用户名: 密码: 验证码:
硅橡胶类渗透蒸发膜及其扩散特性的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从分子水平上认识高分子膜、高分子-有机杂化膜、高分子-无机杂化膜的物理化学性质和渗透物分子在这些膜内的扩散特性对设计具有特定性质和功能的渗透蒸发膜具有重要意义。本文首先建立了聚二甲基硅氧烷(PDMS)、高苯基含量的聚甲基双苯基硅氧烷(PMPhS)、高分子-有机杂化膜(PDMS-杯芳烃(CA)、PDMS-环糊精(CD))、高分子-无机杂化膜(PDMS-石墨(CG)、PDMS-二氧化硅(SiO_2))的模型,通过分子动力学模拟研究了膜的物理化学性质(溶解度参数、高分子链运动性、自由体积)和渗透物分子(苯、水)在膜内的扩散性质。
     对于PMPhS膜,溶解度参数的计算结果显示随着膜中苯基含量的增加,PMPhS膜表现出更强的亲苯性。自由体积的计算结果表明随着苯基含量的增加,膜的自由体积分数减小,这主要是由于高分子链段的刚性增加所致。同时,苯的扩散系数较水分子的扩散系数的增加更为显著,因此苯基含量的增加能够同时强化硅橡胶膜对苯的吸附能力和苯在膜中的扩散速率,提高了膜的分离性能。
     对高分子-有机杂化膜,实验表明CA引入PDMS后,膜的通量和分离因子表现出了“反常”的变化,即渗透通量和分离因子同时在1wt% CA含量时出现最低值,3wt% CA含量时出现最高值。本文利用分子动力学模拟技术从分子水平上解释这种现象,计算结果和实验结果吻合良好。模拟结果表明,高分子链的运动性和自由体积与PDMS和CA之间的相互作用密切相关。苯/水在无限稀释和饱和状态下的扩散系数表现出了相同的变化趋势,并且扩散系数的大小不仅与自由体积相关,还与扩散分子和CA之间的相互作用有关。将CD引入PDMS中,杂化膜的溶解度参数更接近苯分子,表现出更强的亲苯性。不同的环糊精含量会导致PDMS与环糊精超分子之间不同的相互作用,并使得高分子链段运动性降低,膜的自由体积分数降低。苯和水分子在杂化膜内的扩散系数,结果表明苯和水分子在具有较大自由体积和较高高分子链运动性的膜中扩散系数较大。
     对高分子-无机杂化膜,将无机介质CG、SiO_2加入PDMS,降低高分子PDMS高分子链间相互作用。无机介质对高分子链的运动性影响不大,但使杂化膜自由体积分数降低。苯和水分子在杂化膜内的扩散系数结果显示体积较小的水分子在膜内扩散速率远大于体积较大的苯分子。苯和水分子在杂化膜内扩散系数的差异主要来自不同表面基团的CG或SiO_2对杂化膜膜内自由体积的影响所产生的。由于水分子可以渗透通过无机介质SiO_2,而无法渗透通过无机介质CG,因此水分子在PDMS-SiO_2杂化膜内的扩散系数大于PDMS-CG杂化膜。
Understanding the physical-chemical properties and the diffusion properties of polymeric membranes, polymer-organic hybrid membranes, and polymer-inorgainc membranes was crucial to design pervaporation membranes with tailored structure and desired properties. In this study, the detailed atomistic structures of the membranes were built, including polymeric poly-dimethylsiloxane (PDMS) and poly(methylphenylsilane) (PMPhS), polymer-organic hybrid membranes (PDMS-calix[4]arene (CA), PDMS-cyclodextrin (CD)), polymer-inorganic hybrid membranes (PDMS-graphite (CG) and PDMS-silica (SiO_2)). The physical-chemical properties (including solubility parameters, segmental mobility, free volume) and the diffusion properties of benzene/water in these membranes were studied by molecular dynamics simulations.
     The solubility parameters of PMPhS membranes revealed that with the increase of phenyl group the membrane exhibited closer solubility parameter value to that of benzene. Although the FFV values of PMPhS membranes were decreased with the increase of phenyl group, the diffusion coefficients of benzene was enhanced. Thus the incorporation of phenyl group could improve the separation performance.
