用户名: 密码: 验证码:
地震滑坡频谱分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个地震多发的多山国家,由地震引起的山体滑坡频繁发生,并且极具破坏力,对山区人民的生命和财产安全造成了巨大的威胁。本文主要研究地震滑坡的共振效应,基于模态分析原理,提出了一种新的地震滑坡安全性评价方法—地震滑坡频谱分析方法(Analysis of Seismic Landslide Spectrum,简称ASLS)。主要研究内容如下:
     (1)基于经典三维Delaunay算法,研究了一种三维约束Delaunay三角化网格划分算法。该算法中,对实体边界的描述采用点、线和面组成的联合体;通过边界的恢复保证了边界的一致性和完整性,实现约束Delaunay四面体网格的自动生成;由于所有的四面体网格生成算法都可能出现质量不佳的单元,针对这类问题,本文提出了一种网格质量参数及其计算方法,即通过四面体外接球半径与其最短边长度的比值和四面体体积与其外接球体积的比值来控制单元质量,对质量不佳的单元加入结点进行优化,另外,对几何形状复杂的实体,特别是含有薄层的地质体,通过在实体上增加约束提高单元的质量并缩短计算时间。根据上述算法,编制了三维有限元网格自动剖分程序。
     (2)地震对滑坡形成的影响,主要是通过坡体波动振荡来产生。波动振荡在滑坡体变形、破坏过程中主要产生两种效应:累进破坏效应和触发效应,这两种破坏效应在地震荷载主频与边坡岩土体固有频率接近时会被放大很多倍,因此,地震波在岩土体中传播,特别是接近地表时,岩土体的频谱特征是影响地震对岩土体破坏作用的直接因素。地震发生时,滑体往往有选择性地放大特定频域的地震波,从而引起剧烈振荡导致灾害的发生,这是一种典型的共振现象。
     (3)将模态分析法引入地震滑坡的安全性评价中,根据动力有限元基本方程,建立了三维地震滑坡频谱分析的理论框架,提出了滑坡体固有频率和振型的计算方法,结合有限元前处理程序模块,编制了地震滑坡频谱分析方法VC++程序ASLS。提出了地震滑坡动安全系数的概念和计算方法,参考《中国地震动参数区划图》中的地震动反应谱特征周期,得到其特征频率,求出该频率与计算得到的滑坡体固有频率的比值,该比值即定义为动安全系数,仿照《建筑边坡工程技术规范》和《公路工程抗震设计规范》安全系数的确定方法,根据动安全系数与1的接近程度来评价滑坡体在我国工程抗震设防标准内的地震作用下的动安全性。对安全性不足的滑坡体,采取相应的加固措施,改变其固有频率,预防地震滑坡的发生。
     (4)设计并开展了地震滑坡振动台模型试验。采用素混凝土作为制作滑坡模型的材料,在地震模拟振动台上进行振动试验。对每一个滑坡体进行多次振动试验,每次输入频率不同振幅相同的地震波,根据输入波的频率和记录的滑坡体的位移,找出滑坡体位移最大时的频率范围,即可认为滑坡体的固有频率在该频率范围内,并将试验结果与ASLS计算结果进行对比分析。
     (5)采用自行编写的程序,对两端固定的等截面悬臂梁固有频率和振型计算、均质边坡的安全性评价和三峡库区内某滑坡体的安全性评价作了相关的计算。
In our country, earthquakes frequently occur, meanwhile, a large number of mountains exist, so mountain landslides induced by earthquake often occur. The destructive power of landslide is great, and generally poses a great threat to the safety of life and property of people in mountain area. In this paper, we mainly study the resonance effect of the seismic landslide. Then based on the modal analysis theory, a new method to evaluate the safety of seismic landslide (Analysis of Seismic Landslide Spectrum, ASLS for short) is proposed. The main research contents are as follows:
     Base on the classical 3D Delaunay algorithm, an algorithm for 3D constrained Delaunay triangulation mesh generation is studied. The boundary of entity is described by the combo consisted of point, line and surface. And by restoring the constrained boundary and removing the local degeneracies, the consistency of solid boundary and the uniqueness of mesh can be guaranteed. In this way, the constrained Delaunay tetrahedral mesh can be effectively generated for any complex 3D solids with constraints. By using any tetrahedral mesh generation method, some low-quality elements may be generated, and according to this problem, the paper presents quality parameters and its calculation method, that is by controlling the magnitude of the ratio of circumradius length to the shortest edge length and the ratio of the tetrahedron volume to its circumscribing sphere volume to control the element quality. For the low-quality tetrahedral element, the mesh is optimized by adding new point. In addition, for the entity with complicated geometry, especially the geologic body containing thin layers, adding constraints can improve the mesh quality and shorten the calculation time. Finally, based on the above algorithm, the program for 3D finite element mesh automatic generation is developed.
