用户名: 密码: 验证码:
粘土颗粒含量对蒋家沟泥石流启动影响及成灾机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒋家沟泥石流土属宽级配砾石,粒径大小悬殊,其中粘土颗粒含量虽不多,却因其巨大表面积和亲水性,明显地影响着泥石流的启动,级配对泥石流启动灾变的影响研究对于探索泥石流的启动机理意义重大。本文以蒋家沟泥石流土为研究对象,通过深入蒋家沟流域现场调查、收集资料和基本物理化学试验,以机动灵活、试验条件易于控制的室内模型试验为基础,对影响泥石流启动的相关因素进行了探讨,采用三轴试验仪研究了蒋家沟泥石流土的力学特征,解释试验现象,并通过突变理论建立了泥石流启动的模型。将试验结果与现场现象结合起来探索泥石流的破坏模式和启动成灾机理。主要研究内容如下:
     1.对蒋家沟地形、地质、地貌等进行调查和统计分析,揭示了其岩土体特殊的发育环境和形成泥石流得天独厚的条件。
     2.运用先进的实验设备对蒋家沟泥石流土的基本物理化学特性进行了研究,揭示其主要粘土矿物成分、化学成分、级配特征、ESP值、分散度、渗透特性、地下水矿化度、硬度等特殊性质,分析了这些特殊性质与泥石流形成的内在联系。
     3.对三种级配的蒋家沟泥石流土超径部分等量替换处理后进行三轴剪切试验。在CU、UU试验结果基础上,分析了土样的应力-应变、孔隙水压力以及应力路径特征;得出了不同密度、不同粘粒含量下的土样抗剪指标,并拟合出相应的关系式,试验结果用于理论分析和解释模型试验现象。
     4.通过自行设计的模型槽在室内进行了泥石流启动模型试验,研究了不同粘土颗粒含量、不同干密度、不同降雨强度、不同堆积坡度下的泥石流易发性问题,同时研究了粘土颗粒含量的临界性问题和迁移对泥石启动的影响。在模型试验研究中引“入渗比”概念,研究了入渗比与泥石流易发性的相关性。
     5.通过分析物化试验、三轴试验、模型试验现象,得出泥石流破坏形成的五个阶段,泥石流在粘粒多、大雨强和粘粒少、中小雨强下的破坏模式和启动灾变机理。
     6.结合试验结果与泥石流的突发性,采用突变理论建立了泥石流边坡突变破坏模型,并通过试验得出的粘粒含量、干密度、含水量与抗剪强度的关系式,将上述影响因子嵌入模型,提高了模型的适用性。这为泥石流的预测预报研究及区域危险性评价工作提供了理论支持。
According to the grain size of debris-flow soil in Jiangjia Ravine, it's gravel soil with wide grain size, though clay particles content among it was not much, the initiation of debris-flow is obviously impacted by it because of its huge surface area and the hydrophilic. Graduation of soil for debris-flow initiation is very important for exploring the catastrophe mechanism of debris-flows. Debris-flow soil in Jiangjia Ravine is regarded as subject investigated in the paper, the factors impacting the initiation of debris-flow are studied by investigation, collection of information, physical and chemical experiment, indoor model experiment. the mechanical behavior of gravelly soil is studied by triaxial test, some experiment phenomena is explained, initiation model of debris-flow is established by mutation theory. Experimental results and on-site phenomena are combined, failure pattern and catastrophe mechanism of debris-flows are explored. The main research content is as follows:
     1. Topography, geology, geomorphology in Jiangjia Ravine is investigated and statistically analyzed, its special development environment and exceptional conditions for the formation of debris-flows are disclosed.
     2. the physical and chemical properties of soil in Jiangjia Ravine are studied by sophisticated equipment, clay mineral composition, chemical composition, grain size, ESP(Exchangeable Sodium Percentage), dispersion degree, seepage characteristic, the salinity and hardness of groundwater are included. The internal links between initiation of debris-flow and the properties mentioned above.
     3. Three type of samples were treated by equivalent substitution of grain diameter before triaxial test. Based on the result of different density, different graduation under undrained condition, the character of stress-strain, pore-water pressure and stress path are analyzed, index of shear strength and relational expression in different density, different graduation are obtained, they can be used for theoretical analysis and model experiment explaining.