     For polymer-organic hybrid membranes, in our previous experimental investigation, the normalized permeation rate of benzene (NPRb) and separation factor (benzene/water) through PDMS-CA hybrid membranes did not follow the usual monotonous or single peak/valley change, but accompanied minimum and maximum values instead. In the present study, it was expected to explain the unusual phenomenon by MDs method, and the MD results agreed well with the experimental results. The simulation outcome revealed that MSD and fractional free volume (FFV) values were closely dependent on interaction energy. Diffusion coefficients of benzene and water at“infinite dilution”and saturated condition displayed the same changing tendency, although the values at saturated condition were a bit larger. Moreover, it was observed that diffusion coefficients were not only related to FFV, but also affected by the interaction between CA and the penetrants. The solubility parameters of CD-f-PDMS membranes revealed that with the increase of CD the membrane exhibited closer solubility parameter value to that of benzene. The MSD of polymer chains in CD-f-PDMS hybrid membranes was decreased with the increase of CD content, which was possibly attributed to the different interaction energy between PDMS and CD. The FFV was decreased with the increase of CD content. The diffusion coefficients of benzene/water were closely related to the FFV, i.e., larger FFV resulted in bigger diffusion coefficients.
     For polymer-inorganic hybrid membranes, incorporated CG and SiO_2 decreased the interaction between polymer chains of PDMS, had little influences on chain mobility, and decreased fraction of free volume. The diffusion coefficients of benzene and water in the membranes showed that the diffusion coefficients in hybrid membranes were smaller than those in the control membrane. These differences mainly came from the differences of free volume properties. It was also found that diffusion coefficient of water in PDMS-SiO_2 hybrid membranes was larger than that in PDMS-CG hybrid membranes, since water molecules could penetrate through the silica particles but be obstructed by graphite particles.
引文
[1] Chris L, Pierre C, The use of pervaporation for the removal of organic contaminants from water, Environ. Prog., 1990, 9(4): 254~261
    [2]汪大翚,徐新华,宋爽,工业废水中专项污染物处理手册,第一版,北京:化学工业出版社,2000,326~331
    [3] Ji W C, Sikdar S K, Hwang S T, Modeling of multicomponent ervaporation for removal of vloatile organic compounds from water, J. Membr. Sci., 1994, 93(1): 1~19
    [4]朱永安,空气气提法处理含苯和氯苯的废水,化工环保,1995,15(4):247~248,210
    [5]赵丽辉,贾智萍,不同来源菌种对苯系化合物生物降解性的比较,环境科学,1996,17(3):15~18
    [6] Athayde A L, Baker R W, Daniels R, et al, Pervaporation for wasterwater treatment, Chemtech, 1997, 27(1): 34~39
    [7] Peng M, Vane L M, Liu S X, Recent advances in VOCs removal from water by pervaporation, J. Hazard. Mater., 2003, 98(1-3): 69~90
    [8] Yamaguchi T, Suzuki T, Kai T, et al, Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water, J. Membr. Sci., 2001, 194(2): 217~228
    [9] Hoshi M, Saitoh T, Yoshioka C, et al, Pervaporation separation of 1,1,2-trichloroethane-water mixture through crosslinked acrylate copolymer composite membranes, J. Appl. Polym. Sci., 1999, 74(4): 983~994
    [10] Hoshi M, Ieshige M, Saitoh T, et al, Separation of aqueous phenol through polyurethane membranes by pervaporation. III. Effect of the methylene group length in poly(alkylene glycols), J. Appl. Polym. Sci., 2000, 76(5): 654~664
    [11] Baker, Process for recovering organic components from liquid streams, US Patent, 5169533, 1992-11-08
    [12] Khayet M, Matsuura T, Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation, Desalination, 2002, 148(1-3): 31~37
    [13] Roualdes S, Durand J, Field R W, Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams, J. Membr. Sci., 2003, 211(1): 113~126