     The effect of earthquake on the formation of landslide is mainly by the wave oscillation of landslide body. The wave oscillation produces two effects in the process of the deformation and failure of the landslide. They are the progressive failure effect and trigger effect. The two failure effects are magnified many times when the main frequency of earthquake load is close to the intrinsic frequency of rock-soil mass. So, when the seismic wave propagates in the rock-soil mass, especially close the surface, the spectrum characteristic of rock-soil mass is the direct factor of affecting the earthquake destructive effect on the rock-soil mass. During earthquake, the landslide often selectively magnifies the seismic wave in some frequency domain, and the intensive oscillation has arisen and induces the occurrence of disaster. It is a typical resonance phenomenon.
     The modal analysis theory is introduced into the evaluation of seismic landslide. Based on the basic dynamic finite element equations, the 3D theory framework of seismic landslide spectrum analysis is established, and the calculation method of the landslide intrinsic frequency and vibration mode is proposed. Combining with the pre-processing program module of finite element method, the program ASLS is developed. The concept and its calculation method of the dynamic safety factor for seismic landslide are proposed. With reference to the seismic response spectrum characteristic period of seismic parameter zoning map of China, the characteristic frequency of the area can be obtained. The ratio value of the characteristic frequency to the calculated intrinsic frequency of landslide is obtained, ant it is defined as dynamic safety factor. With reference to the method to define the safety factor under seismic load in Specifications of Earthquake Resistant Design for Highway Engineering and Technical Code for Building Slope Engineering, the dynamic safety of landslide under the earthquake in the engineering seismic fortification criterion of China is evaluated by the approaching degree between the dynamic safety factor and '1'. For the unsafe landslide, its failure can be prevented by taking some reinforcement measures to change its intrinsic frequency.
     The shaking table model test of seismic landslide is designed and carried out. The plain concrete is used to make the landslide models. For each landslide, several vibration tests under different frequency seismic waves are performed. According to the dynamic responses of the landslide model, the frequency range corresponding to the largest displacement of landslide can be found, and it is considered that the intrinsic frequency of landslide is within the frequency range. Finally, the test results and the calculated results of ASLS are comparatively analyzed.
     By using the self-developed program, the intrinsic and vibration mode of a constant-section cantilever beam fixed by two ends are calculated, the safety of a homogeneous slope is evaluated, and the safety evaluation of a certain landslide in the reservoir area of Three Gorges Project is performed.
引文
[1]李忠生.国内外地震滑坡灾害综述[J].灾害学,2003,18(4):64-70.
    [2]陈晓利.人工智能在地震滑坡危险性评价中的应用[博士学位论文][D].北京:中国地震局地质研究所,2007.
    [3]李树德.活动断层分段研究[J].北京大学学报(自然科学版),1999,35(6).
    [4]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):25-30.
    [5]施斌,王宝军,张巍等.汶川地震次生地质灾害分析与灾后调查[J].高校地质学报,2008,14(3):387-394.
    [6]李树德,任秀生,岳升阳等.地震滑坡研究[J].水土保持研究,2001,8(2):24-25.
    [7]金江军.1996~2005年中国大陆震害情况与减灾建议[J].地质灾害与环境保护,2007,18(1):1-5.
    [8]冯学才等.我国地震滑坡的一般特征.滑坡文集[M],北京:中国铁道出版社,1988.
    [9]谢毓寿等.中国地震历史资料汇编[M],北京:科学出版社,1986.
    [10]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.
    [11]祁生文,边坡动力响应分析及应用研究,中国科学院研究生院.2002,中国科学院:北京.
    [12]胡广韬.滑坡动力学[M].北京:地质出版社,1995.
    [13]刘佳,鲁海,崔颖辉.边坡稳定性的动力影响因素分析[J].北方工业大学学报,2009,21(1):90-94.
    [14]黄显贵,陈植华,郭英丽.基于地震力的滑坡稳定性分析[J].安全与环境工程,2005,12(1):82-84.