     4. Susceptibility of debris-flows in different graduation, different density, different rainfall intensity, different slope angle are studied by self-designed model groove. meanwhile, the criticality of clay particles content and the impaction of grain migration for debris-flow initiation are studied. The "influent ratio" is introduced in model test and the relationship between "influent ratio" and susceptibility of debris-flows is studied.
     5. the formation process of debris-flow are divided into five stage by model test, physical and chemical test, triaxial test. The failure pattern and catastrophe mechanism of debris-flows are studied in condition of much clay particles, strong rain and few clay particles, weak rain.
     6.Combining the experiment results and the sudden breakout of debris-flow, the failure model are founded by mutation theory, the relational expression between shear strength and clay particles content, dry density and water content that obtained by experiment is embedded into the model, the applicability of it is improved. It provides theoretical support for debris-flow prediction
引文
[1]陈奇.地质灾害防治与地质环境优化[J].中国地质灾害与防治学报,1994,22(2):25~29
    [2]李陡.张家沟泥石流演化机制及工程效应[D].成都理工大学硕士学位论文,2007:3~4
    [3]龚成勇.粘性泥石流运动机理及数值模拟研究[D].兰州理工大学,2009
    [4]康志成,李悼芬,罗景添等.中国泥石流研究[M].北京:科学出版社,2004.10
    [5]徐永年.崩塌土流动化机理及泥石流冲淤特性的实验研究[D].中国水利水电科学研究院博士学位论文.2001:9~10
    [6]弗莱施曼著,姚德基译.泥石流[M].北京:科学出版社,1996.
    [7]徐永年,朱鉴远等.福堂沟泥石流特性、规模及危险性评价.中国水科院、成勘院研究报告,1999.
    [8]徐永年,朱立阳等.福堂沟泥石流特性、规模的概化水槽试验研究.中国水科院、成勘院研究报告,1999
    [9]匡尚富.天然坝溃决机理及其泥石流、洪水流量预测,中国水利水电科学研究院报告,1995
    [10]周必凡等.泥石流防治指南[M].北京:科学出版社,1991
    [11]魏厚振.蒋家沟泥石流砾石土力学性状与启动过程分析研究[D].中国科学院武汉岩土力学研究所博士学位论文,2008
    [12]刘希林,莫多闻.论泥石流及其学科性质[J].自然灾害学报,2001:1~8
    [13]Iverson R M. et al. Dynamic pore—pressure fluctuations in rapidly shearing granular materials[J]. Science,246:796~799·
    [14]Richard M. Iverson, Mark E. Reid Richard G. LaHusen. Debris-flow mobilization from landslides[J].Annu. Rev. Earth Planet. Sci.1997.25:85~138
    [15]Major J.J. Iverson R.M. Debris-flow deposition:efects of pore-fluid pressure and friction concentrated at flow margins[J] Geological Society of America Bulletin.1999,111(10): 1424~1434.
    [16]Iverson R M. The physics of debris-flows[J]. Reviews of Geophysics,1997,35(3):245~296
    [17]Sassa,K.,The mechanism of debris flow. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco,12~16 August,1985 vol.3. Balkema,Rotterdam, pp.37-55
    [18]Sassa,K.,1998.Recent urban landslide disasters in Japan and their mechanisms. Proceedings 2rd International Symposium on Environmental Management, "Environmental Management" Australia,10~13, February,vol.1.Elsevier, Amsterdam,PP.47~58