    [14] Uragami T, Yamada H, Miyata T, Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology , J. Membr. Sci., 2001, 187(1-2): 255~269
    [15] Miyata T, Yamada H, Uragami T, Microphase-separated membranes by fluorine-containing polymer additive and removal of dilute benzene in water through these membranes , Macromolecules, 2001, 34(23): 8026~8033
    [16] Uragami T, Ohshima T, Miyata T, Removal of benzene from an aqueous solution of dilute benzene by various cross-linked poly(dimethylsiloxane) membranes during pervaporation, Macromolecules, 2003, 36(25): 9430~9436
    [17] Jian K, Pintauro P N, Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations, J. Membr. Sci., 1997, 135(1): 41~53
    [18] Takahashi S, Yoshida Y, Kamada T, et al, Separation of benzene using the poly[1-(trimethylsilyl)-propyne] blend membranes, Kobunshi Ronbunshu, 2001, 58(5): 213~220
    [19] Kim H J, Nah S S, Min B R, A new technique for preparation of PDMS pervaporation membrane for VOC removal, Adv. Environ. Res., 2002, 6(3): 255~264
    [20] Schnabel S, Moulin P, Nguyen Q T, et al, Removal of volatile organic components (VOCs) from water by pervaporation:separation improvement by Dean vortices , J. Membr. Sci., 1998, 142(1): 129~141
    [21] Ji W, Sikdar S K, Sikdar S T, Modeling of multicomponent pervaporation for removal of volatile organic compounds from water, J. Membr. Sci., 1994, 93(1): 1~19
    [22] Nijhuis H H, Mulder M H V, Smolders C A, Removal of trace organics from aqueous solutions. Effect of membrane thickness, J. Membr. Sci., 1991, 61: 99~111
    [23] Ji W, Hilaly A, Sikdar S K, Optimization of multicomponent pervaporation for removal of volatile organic compounds from water, J. Membr. Sci., 1994, 97: 109~125
    [24] Huang R Y M, Moon G Y, Pal R, Ethylene Propylene Diene Monomer (EPDM)Membranes for the Pervaporation Separation of Aroma Compound from Water, Ind. Eng. Chem. Res., 2002, 41(3): 531~537
    [25] Pereira C C, Habert A C, Nobrega R, et al, New insights in the removal of diluted volatile organic compounds from dilute aqueous solution by pervaporation process, J. Membr. Sci., 1998, 138(2): 227~235
    [26] Inui K, Okumura H, Takashi, et al, Permeation and separation of benzene/cyclohexane mixtures through cross-linked poly(alkyl methacrylate) membranes, J. Membr. Sci., 1997, 132(2): 193~202
    [27] Hoshi M, Saitoh T, Yoshioka C, et al, Pervaporation separation of 1,1,2-trichloroethane-water mixture through crosslinked acrylate copolymer composite membranes, J. Appl. Polym. Sci., 1999, 74(4): 983~994
    [28] Guo R, Hu C, Li B, Jiang Z. Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis. J. Membr. Sci., 2007, 289, 191-198
    [29] Wang X P, Shen Z Q, Zhang F Y, et al, Preferential separation of ethanol from aqueous solution through hydrophilic polymer membranes, J. Appl. Polym. Sci., 1999, 73(7) : 1145~1151
    [30] Takahashi S, Yoshida Y, Kamada T, et al, Separation of benzene using the poly[1-(trimethylsilyl)-propyne] blend membranes, Kobunshi Ronbunshu, 2001, 58(5): 213~220
    [31]赵德仁,高聚物合成工艺学,北京:化学工业出版社,1981
    [32] Yang J M, Wang W C, Hsu Y G, The properties of SBS-g-UP copolymer membrane prepared by UV photografting without degrassing, J. Membr. Sci., 1997, 128(2): 133~140
    [33] Yamaguchi T, Nakio S, Kimura S, Solubility and pervaporation properties of the filling-polymerized membrane prepared by plasma-graft polymerization for pervaporation of organic-liquid mixtures, Ind. Eng. Chem. Res., 1992, 31(8): 1914 ~1919
    [34]Yoshikawa M, Tsubouchi K, Kitao T, Specialty polymeric Membranes. 9. Separation of benzene from benzene-cyclohexane mixtures with nylon 6-graft-poly(butyl methacrylate) membranes, Separ. Sci. Technol., 1999, 34(3): 403~422
