper as follows.
     (1) Taking Yuhuangge landslide and Hefeng accumulative landslide for example, landslide deformation features of different permeability on the responses of the reservoir water level variation were obtained, the basic geological model of reservoir accumulative landslide was built.
     (2) Based on groundwater inner the landslide body of different penetration on the esponses of the reservoir water level variation and real-time monitoring groundwater, the permeability coefficient of landslide was obtained in the inversion.
     (3) The standard curve of landslide stability with water level under decreased and increased condition.
     Summary, this paper reveals the revival mechanism of typical accumulative landslide in the Three Gorges Reservoir, and established the comprehensive prediction model of landslide based geological-mathematics-mechanical model, and then forecast the deformation trends of landslide, and it has great scientific reference for disaster prevention and mitigation.
引文
[1]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994:184~231
    [2]王连接,马建宏,边智华等.水库滑坡与防治技术[M].长江出版社,2005
    [3]贺可强,阳吉宝等.堆积层滑坡预测预报及其防治[M].北京:地震出版杜,1996
    [4]肖诗荣,刘德富,胡志宇.三峡库区千将坪滑坡地质力学模型研究[J].岩土力学,2007:117~201
    [5]张桂林,徐旭忠.瞭望周刊:三峡水库面临地灾新考验,亟待建立长效机制.2009.4
    [6]李庆普.黄龙滩水电站的水库滑坡[J].水力发电,1989,(1):35~39
    [7]Riemer W. Landslides and reservoirs (keynote paper) [A]. In:Proceedings of the 6th International Symposium on Landslides[C]. Christchurch,1992:1373~2004
    [8]Lane K S. Stability of reservoir slopes [A]. In:Proc.8th Symp on Rock Mechanics [C]. 1967:321~336
    [9]Folk RL. Word WC. Brazos River Bar:a Study in the Significance of Grain-size Parameters. Sediment. Petrol [J].1971
    [10]李世杰.应用粒度分析辨别某些第四纪混杂堆积成因初探[J],冰川冻土,1988,10(4):441~448
    [11]李世杰.昆仑山垭口地区松散沉积物的石英砂表面特征及环境意义[J],冰川冻土,1989,11(1):89~91
    [12]刘传正.长江上游川峡二江续接地段岸坡演变过程探讨[J].中国地质灾害与防治学报,2000,11(1):50~54
    [13]刘传正.三峡库区的地质灾害[J].岩土工程界,2003,6(6):23~24.
    [14]刘传正.长江三峡复杂斜坡成因问题[J].水文地质工程地质,2005:1~6
    [15]孙云志,张秋霞,王永平.三峡库区万州和平广场滑坡区堆积体物质组成特征及其地质意义[J],湖北地矿,2002,16(4):165~169
    [16]孙云志,苏爱军,王军怀等.万州和平广场滑坡堆积体剪裂面特征分析[J].人民长江,2002,33(6):15~16
    [17]孙云志,张业明.万州和平广场滑坡堆积体形成时间与堆积过程[J].人民长江,2005,36(12):44~46
    [18]简文星,殷坤龙,汪洋.万州西溪铺松散堆积体成因分析及稳定性评价[J].地质科技情报,2005.24(增):165~169
    [19]简文星,殷坤龙,郑磊.万州安乐寺滑坡前缘松散堆积体成因与防治对策[J].地球科学—中国地质大学学报,2005,30(4):487~492
    [20]X.L.Liu, J.H.Deng. Two-and three-dimensional analysis of a fossil landslide with FLAC. Landslides and Engineered Slopes [C], Taylor&Francis Group, London,2008
    [21]朱爱珠,郭耀杰,袁文阳等.万州和平广场滑坡区滑坡及堆积体稳定性分析与验算[J].武汉大学学报(工学版),2003,36(6):75~79
    [22]陈伟.黑水河色尔古水电站红水沟古堆积体成因及成灾研究[D].成都理工大学硕士学位论文,成都:成都理工大学,2006
    [23]杜伯辉.拓溪水库塘岩光滑坡——我国首例水库蓄水初期诱发的大型滑坡[C].第二届全国岩土与工程学术大会论文集,2006:918~922
    [24]Lumb, P, B. Effects of rain storms on slope stability [J]. Proc. Of sym. On Hong Kong Soils.1962
    [25]Ng, C. W. Shi, Q.,A numerical investigation of the stability of unsaturated soil slopes subjected transient seepage, Computers and Geotechnics,1998,22 (1):1~28
    [26]Skempton.A.W. Long-term stability of clay slopes [J]. Geotechnique,1964,14 (2):77~ 101
    [27]Skempton A.W. First-time slides in over consolidated clays [J]. Geotechnique,1970,20 (3):320~324
    [28]Timothy.D.Stark, Hisham.T.Eid. Slope stability analysis in stiff fissured clays [J]. Journal of Geotechnical and Geo-environmental Engineering,1997,123 (4):335~343
    [29]Tika THE, Hutchinson JN. Ring shear tests on soil from the Vaiont landslide slip surface[J]. Geotechnique,1999,49 (1):59~74