    [19]Sassa,K.,1998.Mechanism of landslide triggered debris flows. "Environmental Forest Science", Proceedings IUFRO Divison 8 Conference, Kyoto,19-23 October. Kluwer Academic Publishing, Dordrecht, PP.499~518
    [20]Sassa,K., Kaibori, M., Kitera, N.1985. Liquefaction and undrained shear of torrent deposits as the cause of debris flows. Proceedings International Symposium on Erosion, Debris Flows and Disaster Prevention, pp.231~236
    [21]高橘保.土石流の発生と流动机构.土と基礎,1978,26(6):45-50;
    [22]Wang FW,Shibata H. Influence of soil permeability on rainfall-induced flowslides in laboratory flune tests. Canadian Geotechnical Journal,2007,44:1128-1136
    [23]Wang FW, Sassa K. Initialtion and traveling mechanisms of the May 2004 landslide-debris flow at Bettou-dani of the Jinnosuke-dani landslide, Haku-san Mountain, Japan. Soil and Foundations, 2007,47(1):143-154;
    [24]Wang FW, Okuno T, Matsumoto T. Deformation characteristics and influential factors for the giant Jinnosuke-dani landslide in the Haku-san Mountain area, Japan. Landslides:J. of the International Consortium on Landslides,2007,4(1):19~31
    [25]杜榕桓.我国泥石流研究的新进展(在第二届全国泥石流学术会议上的总结报告)[J].山地研究,1986(4)
    [26]杜榕桓,李鸿琏,唐邦兴等.三十年来中国泥石流研究[J],自然灾害学报,1995年2月:64~73
    [27]杜榕桓,康志成.东川泥石流站开放以来的回顾与展望[J].山地研究,1991,9(3):45~47
    [28]杜榕桓,李德基,祁龙.我国山区城镇泥石流成灾特点与防治对策研究[A].见:中国科学院地学部编.中国自然灾害灾情分析与减灾对策.武汉:湖北科技出版社.1982:330~336
    [29]杜榕桓,田连权.开展泥石流编目的一些看法[A].中国科学院成都地理研究所.泥石流(2)[C].重庆:科技文献出版社重庆分社,1983:41~43
    [30]杜榕桓,章书成,唐邦兴等.泥石流研究内容与发展方向的探讨[A].中国科学院兰州冰川冻土所集刊4号.北京:科学出版社.1985:287~294
    [31]杜榕桓,刘新民,袁建模等.长江三峡工程库区滑坡与泥石流研究(专著)[M].成都:四川科学技术出版社,1990
    [32]杜榕桓等.云南小江泥石流防治规划的探讨[A].第二届全国泥石流学术会议论文集.北京:科学出版社.1991,173~179
    [33]杜榕桓等.中国城镇泥石流成灾特点与防御对策[J].中国地质灾害与防治学报,1991
    [34]崔鹏,刘世建,谭万沛.中国泥石流监测预报研究现状与展望[J].自然灾害学报,2000,9(2):11~15
    [35]蔡祥兴,丁永建,王珍兰.宝成铁路宝略段泥石流的分布及特征初探[A].见:中国科学院兰州冰川冻土研究所,甘肃省交通科学研究所.泥石流学术讨论会兰州会议文集[C].成都:四川科学技术出版社,1986:51~57
    [36]施雅风,杨宗辉,谢自楚等.西藏古乡地区的冰川泥石流[J].科学通报,1964,64(6):542~544
    [37]施雅风,邓养鑫.庐山山麓第四纪泥石流堆积的确证--以庐山西北麓羊角岭为例[J].科学通报,1982,52(3):386-389:
    [38]邓养鑫.冰碛转化为泥石流堆积过程及其沉积特征[J].沉积学报,1995,13(4):37-46
    [39]邓养鑫.庐山羊角岭附近“泥砾”成因的泥石流解释[J].冰川冻土.1983,25(5):125-128
    [40]杜榕桓,康志成,陈循谦等.云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术文献出版社重庆分社,1987
    [41]唐邦兴,柳素清,刘世建.我国山地灾害及其防治[J].山地研究,1996,14(2):103-109
    [42]章书成.泥石流研究评述[J].力学进展,1989,19(3):365-375
    [43]章书成,陈英燕,袁晓凤等.粘性泥石流一维运动数学模型[J].自然灾害学报.1996,5(4):68-75
    [44]吴积善,康志成,田连权等.云南蒋家沟泥石流观测研究[M].北京:科学出版社,1990
    [45]陈景武.我国暴雨泥石流预报研究[c].第四届全国泥石流学术会议论文集,科学出版社,1994
    [46]崔鹏.泥石流启动机理研究[D].北京林业大学博士学位论文,1990.5
    [47]崔鹏.泥石流启动条件及机理的实验研究[J].科学通报1991,21:1650~1652.
    [48]崔鹏,关君蔚.泥石流启动的突变学特征[J].自然灾害学报,1983,2:53~61.
    [49]戴福初,李焯芬等.火山岩坡残积土地区暴雨滑坡泥石流的形成机理[J].工程地质学报,1999,7(2):147~153.