    [35] Khayet M, Matsuura T, Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation, Desalination, 2002,148(1-3): 31~37
    [36] Uragami T, Terumi M, Miyata T, Effects of morphology of multicomponent polymer membranes containing calixarene on permselective removal of benzene from a dilute aqueous solution of benzene, Macromolecules, 2003, 36(6): 2041~2048
    [37] Uragami T, Terumi M, Miyata T, Effects of addition of calixarene to microphase-separated membranes for the removal of volatile organic compounds from dilute aqueous solutions, Macromolecules, 2001, 34(19): 6806~6811
    [38] Li L, Xiao Z Y, Zhang Z B, et al, Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes, Chem. Eng. J., 2004, 97(1): 83~86
    [39] Lu S Y, Chiu C P, Huang H Y, Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes, J. Membr. Sci., 2000, 176(2): 159~167
    [40] Dotremont C, Brabants B, Geeroms K, et al, Sorption and diffusion of chlorinated hydrocarbons in silicalite-filled PDMS membranes, J. Membr. Sci., 1995, 104: 109~117
    [41] Chandak M V, Lin Y S, Ji W, et al, Sorption and diffusion of VOCs in DAY zeolite and silicalite-filled PDMS membranes, J. Membr. Sci., 1997, 133: 231~243
    [42] Feng X S, Huang Robert Y M, Liquid separation by membrane pervaporation, a review, Ind. Eng. Chem. Res, 1997, 36(4): 1048~1066
    [43] Nguyen J Q, Modelling of influence of downstream pressure for highly pervaporation, J. Membr. Sci., 1987, 34(2): 165~172
    [44]朱长乐,刘苿娥.膜科学技术,第一版,浙江:浙江大学出版社,1992
    [45]姜忠义,徐海全,刘家祺等,渗透蒸发过程脱除水溶液中挥发性有机物的研究,化学工程,2002,30(2):49~52,74
    [46] Jian K, Pintauro P N, Ponangi R, Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) membranes, J. Membr. Sci., 1996, 117(1-2): 117~133
    [47] Uragami T, Yamada H, Miyata T, Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology, J. Membr. Sci., 2001, 187(1-2): 255~269
    [48] Miyata T, Yamada H, Uragami T, Microphase-separated membranes by fluorine-containing polymer additive and removal of dilute benzene in water through these membranes, Macromolecules, 2001, 34(23): 8026~8033
    [49]黄志镗,杨联明,杯芳烃研究进展,化学进展,1994, 6(3):173~177
    [50] Alder B J, Wainwright T E, Phase transition for a hard sphere system, J. Chem. Phys., 1957, 27(5): 1208~1209
    [51] Rahman A, Correlations in the motion of atoms in liquid argon, Phys. Rev., 1964, 136(2A): 405~411
    [52] Verlet L, Computer“experiments”on classical fluids: 1.thermodynamical properties of lennard-jones molecules, Phys. Rev., 1967, 165(1): 201~214
    [53] Harp G D, Berne B J, Linear and angular momentum autocorrelation functions in diatomic liquids, J. Chem. Phys., 1968, 49(3): 1249~1254
    [54] Evans D J, Murad S, Singularity mechanics of nonequilibrium liquids, New York: Academic Press, 1977
    [55] Cheung P S Y, Powles J G, The properties of liquid nitrogen IV. A computer simulation, Mol. Phys., 1975, 30(3): 921~949
    [56] Andersen H C, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 1980, 72: 2384~2393
    [57] Nose S, A molecular dynamics method for simulation in the canonical ensemble, Mol. Phys., 2002, 100(1): 191~198
    [58] Verlet L, Computer experiments on classical fluids: I. thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 1967, 159(1): 98~103
    [59] Swope W C, Anderson H C, Berens P H, et al, Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys., 1982, 76(1): 637~649
    [60] Pavel H, Martin K, Jiri S, et al, Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree-Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree-Fock results, J. Comput. Chem., 1998, 18(3): 1136~1150
    [61] Sun, H, Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, 28: 701~712
    [62] Sun, H, COMPASS: An ab initio force-field optimized for condensed-phaseapplications-overview with details on alkane and benzene compounds, J. Phys. Chem. B, 1998, 102(38): 7338~7364