    [15]Lyell, C. THE THEORY OF THE GEOLOGY[M],1983.
    [16]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993.
    [17]王思敬等.大型高速滑坡的全过程能量分析及其灾害预报[M].四川科学技术出版社,1989.
    [18]W J Eden. Mechanism of Landslide in Lead Clay Special Reference to the Ottawa Area[C]. International Geological Congress,1976.
    [19]P L Rochelle. Causes and Mechanism of Landslides in Sensitive Clays with Special Reference to the quebec Area. International Geological Congress,1976.
    [20]胡海涛等.湖北宜昌盐池河磷矿山体崩滑机理及其运动方式的研究,第二届全国工程地质大会论文集[C].1984
    [21]李天池.地震与滑坡的关系及地震滑坡预测的探讨[C].滑坡文集(第二集),北京:人民铁道出版社,1979:127-132.
    [22]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质报,2001,09(01):75-80.
    [23]Kramer S L. Geotechnical Earthquake Engineering[M]. New Jersey:Prentice-Hall Inc, U S A, 1996.
    [24]祁生文,伍法权,刘春玲等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797.
    [25]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述.重庆交通学院学报,2001,20(3): 83-89.
    [26]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [27]Keefer D V. Landslides caused by earthquakes[J], Geological Society of America Bulletin, 1984,95 (4).
    [28]李天池,王淑敏.区域滑坡研究的内容、方法与步骤[J].中国水土保持,1988,6.
    [29]Prestininzi A, Romeo R. Earthquake induced ground failures in Italy[J]. Engineering Geology, Special Issue,2000,58:3-4.
    [30]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征.自然灾害学报,1997,6(1).
    [31]辛鸿博,王余庆.岩土边坡地震崩滑及其初判准则.岩土工程学报,1999,21(5).
    [32]周本刚,王裕明.中国西南地区地震滑坡的基本特征.西北地震学报,1994,16(1).
    [33]Parise M, Jibson R W. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge, California earthquake. Engineering Geology,2000,58:251-270.
    [34]HALATCHEV ROSSEN A. Probabilistic Stability Analysis of Embankments and Slopes[C]. Proceedings of the 11th International Conference on Ground Control in Mining Jul 7-10 1992, 432-437.
    [35]AIHOMOUD A S, TAHTAMONI W W. Reliability Analysis of Three-dimensional Dynamic Slope Stability and Earthquake2induced Permanent Displacement[J]. Soil Dynamics and Earthquake Engineering,2000,19 (2):91-114.
    [36]AUSILIO E, CONTE E, DENTE G. Seismic Stability Analysis of Reinforced Slopes[J]. Soil Dynamics and Earthquake Engineering,2000,19(3):159-172.
    [37]LING HOE I, CHENG, ALEXANDER H2D. Rock Sliding Induced by Seismic Force[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34 (6):1021-1029.
    [38]LESHCHINSKY DOV SAN, KA2CHINA. Pseudostatic Seismic Stability of Slopes:Design charts[J]. Journal of Geotechnical Engineering ASCE.1994,120 (9):1514-1532.
    [39]NEWMARK N. Effects of Earthquakes on Dams and Embankment[J]. Geotechnique.1965, 15 (2):139-160.
    [40]SARMA SK. Seimic Stability of Earth Dams and Embankments [J]. Geotchnique,1975, 25:743-761.
    [41]YEGIAN MK, MARCIAND E. and GHAHRAMAN V G. Earthquake Induced Permanent Deformations:Probabilistic Approach[J]. Journal of Geotechnical Engineering, ASCE,117 (1):35-50.
    [42]MAKDISI FI, and SEED H B. Simplified Procedure for Estimating Dam and Embankment Earthquake Induced Deformations[J]. Journal of the Geotechnical Engineering Division, ASCE.1978,104 (7):849-867.
    [43]AMBRASEYS NN and MENU JM. Earthquake Induced Ground Displacements[J]. Earthquake Engineering and Structural Dynamics,1988,16:985-1006.
    [44]Romeo R. Seismically induced landslide displacements:a predictive model [J]. Engineering Geology.2000,58:337-351.
    [45]中国科学院武汉岩土力学研究所.清江隔河岩水库杨家槽滑坡稳定性分析.研究报告.武汉:1997.
    [46]刘红帅.岩质边坡地震稳定性分析方法研究[博士学位论文][D].哈尔滨:中国地震局工 程力学研究所,2006.