    [50]戴福初,陈守义等.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2002,22(1):127~130.
    [51]徐永年,匡尚富,黄永键等.火山岩坡残积土地区暴雨滑坡泥石流的形成机理[J].工程地质学报,1999,7(2):147~153
    [52]陈宁生,崔鹏,王晓颖等.地震作用下泥石流源区砾石土体强度的衰减试验[J].岩石力学与工程学报,2004,23(16):2743~2747
    [53]匡尚富.泥石流发生机制及规模预测[D].日本京都大学博士学位论文,1990
    [54]欧国强.关于泥石流发生规模之研究[D].日本京都大学博士学位论文,1992
    [55]胡明鉴.蒋家沟流域暴雨滑坡泥石流共生关系研究[D].中国科学院武汉岩土力学研究所硕士学位论文,2001
    [56]陈晓清.滑坡转化泥石流启动机理试验研究[D].西南交通大学博士学位论文.2006
    [57]张万顺,乔飞,崔鹏等.坡面泥石流起动模型研究[J].水土保持研究,2006,13(4):146~149
    [58]魏厚振,汪稔,胡明鉴等.蒋家沟砾石土不同粗粒含量直剪强度特征[J].岩土力学,2008,29(1):48~57
    [59]胡明鉴.泥石流崩滑堆积体自组织临界性及灾变机理[D].中国科学院武汉岩土力学研究所博士论文.2008
    [60]徐友宁,曹琰波,张江华等.基于人工模拟试验的小秦岭金矿区矿渣型泥石流启动研究[J].岩石力学与工程学报.2009,28(7):1388~1395
    [61]唐邦兴.中国泥石流[M].北京:商务印书馆,2000
    [62]Francisco L.perez. Matrix granulometry of catastrophic debris flows(December 1999) in central coastal Venezuela. Catena,2001.45:163~183.
    [63]Cannon S.H. Debris-flow reponse of southern Canifornia watersheds burned by fire. Wieczorek, G.F., Naeser, N.D., Debris-flow hazards mitigation:machanics,prediction, and assesment. Proceedings of the second international conference on debris-flow hazards mitigation. Taipei. 2002.45~52
    [64]Scott K.M. Precipitation-triggered debris flow at Casita Vocano, Nicaraua:Implications for mitigation strategies in volcanic and tectonically active.Wieczorek, G..F., Naeser, N.D., debris-flow hazards nitigation:nechanics, prediction, and assessment. Proceedings of the second international conference on debris-flow hazards nitigation.Taipei.2002.3~13
    [65]陈宁生,崔鹏,陈瑞等.中尼公路泥石流的分布规律与基本特征[J].地质灾害与防治学报,2002,13(1):44~48
    [66]陈宁生,高延超,李东风.四川丹巴“2003-07-11泥石流”灾害考察报告[J].山地学报,2003,21(5):632
    [67]Pierson T. C. Dominant particle support mechanisms in debris flows at Mt.Thmas, New Zealand, and implications for flow mobility[J]. Sedimentology.1981(28):49~60.
    [68]Anderson S A. Sitar N. Analysis of rainfall-induced debris flows[J]. Journal of Geotechnical Engineering-ASCE,1995,121(7):544~552.
    [69]Okura Y. et al. Fluidization in dry landslides[J]. Engineering Geology,2000,56(8):347~360.
    [70]Cui P. Studies on condition and mechanism of debris flow initiation by means of experiment[J]. Chinese Science Bulletin.1992,37(9):759~763.
    [71]崔鹏.泥石流启动的突变学特征.自然灾害学,1993.2(1):53~61.