    [63] Tamai Y, Tanaka H, Nakanishi K, Molecular simulation of permeation of small penetrants through membranes. 1. diffusion coefficients, Macromolecules, 1994, 27: 4498~4508
    [64] Tamai Y, Tanaka H, Nakanishi K, Molecular simulation of permeation of small penetrants through membranes. 2. solubilities, Macromolecules, 1995, 28: 2544
    [65] Lim S Y, Tsotsis T T, Molecular simulation of diffusion and sorption of gases in an amorphous polymer, J. Chem. Phys., 2003, 119(1): 496~503
    [66] Hofmann D, Fritz L, Ulbrich J, et al, Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides, Comput. Theor. Polym. S., 2000, 10(5): 419~436
    [67] Tocci E, Bellacchio E, Russo N, et al, Diffusion of gases in PEEKs membranes: Molecular dynamics simulations, J. Membr. Sci., 2002, 206(1-2): 389~398
    [68] Charati S G, Stern S A, Diffusion of gas in silicone polymer: molecular dynamics simulation, Macromolecules, 1998, 31(16): 5529~5535
    [69] Tung K L, Lu K T, Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies, J. Membr. Sci., 2006, 272(1-2): 37~49
    [70] Karayiannis N C, Mavrantzas V G, Theodorou D N, Detailed atomistic simulation of the segmental dynamics and barrier properties of amorphous poly(ethylene terephthalate) and poly(ethylene isophthalate), Macromolecules, 2004, 37(8): 2978~2995
    [71] Pant P V K, Boyd R H, Molecular dynamics simulation of diffusion of small penetrants in polymers, Macromolecules, 1993, 26: 679~686
    [72] Hofmann D, Fritz L, Ulbrich J, Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theor. Simul., 2000, 9(6): 293~327
    [75] Pavel D, Shanks R, Molecular dynamics simulation of diffusion of O2 and CO2 in amorphous poly(ethylene terephthalate) and related polyesters, Polymer, 2003, 44(21): 6713~6724
    [74] Pavel D, Shanks R, Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amorphous poly(ethylene terephthalate) and related polyesters, Polymer, 2005, 46(16): 6135~6147
    [75] Ronova I A, Rozhkov E M, Alentiev A Y, et al, Occupied and accessible volumes in glassy polymers and their relationship with gas permeation parameters, Macromol. Theor. Simul., 2003, 12(6): 425~439
    [76] Wang X Y, in’t Veld P J, Lu Y, et al. A molecular simulation study of cavity size distributions and diffusion in para and meta isomers, Polymer, 2005, 46(21): 9155~9161
    [77] Wang X Y, Lee K M, Lu Y, Cavity size distributions in high free volume glassy polymers by molecular simulation, Polymer, 2004, 45(11): 3907~3912
    [78] van der Vegt N F A, Temperature dependence of gas transport in polymer melt: molecular dynamics simulation of CO2 in polyethylene, Macromolecules, 2000, 33(8): 3153~3160
    [79] Laguna M F ,Guzman J, Riande E, et al, Experimental and Simulation Studies on the Transport of Argon through Poly(pentaerythritoltribenzoate acrylate), Macromolecules, 1998, 31 (21): 7488~7494
    [80] Bharadwaj R K, Boyd R H, Small molecule penetrant diffusion in aromatic polyesters: a molecular dynamics simulation study, Polymer, 1999, 40(15): 4229~4236
    [81] Muller-Plathe F, Molecular dynamics simulation of gas transport in amorphous polypropylene, J. Chem. Phys., 1992, 96(4): 3200~3205
    [82] Hofmann D, Fritz L, Paul D, Molecular modelling of pervaporation separation of binary mixtures with polymeric membranes, J. Membr. Sci., 1998, 144(1-2):145~159
    [83] Fusheng Pan, Fubing Peng, Lianyu Lu, et al, Molecular simulation on penetrants diffusion at the interface region of organic-inorganic hybrid membranes, Chem. Eng. Sci., 2008, 63(4): 1072~1080
    [84] Fusheng Pan, Fubing Peng, Zhongyi Jiang, Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by Molecular dynamics simulation, Chem. Eng. Sci., 2007, 62(3): 703~710
    [85]吴洪,冯海锋,姜忠义,PMPhS渗透蒸发膜脱除水中苯的研究,第一届全国化学工程与生物化工年会论文摘要集(上),2004,92-98
    [86]李多,硅橡胶渗透蒸发膜分离水中苯的实验与理论研究:[硕士学位论文],天津;天津大学,2003.