    [47]薛守义.岩体边坡动力性研究[博士学位论文][D].合肥:中国科学技术大学,1989.
    [48]徐卫亚.地质灾害学及链子崖危岩体防治研究[博士学位论文][D].合肥:中国科学院地质研究所,1991.
    [49]李智毅,王智济,杨裕云.工程地质学[M].武汉:中国地质大学出版社,1990.
    [50]刘红帅,薄景山,耿冬青等.岩质滑坡稳定性有限元分析[J],岩土力学,2004,25(11):1786-1790.
    [51]Seed H B, Martin G R. The seismic coefficient in earth dam design[J]. J. Soil Mech. Found. Div.,ASCE,92 (SM3):25-58.
    [52]SEED H B. Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes[J]. Journal of he Geotechnical Engineering Division, ASCE,1979,105(2):201-255.
    [53]Seed H B, Lee K L, Idriss I M, et al. Analysis of the slides in the San Fernando dams during the earthquake of Feb.9,1971[R]. Berkeley:EERC, University of California,1973.
    [54]Lee K L. Seismic permanent deformations in earth dams[R]. Los Angeles:School of Engineering and Applied Science, University of California,1974.
    [55]李海波,蒋会军,赵坚等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [56]何蕴龙,陆述远,段亚辉.岩石边坡地震作用计算方法研究[J].长江科学院学报.1988,15(4):35-38.
    [57]陈昌凯,阮永芬,熊恩来.地震作用下边坡稳定的动力分析方法[J].地下空间与工程学报,2005,1(7):1054-1057.
    [58]毛彦龙,胡广韬等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报.2001,9(1):74-80.
    [59]黄润秋,许强等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [60]罗晓红,李进元.水库蓄水对库岸滑坡影响分析[J].水电站设计.2003,19(3).
    [61]刘春玲,祁生文,童立强等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [62]刘军,李仲奎.非连续变形分析(DDA)方法研究现状及发展趋势[J].岩石力学与工程学报,23(5):839-845.
    [63]刘君,陈健云,孔宪京等.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析[J].大连理工大学学报,2003,43(6):793-798.
    [64]张瑞青,魏富胜,乔成斌等.用(DDA+FEM)方法数值模拟1975年海城、1999年岫岩地震发生的过程[J].地震学报.2005,27(3):163-170.
    [65]刘宏基,边坡地震动力响应离心模型试验的有限元模拟[硕士论文][D].济南:山东大学,2009.
    [66]林皋.结构动力模型相似问题及结构动力试验技术研究[博士学位论文][D].大连:大连理工大学,2004
    [67]黄志全,王思敬.离心模型试验技术在我国的应用概况[J].岩石力学与工程学报,1998,17(2).
    [68]于玉贞,李荣建,李广信等.饱和砂土地基上边坡地震动力离心模型试验研究[J].清华大学学报(自然科学版),2008,1(48):42-45.
    [69]徐建安.拟动力抗震试验方法研究综述[J].陕西建筑,2008,16:27-29.
    [70]田永波.电液伺服地震模拟振动台的数字控制[硕士论文][D].武汉:武汉理工大学 2004.
    [71]许向宁.高地震烈度区山体变形破裂机制地质分析与地质力学模拟研究[博士学位论文][D].成都:成都理工大学,2006.
    [72]杜晓丽.地震荷载作用下岩质边坡稳定性研究[硕士学位论文][D].西安:西安科技大学,2008.
    [73]胡建新,唐光武,魏春莉.自由场地震模拟振动台试验[J].中国高新技术企业,2010,3:8-9.
    [74]张敏政.地震模拟试验中相似律应用的若干问题[J].地震工程与工程震动,1997,6:52-58.
    [75]Mir R A, Taylor C A. An ExPerimental Investigation into Earthquake Indueed Failure of Medium to Low Height Concrete Gravity Dam[J]. Earthquake Engineering and Struetural Dynamic,1995,24:378-393.
    [76]沈德建,吕西林.地震模拟振动台及模型试验研究进展[J].结构工程师,2006,6.
    [77]王建华,徐强勋,张锐.任意形状三维物体的Delaunay网格生成算法[J].岩石力学与工程学报,2003,22(5):717-722.
    [78]杨钦,徐永安,陈其明等.任意平面域上离散点集的三角化方法[J].软件学报,1998,9(4):241 2245.