    [72]徐道明.泥石流的成因和分类[A].中国科学院兰州冰川冻土研究所集刊第4号[C].北京:科学出版社,1985
    [72]陈光曦,王继康,王林海.泥石流防治[M].北京:中国铁道出版社,1983北京:科学出版社,1994
    [74]陈精日,刘立秋.NJ-2A泥石流地声报警器研制与应用[J].山地学报,2001,9(5):54~56
    [75]中国科学院成都山地灾害与环境研究所.泥石流研究与防治[M].成都:四川科技出版社,1989
    [76]胡发德,田连权.蒋家沟泥石流源地滑坡类型初探[A].见:泥石流观测与研究[C].1998
    [77]陈自生.陆上滑坡流态化类型的初步划分[A].首届全国泥石流滑坡防治学术会议论文集[C].1993
    [78]陈自生.高位滑坡的运动转化形式[J].山地研究,1992,10(4):23~25
    [79]李天池,章书成,康志成.滑坡型泥石流[A].中国科学院成都地理研究所.全国泥石流学术会议论文集[C].1980
    [80]王士革.山坡型泥石流的危害与防治[J].中国地质灾害与防治学报,1999,10(3):78~82
    [81]朱颖彦,崔鹏,陈晓晴泥石流堆积体边坡失稳机理的试验与稳定性分析[J].岩石力学与工程学报.Vlol.24,NO.21 3928~3924
    [82]林宗耀.丹东地区泥石流浅析[A].第四届全国泥石流学术讨论会论文集[C].兰州:甘肃文化出版社,1994
    [83]王裕宜,詹钱登,严壁玉等.泥石流体结构和流变特征[M],湖南科学技术出版社,2000
    [84]张丽萍,唐克丽,陈文亮.泥石流源地松散体启动人工降雨模拟及放水冲刷试验[J].自然灾害学报.2000.9
    [85]徐永平,梁志勇,苏晓波.水石流概化水槽试验相似律的探讨[J].自然灾害学报,2000.9(4):12~16
    [86]魏鸿.泥石流龙头对坝体冲击力的试验研究[J].中国铁路科学.1996,3(3):50~62
    [87]沈寿长,李良勤,魏鸿.稀性泥石流龙头形成机制的试验研究[J].中国铁路科学,1996,3(3):10~22
    [88]李维国,赵承光.日本应用实测洪水径流资料模拟泥石流运动过程[J].水土保持科技情报.2002.3:33~35
    [89]杜榕桓,康志成,陈循谦等.云南小江流域泥石流综合考察与防治规划研究[M].重庆:科学技术出版社重庆分社,1987:15~19
    [90]李砰.中国活断层研究专辑-小江活动断裂[M].地震出版社.1998
    [91]刘祖荫,苏有锦,秦嘉政等.20世纪云南地震活动,地震出版社,2002
    [92]陈循谦.云南小江流域的泥石流灾害[J].灾害学,1990,(2):53~57
    [93]唐邦兴.中国泥石流[M].北京:科学出版社,2000.
    [94]李木咸,吴积善.云南东川蒋家沟泥石流形成条件分析.成都:参加全国泥石流学术论文集[C],1980,87~92
    [95]王裕宜,詹钱登,陈晓清等.泥石流体的应力应变自组织临界特性[J].科学通报.2003,V.48,No.3,976~980
    [96]王裕宜.泥石流侵蚀过程中应力特征的分析研究—以云南蒋家沟为例[J].中国地质灾害和防治学报,1996,7(2):12~20
    [97]何易平.泥石流对山区河流河床演变的影响[D].中国科学院研究生院博士学位论文.2003
    [98]许炯心.长江上游干支流的水沙变化及其与森林破坏的关系[J].水利学报,2000,(1):72~82
    [99]Chen, X.Q., Zong, Y.Q., Zhang, E.F, Xu, J.G&Li, S,J, Human impacts on the ChangjiangYangtze River Basin, China with special reference to the impacts on the dry season water discharges into the sea[J].Geomorphology,2001,41:111~123.
    [100]谭万沛,王成华等.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994.
    [101]刘玉洁.泥石流滩地及开发利用对流域环境的影响—以云南东川蒋家沟流域为例[D].四川大学,硕十学位论文,200.4
    [102]胡明鉴,汪稔.蒋家沟流域暴雨滑坡泥石流共生关系试验研究[J].岩石力学与工程学报.2003.22(5):824~828.
    [103]陈晓清,崔鹏,冯自立等.滑坡转化泥石流启动人工降雨试验研究[J].岩石力学与工程学报.2006.25(1):106~115
    [104]陈中学,汪稔,胡明鉴等.云南东川蒋家沟泥石流形成内因初探[J].岩土力学.2009,30(10):3053~3056
    [105]徐敬尧.伊利石的开发利用现状[J].有色矿冶.2005,21(4):13~14.
    [106]王德强,王辅亚,张惠芬等.白云母、绢云母和伊利石的释钾性能[J].土壤学报.2000.4(5):12~15.