    [87]冯海锋,PMPhS渗透蒸发膜脱除水中苯的实验研究及理论计算:[硕士学位论文],天津;天津大学,2004.
    [88] Rittigstein P, Priestley R D, Broadbelt L J, et al, Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites, Nat. Mater., 2007, 6(4): 278~282
    [89] Ji W, Sikdar S K, Pervaporation using adsorbent-filled membranes, Ind. Eng. Chem. Res, 1996, 35(4): 1124~1132
    [90] Charati S G, Stern S A, Diffusion of gases in silicone polymers: molecular dynamics simulations, Macromolecules, 1998, 31(16): 5529~5535
    [91] Zhou J H, Zhu R X, Zhou J M, et al, Molecular dynamics simulation of diffusion of gases in pure and silica-filled poly (1-trimethylsilyl-1-propyne) [PTMSP], polymer, 2006, 47(14): 5206~5212
    [92] Peng F B, Lu L Y, Sun H L, et al, Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity, Chem. Mater., 2005, 17(26): 6790~6796
    [93] Peng F B, Pan F S, Sun H L, et al, Novel nanocomposite pervaporation membranes composed of poly (vinyl alcohol) and chitosan-wrapped carbon nanotube, J. Membr. Sci., 2007, 300(1-2): 13~19
    [94] Liu L, Jiang Z Y, Pan F S, Calix[4]arene-filled Poly Dimethylsiloxane (PDMS) Membranes for the Pervaporative Removal of Benzene from Dilute Aqueous Solution, J. Appl. Polym. Sci., 2006, 101(1): 90~100
    [95] Wu H, Liu L, Pan F S, et al, Pervaporative removal of benzene from aqueous solution through supramolecule calixarene filled PDMS composite membranes, Sep. Purif. Technol., 2006, 51(3): 352~358
    [96] Liu L, Jiang, Z Y, Pan F S, et al, The unusual change of permeation rate in PDMS membranes filled with crystalline calixarene and its derivative, J. Membr. Sci., 2006, 279(1-2): 111~119
    [97] Andrea T A, Swope W C, Andersen H C, The role of long ranged forces in determining the structure and properties of liquid water, J. Chem. Phys., 1983, 79(9): 4576~4584
    [98] Berendsen H J C, Postma J P M, Funsteren W F, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81(8): 3684~3690
    [99] Moore T T, Koros W J, Non-ideal effects in organic–inorganic materials for gas separation membranes, J. Mol. Struct., 2005, 739(1-3): 87~98
    [100] Koros W J, Fleming G K, Membrane-based gas separation, J. Membr. Sci.,1993, 83(1): 1~80
    [101] Mahajan R, Vu D Q, Koros W J, Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE J., 2004, 50(2): 311~321
    [102] Eisenberg A, Hird B, Moore R B, A new Multiplet-cluster model for the morphology of random ionomers, Macromolecules, 1990, 23: 4098~4107
    [103] Liu L, Study on the preparation and separation properties of novel PDMS pervaporation membranes, M.S. Dissertation, Tianjin University: Tianjin, 2005
    [104] Baker. Process for recovering organic components from liquid streams. US Patent,5169533. 1992-11-08
    [105] Li B, Molecular simulation of gas transport properties and chain conformations of polysilanes, Ph.D Dissertation, University of Cincinnati, Cininnati, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700