    [79]崔凌国,魏生民,姚忆斌.三维约束Delaunay三角化的边界恢复方法[J].机械设计与制造,2006,28:61-63.
    [80]朱冬林,向彤,葛修润.基于约束Delaunay三角划分法在节理图上实现网格自动剖分[J].岩石力学与工程学报,2004,23(11):1841-1846.
    [81]Lee D T, Lin A K. Generalized Delaunay Triangulations for Planar Graphs. Discrete Comput Geom,1986,1:201-217.
    [82]Weatherill N P, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints[J]. International Journal for Numerical Methods in Engineering,1994,37:2005-2039.
    [83]张玉峰,朱以文.有限元网格自动生成的典型方法与研究前瞻[J].武汉大学学报(工学版),2005,38(2):54-59.
    [84]胡恩球,张新访,向文等.有限元网格生成方法发展综述[J].计算机辅助设计与图形学学报,1994,9(4):378-383.
    [85]Lo S H. Volume discretization into tetrahedral-Ⅱ.3D Triangulation by advancing front approach [J]. Computers and Structures,1991,39 (5):501-511.
    [86]关振群,宋超,顾元宪等.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,5(11):1-14
    [87]Bonet J, Peraire J. An alternating digital tree (ADT) algorithm for geometric searching and intersection problems [J]. International Journal for Numerical Methods in Engineering,1991,31(1):1-17.
    [88]Lohner R, Juan R C. Parallel Advancing front grid generation [A]. In:Proceedings of the 8th International Meshing Roundtable, SouthLake Tahoe, CA,1999,67-74
    [89]Lohner R, Parikh P, Gumbert C. Interactive generation of unstructured grid for three dimensional problems [A]. In:Proceedings of Numerical Grid Generation in Computational Fluid Mechanics'88, Pineridge Press,1988,687-697
    [90]Lohner R, Parikh P, Gumbert C. Interactive generation of unstructured grid for three dimensional problems [A]. In:Proceedings of Numerical Grid Generation in Computational Fluid Mechanics'88, Pineridge Press,1988,687-697.
    [91]Shephard M S, Grice K R, Lo J A, el at. Trends in automatic three dimensional mesh generation. Computer& Structures,1988,30:(1-2):421-429.
    [92]杨伟军,包忠诩,扶名福等.映射法在三维六面体有限元网格生成中的应用[J].南昌大学学报,1999,21(4):39-43.
    [93]Thompson J F, Thames F C, Martin C W. Automatic numerical generation of body-fitted curvilinear coordinates system for field containing any number of arbitrary two dimensional bodies [J]. Journal of Computational Physics,1974,15:299-319.
    [94]Ho-LeK. Finite element mesh generation methods:A review and classification [J]. Computer Aided Design,1988,20:27-38.
    [95]Thompson J F, Warsi Z U A, Mastin C W. Boundary-fitted coordinate systems for numerical solution of partial differential equations-A review. Journal of Computational Physics,1982, 47:1-108.
    [96]Spekreijse S P. Elliptic grid generation based on Laplace equations and algebraic transformations [J]. Journal of Computational Physics,1995,118 (1):38-61.
    [97]Thacker W C. A brief review of techniques for generating irregular computational grids [J]. Int. J. N umer. Methods Eng.,1980,15:1335-1341.
    [98]Shephard M S. Approaches to the automatic generation and control of finite element meshes. Appl. Mech. Rev.,1988,41:169-185.
    [99]George P L. Automatic mesh generation Applications to Finite Element Methods [A]. New York:Willey,1991
    [100]Yerry M A, Shephard M S. A modified quadtree approach to finite element mesh generation [J]. IEEE Computer Graphics& Applications,1983,3(1):39-46
    [101]Yerry M A, Shephard M S. Automatic three dimensional mesh generation by the modified octree technique [J]. International Journal for Numerical Methods in Engineering, 1984,20(11):1965-1990
    [102]Gordon W J, Hall C A. Construction of curvilinear coordinate systems and applications to mesh generation [J]. International Journal for Numerical Methods in Engineering,1973,7: 461-477
    [103]Eriksson L E. Generation of boundary conforming grids around wing-body configurations using transfinite interpolation [J]. AIAA Journal,1982,20(10):1313-1320
    [104]Schroeder W J, Shephard M S. A combined octree\Delaunay method for fully automatic 3D mesh generation[J]. International Journal for Numerical Methods in Engineering,1990, 29(1):37-55
    [105]McMorris H, KallinderisY. Octree advancing front method for generation of unstructured surface and volume meshes [J]. AIAA Journal,1997,35(6):976-984
    [106]Schneiders R, Schindler R, Weiler F. Octree based generation of hexahedral element meshes[A]. In:Proceedings of the 5th International Meshing Roundtable, Pittsburgh,1996, 205-216
    [107]杨钦,徐永安,陈其明等.三维约束Delaunay三角化的研究[J].计算机辅助设计与图形学报,2000,(8):590-594.