    [30]Mesri.G, Abdel-Ghaffar. Cohesion intercept in effective stress-stability analysis [J]. Journal of geotechnical Engineering,1993,119 (8):1229~1249
    [31]Mesri.G, Shahien.M. Residual shear strength mobilized in first-time slope failures [J]. Journal of Geotechnical and Geo-environmental Engineering,2003,129 (1):12~31
    [32]ChandlerRJ. Back analysis techniques for slope stabilization works:a case record [J].Geotechnique,1977,27 (4):479~495
    [33]Gibo S, Egashira K, Ohtsubo M. Strength recovery form residual state in reactivated landslides [J]. Geotechnique,2002,52 (9):683~686
    [34]Skempton A W. Residual strength of clays in landslides, folded strata and the laboratory [J]. Geotechnique,1985,35 (1):3~18
    [35]Kanji M.A.The relationship between drained friction angles and Atterberg limits of natural soils [J]. Geotechnique,1974,24 (4):671~674
    [36]Lupini J F. The drained residual strength of cohesive soils, Geotechnique,1981:181~ 213
    [37]苟富民.李家峡滑带土力学特性研究[J],西北水电,1992,3:1~4
    [38]严绍军,项伟,唐辉明.大岩淌滑坡滑带土蠕变性质研究[J].岩土力学,2008,29(1):58~62
    [39]Schuster RL.Recent advances in slope stabilization [A]. Bell. Landslide [M]. Rotterdam:Balkema,1996:1715~1745
    [40]Schuster R L[美].Landslides Analysis and Control.铁道部科学研究院西北研究所译.北京:中国铁道出版社,1987
    [41]Griffith D V, Lane P A. Slope stability analysis by finite element [J]. Geotechnique,1999,49 (3):387~403
    [42]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,9:3203~3210
    [43]Bishop, A.W. and Wesley, L.D. A hydraulic triaxial apparatus for controlled stress path testing [M]. Geotechnique,1975
    [44]冯强,程圣国.石榴树包水库型滑坡三维有限元分析[J].华中科技大学学报(城市科学版),2006,23(2):59~62
    [45]刘艳辉,刘传正,李铁锋等.三峡库区巴东复杂斜坡系统变形机理数值模拟与稳定性研究[J].水文地质工程地质,2007,34(1):47~52
    [46]涂国祥,黄润秋.某电站溢洪道边坡运行期地下水渗流场特征数值模拟[J].地球与环境,2005,33(3):145~149
    [47]李晓,张学年.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩土力学与工程学报,2004,23(21):3714~3720
    [48]王锦国,周云,黄勇.三峡库区猴子石滑坡地下水动力场分析[J].岩石力学与工程学报,2006,(增1):2757~2762
    [49]李晓娜.库位下降条件下和平广场滑坡稳定性分析[J].地下水,2007,29(4):145~147
    [50]刘新喜,夏元友,张显书等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439~1444
    [51]章广成.水位变化对滑坡稳定性的影响研究[D].中国地质大学硕士学位论文,2005
    [52]刘红岩,秦四清.库水位上升条件下边坡渗流场模拟[J].工程地质学报,2007,15(6):796~801
    [53]Voight B, Materials science law applies to time forecasts of slope failure landslide News, 1989,12 (3):8~11
    [54]Asaoka. A observational procedure of settlement prediction, Soils and Foundation Tokyo,1978,18 (4):87~101
    [55]Scheideger A. E, On the prediction of the research and velocity of catastrophic landslide, Rock Mechanics,1973,5 (4):231~236
    [56]Fukuzono T, A New method for predicting the failure time of slope, proc of 4th International conference and Field workshop on landslides. Tokyo,1985:215~218
    [57]李晓红,靳晓光,亢会明等.GM(1,1)优化模型在滑坡预测预报中的应用[J].山地学报,2001,19(3):265~269
    [58]殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996.15(1):1~8
    [59]殷坤龙.滑坡灾害预测预报分类[J].中国地质灾害与防治学报,2003,14(14):12~18
    [60]张永兴,胡居义,文海家.滑坡预测预报研究现状评述[J].地下空间,2003,23(2):200~202
    [61]黄波林,许模.三峡水库水位上升对香溪河流域典型滑坡的影响分析[J].防灾减灾 工程学报,2006,26(3):290~296
    [62]张奇华,丁秀丽等.滑坡变形预测与失稳预报问题的几点讨论[J].中国地质灾害与防治学报,2005,16(2):116~120
    [63]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J].地球科学进展,2004,19(3):478~482
    [64]万全,范书龙,林炎.滑坡的多模型综合预测预报研究[J].水土保持研究,2005,12(5):181~185
    [65]李铁锋,丛威青.基于Logistic回归及前期有效降雨量的降雨诱发滑坡预测方法[J].中国地质灾害与防治学报,2006,17(1):33~35
    [66]苏欢,易武.基于Mapgis的滑坡时间预测预报系统设计[J].地下空间与工程学报,2006,2(8):1432~1435
    [67]马力.强降水诱发山体滑坡的区域预测与预报研究——以重庆(三峡库区)为例[D].南京信息工程大学博士学位论文,2008
    [68]刘汉东,王思敬.滑坡预测预报非线性动力方法[J].华北水利水电学院学报,2001,22(3):123~126.