    [107]B.E.格里姆.粘土矿物学.北京:地质出版社,1960:108~192.
    [108]李振,周俊.防渗土样的分散性与渗透变形试验研究[J].岩石力学与工程学报.2007,26(supp.1):3316~3321
    [109]史瑞和.土壤农化分析[M].第2版.北京:农业出版社.1986.
    [110]巨娟丽,严宝文,樊恒辉等.某大坝防渗土料分散性试验研究[J].人民长江.2007.38(6):133~134.
    [111]蔡素梅,周加静,穆畅道等.凹土的分散团聚行为研究[J].皮革科学与工程,2010,20(1):21~25
    [112]李洪良,党进谦,樊恒辉等.大坝土料的物理化学性质及分散性试验研究[J].人民长江,2010,41(2):84~86
    [112]樊恒辉,孔令伟,李洪良等.马家树水库大坝防渗土料分散性判别和改性试验[J].岩土力学,2010,31(1):193~198
    [114]樊恒辉,高明霞,李鹏等.某大坝心墙土料分散性试验研究[J].岩土工程学报,2003,25(5):615~618
    [115]高明霞,李鹏,王国栋等.南坪水库筑坝土料分散机理及原因分析[J].岩土工程学报,2009,1(8):1303~1308
    [116]刘晓黎,宋智香,宫继昌等.水利工程筑坝土料分散性试验方法[J].人民黄河,2007,29(12):85~86
    [117]樊恒辉,孔令伟,郭敏霞等.文家沟水库筑坝土料分散性和抗渗性能试验[J].岩土工程学报,2009,31(3):458~463
    [118]中国国家标准化管理委员会.GB5749—2006生活饮用水卫生标准[s].北京:中国标准出版社,2007.
    [119]刘杰.土的渗流稳定与渗流控制[M].北京:水利电力出版社,1992.
    [120]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社.1999:40~42
    [121]郭庆国.关于粗粒土工程选择性及分类的探讨[J].水利水电技术,1979.6
    [122]李广信.高等土力学[M].北京:清华大学出版社,2004.50~51
    [123]陈宁生,崔鹏,陈瑞等.中尼公路泥石流的分布规律与基本特征[J].地质灾害与防治学报,2002,13(1):44~48
    [124]陈宁生,高延超,李东风.四川丹巴“2003-07-11泥石流”灾害考察报告[J].山地学报,2003,21(5):632
    [125]Ellen S.D.,Fleming R W. Mobilization of debris flows from soul slips, San Francisco Bay region, California. In:Costa J.E., Wieczorek, G.F.(Eds), Debris Flows, Avalanchees:Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, 1978, vol.7, Geological Society of American Boulder, CO,31~40.
    [126]Takahashi T., Debis flow. IAHR-AIRH Monogaraph. Balkema. Rotterdam,1991:1~165.
    [127]崔鹏.泥石流启动的突变学特征.自然灾害学,1993.2(1):53~61
    [128]陈宁生.2003年中国西南山区典型灾害性暴雨泥石流运动堆积特征[J].地理科学,2006,26(6):1~8
    [129]陈冬素.人工降雨条件下红壤侵蚀规律研究[D].湖南师范大学,2007:6
    [130]樊恒辉.我国北方地区分散性土的分散机理及其应用技术研究[D].中国科学院武汉岩土力学研究所博士后研究工作报告.2009:52~54
    [131]胡明鉴,汪稔.蒋家沟流域暴雨滑坡泥石流共生关系试验研究[].岩石力学与工程学报.2003,22(5):824~528
    [132]吴积善,田连权,康志成.泥石流及其综合治理[M].科学出版社,1993
    [133]黄文熙.土的工程性质[M].北京:水利电力出版社,1983
    [134]冯国栋.土力学[M].北京:水利电力出版社,1986.115~116
    [135]戚国庆,黄润秋.泥石流成因机理的非饱和土力学理论研究[J].中国地质灾害与防治学报,2003,14(3):12~15
    [136]Thom R.StabiliteStructurelle et Morphogenese[M].New York:Benjamin,1972
    [137]凌复华.突变理论及其应用[M].上海交通大学出版社,1987:1~10
    [138]杨文东.降雨型滑坡特征及其稳定分析研究[D].武汉理工大学博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700