    [108]Lawson C L. Generation a Triangular Grid with Applications of Contour Plotting. Technical Memo.299, Jet Propulation Laboratory, Pasadena, California,1972-02.
    [109]Bowyer A. Computing Dirichlet tessellations[J]. The Computer Journal,1981,24(2): 162-166.
    [110]Waston D F. Computing the n-Dimensional Delaunay Tessallation with Application to Voronoi Polytopes[J]. The Computer Journal,1981,24(2):167-172.
    [111]骆冠勇,曹洪,房营光.用逐点插入法生成Delaunay四面体自适应网格[J].计算力学学报,2007,24(6):917-922.
    [112]周晓云,刘慎权.实现约束Delaunay三角剖分的健壮算法[J].计算机学,1996,19(8):615-624.
    [113]GUAN Zhenqun, SONG Cao, GU Yuanxian. The boundary recovery and sliver elimination algorithms of three-dimensional constrained Delaunay triangulation[J]. International Journal for Numerical Methods in Engineering,2006,28:192-209.
    [114]Shewchuk J R A. Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations[J]. the 14th Annu Sympos Comput Geom,1998, 76-85.
    [115]Shewchuk J R. Updating and constructing constrained Delaunay and constrained regular triangulations by flips. The 19th Annu. Sympos Comput Geom,2003
    [116]H. Si. Adaptive tetrahedral mesh generation by constrained Delaunay refinement[J]. International Journal for Numerical Methods in Engineering,2008,75(7):856-888.
    [117]Chew L. P. Guaranteed-Quality Delaunay Meshing in 3D[J]. ACM Sympos. Comput. Geom.1997,391-393
    [118]陈建军.非结构化网格生成及其并行化的若干问题研究[博士学位论文][D].杭州:浙江大学,2006.
    [119]杨承磊.多边形的Voronoi图及其应用研究[博士学位论文][D].济南:山东大学,2004.
    [120]P. J. Green, R. R. Sibson. Computing Dirichlette ssellations in the plane[J]. Comput. J., 1978,21:168-173.
    [121]L. A. Piegl, A. M. Richard. Algorithm and data structure for triangulating multiply connected polygonal domains. Computer& Graphics,1993 17(5):563-574.
    [122]李吉刚,孟宪海,杨钦等.二维约束Voronoi网格构造及其尺寸、质量控制[J].计算机辅助设计与图形学学报,2005,17(9):1950-1956.
    [123]Shewuchuk J. R. Constrained Delaunay Tetrahedralizations and provably good boundary recovery. Eleventh International Meshing Roundtable,2002,193-204.
    [124]Edelsbrunner H, Mucke M P. A technique to cope with degenerate cases in geometric algorithm. ACM Transactions on Graphics,1990,9(1):66-104.
    [125]Si H, Gartner K. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations[J]. Proceedings of the 14th International Meshing Roundtable,2005, 147-163.
    [126]姜彤,边坡在地震力作用下的加卸载响应规律与非线性稳定分析[博士学位论文][D].北京:中国地震局地质研究所,2004.
    [127]吴圣林.崩塌—推覆滑移地质体成因机理及其稳定性研究[博士学位论文][D].徐州:中国矿业大学,2008.
    [128]国家地震局.中国地震烈度区划图[M].北京:地震出版社,1990.
    [129]国家质量技术监督局.GB18306-2001《中国地震动参数区划图》[S].北京:中国标准出版社,2002.
    [130]郑文衡,陆明勇.地震动态触发机制的初步研究[J].地球物理学报,2005,48(1): 116-123.
    [131]王来贵,章梦涛,王泳嘉等.基岩振动干扰下的动力滑坡机制研究[J].工程地质学报,1997,5(2):137-142.
    [132]N.N. Ambraseys, J. Douglas. Near-field horizontal and vertical earthquake ground motions[J]. Soil Dynamic Earthquake Engineering,2003,23:1-18.