    [69]严福章,王思敬,徐瑞春.清江隔河岩水库蓄水后茅坪滑坡的变形机理及其发展趋势研究[J].工程地质学报,2003,11(1):15~24
    [70]张荍毅.基于灰色模型的滑坡变形预测[J].天津城市建设学院学报,2008,14(2):114~117
    [71]张进,房定旺,陈柏林.非线性科学在滑坡预测预报中的应用[J].金属矿山,2006,(5):46~48
    [72]徐开祥.鄂西山区边坡变形的短临前兆[J].水文地质工程地质,1986,4:11~13
    [73]李天斌,陈明东,王兰生等.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999.
    [74]凌荣华,陈月娥.塑性应变与塑性应变率意义下的滑坡判据研究[J].工程地质学报,1997,5(4):346~350
    [75]夏元友,朱瑞赓.新滩滑坡滑动机理及稳定性评价研究[J].中国地质灾害与防治学报,1996,7(3):49~54
    [76]许东俊,史永胜.岩质边坡滑坡预报研究[J].岩石力学与工程报,1999,18(4):369~372
    [77]王年生.一种滑坡位移动力学预报方法探讨[J].西部探矿工程,2006,18(6):269-271
    [78]阳吉宝.堆积层滑坡临滑预报的新判据[J].工程地质学报,1995,3(2):70~73
    [79]阳吉宝,钟正雄.滑坡时间预报的双参数判据[J].中国地质灾害与防治学报,1996,7(增):61~66
    [80]贺可强,李显忠.大型堆积层滑坡剪出口形成的地质条件与综合力学位移判据[J].工程勘察,1996,(5):13~16
    [81]李秀珍,许强,黄润秋等.滑坡预报判据研究[J].中国地质灾害与防治学报,2003,14(4):5~11
    [82]吴树仁,金逸民,石菊松等.滑坡预警判据初步研究——以三峡库区为例[J].吉林 大学学报(地球科学版),2004,34(4):596~600
    [83]张振华.三峡库区水库型复活性滑坡监测模型建模研究[D].三峡大学硕士学位论文,2004
    [84]三峡库区地质灾害防治工作指挥部.三峡库区三期地质灾害防治工程地质勘察技术要求,2002:111~112
    [85]吴文雪,唐红梅.三峡库区玉皇阁崩滑体综合治理技术研究[J].水运工程,2009,4:47~52
    [86]乔建平,吴彩燕,田宏岭.三峡库区云阳-巫山段坡形因素对滑坡发育的贡献率研究[J].工程地质学报,2006,14(1):18~22
    [87]缪海波,三峡库区堆积层滑坡渐进破坏机理及其预测预报研究—以八字门滑坡为例[D].中国地质大学硕士学位论文,2009
    [88]晏鄂川,唐辉明.工程岩体稳定性评价与利用[M].武汉:中国地质大学出版社,2002
    [89]刘广润,晏鄂川,练操.论滑坡分类[J].工程地质学报,2002,10(4):339~342
    [90]王洪德.典型滑坡地质灾害监测模型及其监测系统优化研究[D].中国地质大学博士学位论文,2008
    [91]晏鄂川,刘广润.论滑坡地质模型[J].水文地质工程地质,2004, (增):87~90
    [92]许兵.论工程地质模型——涵义、意义、建模与应用[J].工程地质学报,1997,5(3):199~204
    [93]殷跃平,三峡库区地下水渗透压力对滑坡稳定性影响研究[J].中国地质灾害与防治学报,2003,14(3):1-8
    [94]晏鄂川,刘广润.试论滑坡基本地质模型[J].工程地质学报,2004,12(1):21~24
    [95]陈仲颐,周景星等.土力学[M].北京:清华大学出版社.1994
    [96]唐辉明,晏鄂川等.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700