    [133]Jun Yang, Tadanobu Sato. Interpretation of seismic vertical amplification observed at an array site[J]. Bulletin of The Seismological Society of America,2000,90(2):275-285.
    [134]毛彦龙,胡广韬,赵法锁等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1995,20(4):45-48.
    [135]徐永林,熊里军,章纯等.用强震仪记录资料研究上海地表土层的地震动放大反应[J].地震学报,2002,24(6):662-666.
    [136]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1995.
    [137]中华人民共和国建设部.GB/50330-2002建筑边坡工程技术规范[S].北京:中国计划出版社,2002.
    [138]中华人民共和国交通部.JTJ 004-89公路工程抗震设计规范[S].北京:人民交通出版社,2003.
    [139]Klaus-Jurgen Bathe. Finite Element procedures[M]. Printed in the Unite States of America,1982.
    [140]曲庆国.对求解大型稀疏特征值问题的子空间迭代法的研究[硕士论文][D].南京:南京航空航天大学,2005.
    [141]薛东川,王尚旭.利用有限元解波动方程求取初至时间[J].石油地球物理勘探,2007,42(3):259-264.
    [142]方同.振动理论及应用.西安:西北工业大学出版社,1998.
    [143]Taboada-Urtuzuastegui V M, Martinez-Ramirez G., Abdoun T. Centrifuge modeling of seismic behavior of a slope in liquefiable soil[J].Soil Dynamics and Earthquake Engineering, 2002,22(9-12):1043-1049.[138]
    [144]门玉明,彭建兵,李寻昌等.层状结构岩质边坡动力稳定性试验研究[J].世界地震工程,2004,20(4):131-136.[25]
    [145]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(4):372-376.[20]
    [146]王存玉.地震条件下二滩水库岸坡稳定性研究[M].岩体工程地质力学问题(七).北京:科学出版社,1987.[21]
    [147]徐桂弘.地震诱发滑坡的危险性分析与预测[J].内陆地震,2008,22(2):188-192
    [148]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版),1996,4:67-71.
    [149]Wartman J, Riemer M F, Bray J D, etal. Newmark analyses of a shaking table slope stability experiment[A]. Proc., Geotechnical Earthquake Engingineering and Soil Dynamics III, ASCE, Geotechnical Special Publication No.75[C].Seattle,1998:778-789.
    [150]黄志全,王思敬.离心模型试验技术在我国的应用概况[J].岩石力学与工程学报,1998,17(2):199-203.
    [151]黎剑华,张龙,颜荣贵等.爆破地震波作用下的边坡失稳机理与临界振速[J].矿冶,2010,10(1):11:15
    [152]刘佳,鲁海,崔颖辉等.边坡稳定性的动力影响因素分析[J].北方工业大学学报,2009,21(1):90-94.
    [153]张均锋,李正国.强地震荷载作用下含断层岩质边坡稳定性分析[J].力学与实践, 2010,32(1):24-29.
    [154]柴波,殷坤龙,汪洋等.基于影响因素分布模型的滑坡稳定性敏感分析[J].岩土力学,2007,28(12):2624:2628.
    [155]王赞军,江志萍,张家庆等.滑坡危险性分析中地震动的概率性估算及地震滑坡的危险性评判[J].高原地震,1998,10(1):40246.
    [156]黄腾威.地震作用下土坡长期稳定可靠度分析[J].福建建设科技,2003,(2):8-9.
    [157]徐建平,谢伟平,白冰.随机地震作用下土坡的永久变形研究[J].武汉理工大学学报,2002,24(9):55-58.
    [158]Ling H I, Cheng A D. Rock sliding induced by seismic force[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(6):1021-1029.
    [159]Ausilio E, Conte E, Dente G. Seismic stability analysis of reinforced slopes[J]. Soil Dynamics and Earthquake Engineering,2000,19(3):159-172.
    [160]姚爱军.苏永华.复杂岩质边坡锚固工程地震敏感性分析[J].土木工程学报,2003,36(11):34-37.
    [161]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J],岩石力学与工程学报,2004,23(8):1318-1324.
    [162]人民教育出版社地理社会室,地理(上册)[M].北京:人民教育出版社.
    [163]吴兆营,薄景山,刘红帅等.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报,2004,24(3):237-241.
    [164]薄景山.三峡重庆库区区域滑坡灾害的综合研究报告[R].哈尔滨:中国地震局工程力学研究所,2003年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700